Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 166070 dokumen yang sesuai dengan query
cover
I Made Wikananda Supartha
"Indonesia mengalami peningkatan konsumsi listrik karena pertumbuhan populasi. Sebagian besar listrik yang dihasilkan menggunakan sumber daya batubara. Muncul urgensi untuk mengembangkan Energi Baru dan Terbarukan (EBT) agar dampak dari emisi karbon tidak meningkat. Salah satu alternatif EBT yang hadir di Indonesia adalah tenaga surya, namun sayangnya masih memiliki adopsi yang rendah di Indonesia meskipun potensinya besar. Penelitian ini bertujuan untuk menganalisis alternatif kebijakan dalam rangka meningkatkan adopsi rooftop PV untuk mengurangi emisi karbon. Melalui metode sistem dinamis, model dikonstruksi untuk menguji tiga alternatif kebijakan.
Hasil penelitian menunjukkan bahwa kebijakan net metering merupakan kebijakan yang dapat memberikan stimulus paling baik pada rumah tangga untuk mengadopsi rooftop PV. Pada skenario kebijakan ini, jumlah rumah tangga yang mengadopsi rooftop PV adalah sebesar 5.346. Selain itu, kebijakan ini juga dapat menekan jumlah emisi paling besar, yakni adalah sebesar 1.037 juta kgCO.

Indonesia experiences rapid increase in electricity consumption due to its increasing population. Coal is still become dominant contributor in Indonesias energy mix. The development of new and renewable energy becomes an important issue to reduce the carbon emission. One of the alternatives of new and renewable energy is solar photovoltaic. Unfortunately, the amount of adopters of this type of energy is still low, despite of its great potential. The aim of this research is to analyze policy alternatives to increase the adoption of rooftop PV in order to reduce carbon emission. System dynamics model is used to simulate three policies alternatives.
Result shows that net metering policies is the best alternative to be implemented, since its produces the highest result in terms of amount of household that adopts rooftop PV, which gives value 5.346 household. More than that, net metering acts as the best policy to gives the highest amount of avoided carbon emission (1.037 million kgC
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Salma Azra Fatimah
"

Energi listrik adalah salah satu energi yang sangat dibutuhkan demi keberlangsungan hidup manusia dengan peningkatan penggunaan setiap tahunnya. Di Indonesia sendiri, sebagian besar sumber energi pembangkitan listrik masih berasal dari batu bara, sehingga pemerintah menargetkan pengembangan PLTS atap hingga 3,6 GW pada tahun 2025. Demi mendukung program tersebut, PLTS eksisting tetap harus dijaga kinerjanya, di mana salah satu cara untuk menguji keandalan sistem tersebut adalah dengan melakukan evaluasi kinerja mengacu pada standar IEC 61724, yaitu standar untuk mengukur kinerja fotovoltaik. Penelitian ini melakukan studi mengenai implementasi PLTS Atap On-Grid 90 kWp di Gedung Energi 625 Pusat Penelitian Ilmu Penerapan dan Teknologi (Puspiptek), Serpong, Tangerang Selatan. Gedung ini merupakan pusat pengembangan dan penerapan ilmu pengetahuan dan teknologi berbasis penelitian. Sebagai data acuan, akan dilakukan simulasi data seharusnya menggunakan perangkat lunak PVsyst. Berdasarkan simulasi, dihasilkan energi keluaran PLTS tahunan sebesar 130.451 kWh dengan  performance ratio sebesar 81,30% dan capacity factor sebesar 16,21%. Sedangkan, hasil pengukuran menghasilkan energi keluaran tahunan sebesar 102.491 kWh dengan rasio performa sebesar 73,51% dan capacity factor sebesar 13%. Rata-rata penurunan produksi energi tahunan sebesar 6,32% dengan energy performance index yang diperoleh adalah 80,21%.


Electrical energy is one of the most important energies for human life and sustainability with a constant increase in usage every year. In Indonesia, most of the electricity generated comes from coal, resulting in the government targeting solar power plant development up to 3,6 GW by 2025. To support the initiative, all the existing solar power plants have to sustain their performance, and one of the methods is to evaluate the system's performance according to the IEC 61724 standard, which is a standard to measure the performance of photovoltaic. This research is studying the implementation of a 90 kWp On-Grid Rooftop Solar Power Plant in the Energy Building of Pusat Penelitian Ilmu Pengetahuan dan Teknologi (Puspiptek), Serpong, South Tangerang. This government-owned building is used as a center for the development and application of science and technology based on research. For data reference, a simulation with PVsyst software was conducted. Based on simulation, the yearly output energy yielded 130.451 kWh with a performance ratio of 81,30% and a capacity factor of 16,21%. While the measured data obtained a yearly energy output of 102.491 kWh with a performance ratio of 73,51% and a capacity factor of 13%. The average output energy degradation is 6,32% with an acquired energy performance index of 80,21%.

"
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aiman Setiawan
"As a tropical country, Indonesia has great solar energy potential, with an average solar radiation intensity of 4.8 kWh/m2/d. Consequently, the optimization of solar power plants in Indonesia is necessary. The objective of this paper is to investigate solar panel optimization in Indonesia using system advisor model (SAM) software. Optimization focuses on two main concerns, choice of photovoltaic (PV) type and optimum PV tilt angle. Research is conducted in three different cities in Indonesia. The annual energy production simulation is conducted on 5 kWDC PV on-grid systems with different PV types and slope angles. According to simulation results, Indonesia has a relatively low proper PV tilt angle, with a value of 11o, 11o and 6o for Jakarta, Makassar and Jayapura, respectively. It can also be derived that when compared to crystalline PV modules, thin film PV modules have better performance, with the highest annual energy production due to its temperature coefficient characteristics."
Depok: Faculty of Engineering, Universitas Indonesia, 2017
UI-IJTECH 8:3 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
David Apriando Mangatur
"Kebutuhan dan ketergantungan manusia terhadap bahan bakar fosil untuk penggunaanya pada kendaraan bermotor berdampak buruk terhadap kualitas udara akibat polusi Dengan hadirnya mobil listrik yang tidak menggunakan bensin, diharapkan memperbaiki kualitas udara publik. Namun belum adanya stasiun pengisian listrik umum untuk mobil listrik, menjadi salah satu kendala yang kita hadapi. Untuk itu penulis ingin mendesain stasiun pengisian listrik umum untuk mobil listrik yang dapat ditempatkan di tempat yang tidak terjangkau PLN sebagai depot pengisian. Dengan tentunya tidak lupa menggunakan sumber tenaga yang terbaharukan, yaitu tenaga surya.
Metode yang penulis gunakan adalah membangun stasiun pengisian dengan mengandalkan peralatan yang dijual di pasaran yang sesuai spesifikasi mobil listrik. Sebagai Penulis merancang stasiun pengisian listrik umum yang menggunakan tenaga matahari sebagai sumbernya yang kompetibel dengan mobil Nissan Leaf. Penulis juga merancang spesifikasi Sel surya, Baterai, dan Charger manakah yang sesuai, sehingga tercipta suatu sistem yang mandiri. Setelah mengadakan penelitian ini, hanya dengan biaya Rp 1,4 Milyar, Penulis dapat membuat SPLU yang kompetibel, feasibel, mandiri dan dapat melayani hingga 18 mobil listrik perhari. Dengan mengandalkan aparatur-aparatur yang dapat dibeli di pasaran dan tentunya ramah lingkungan karena mengandalkan panas matahari sebagai sumber energi, penulis mencapai tujuan dengan penempatan di daerah yang belum terjangkau PLN.

Our Dependency to fossil fuel powered vehicle, has a great amount of bad affection due its pollution. With the producing of Electric Vehicle, we hope that the quality of the air could be improved. But we still have a problem, that the fact we didn't have Public Vehicular Charging Stations. Writer want to design vehicular charging station so we can place it at a small corner of the streets. So we can charge the car if something bad occurred, like depletion of battery, or the capacitance failure. Writer uses the renewable resources, which in this case is solar source.
The method is using the marketable units, which is compatible with the specification of electric vehicular that used in society. Writer will use the solar panel as the power source, and nissan leaf as the main vehicle. Writer will considerate the specification of battery, solar cell, and charger that would be the best for the system. We hope that this independent charging station can be place at the remote location due its dependency from the 'PLN'. Writer happened to makea independent, feasible, and compatible ?SPLU? from a mere $100.000 that can recharge 18 electric car per-day. Writer uses the appartture like Photovoltaic, Battery and Charger those are purchasable at the market, therefore clean for the environtment for its dependency to Solar Power."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64381
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adhi Devawijaya
"Dalam rangka mendorong pencapaian target bauran energi terbarukan nasional, khususnya energi surya, Pemerintah Indonesia menerbitkan Peraturan Menteri Energi dan Sumber Daya Mineral Nomor 21 Tahun 2021 tentang Pembangkit Listrik Tenaga Surya Atap yang Terhubung dengan Jaringan Tenaga Listrik Pemegang Izin Usaha . Peraturan ini memungkinkan konsumen untuk memasang pembangkit listrik tenaga surya di atap. Sehingga saat ini sudah banyak industri yang membangun PLTS di atap pabrik. Namun, investasi PLTS atap masih menjadi tantangan tersendiri bagi industri, sehingga model bisnis kepemilikan pihak ketiga (TPO) menjadi alternatif solusi untuk mengatasi masalah tersebut. Tujuan dari penelitian ini adalah untuk menganalisis tekno-ekonomi pembangkit listrik tenaga surya atap dengan studi kasus pabrik makanan dan minuman. Metodologi yang digunakan adalah merancang PLTS rooftop menggunakan simulasi homer untuk mendapatkan kapasitas optimal kemudian menganalisa keekonomian untuk mendapatkan tarif terendah dengan metode cash flow menggunakan 12 skenario yaitu skenario 1 untuk suku bunga lokal 10%, skenario 2 untuk suku bunga internasional 2,6%, skenario 3 untuk suku bunga lokal 10% dan tanpa kewajiban TKDN, skenario 4 untuk suku bunga internasional 2,6% dan tanpa tanpa kewajiban TKDN, skenario 5 : skenario 3 dan Insentif Tax Holiday, skenario 6 : skenario 4 dan Insentif Tax Holiday. Skema bisnis TPO dianalisis dengan skema leasing solar performance based rent (PBR). Hasil  yang diperoleh adalah modul PV yang digunakan sebesar 2.100 kW, produksi listrik tahunan PLTS atap sebesar 3.005.331 kWh/tahun, biaya investasi sebesar 1.785.246 USD dengan menggunakan modul PV lokal dan 1.341.424 USD dengan Modul PV Impor. Luas atap yang dibutuhkan adalah 1,19 Ha. Tarif yang diperoleh dari perhitungan 6 skenario adalah 10.23 cent USD/kWh untuk skenario 1; 9,86 cent USD/kWh untuk skenario 2, 7,71 cent USD/kWh untuk skenario 3; 7,4 cent USD/kWh untuk skenario 4; 6,98 cent USD/kWh untuk scenario 5 dan 6,44 cent USD/kWh untuk scenario 6. Selama kontrak TPO, penghematan terbesar terjadi pada skenario 6 dengan potensi penghematan 22.840 USD/Tahun. Penerapan TPO hanya layak untuk skenario 5 dan skenario 6 karena tarifnya lebih rendah dari tarif PLN.

In order to encourage the achievement of the national renewable energy mix target, especially solar energy, the Government of Indonesia issued the Minister of Energy and Mineral Resources Regulation Number 21 Year  2021 concerning Rooftop Solar Power Plants Connected to the Electric Power Grid Holders of Business Licenses. This regulation allows consumers to install rooftop solar power plant. So now many industries have built rooftop solar power plant on factory roofs. However, rooftop solar power plant investment is still a challenge for industry, so the third-party ownership (TPO) business model is an alternative solution to overcome this problem. The purpose of this study is to analyze the techno-economy of rooftop solar power plant with in a case study of the food and beverage factory. The methodology used is to design rooftop solar power plant using homer simulation to get the optimal capacity then analyze the economy to get the lowest tariff with the cash flow method using 4 scenarios, namely scenario 1 for Local Interest Rate 10%, scenario 2 for International Interest Rate 2.6%, scenario 3 for Local Interest Rate 10% and without local content, scenario 4 for International Interest Rate 2.6% and without local content, scenario 5: scenario 3 and Incentive Tax Holiday, scenario 6: scenario 4 and Incentive Tax Holiday. The TPO business scheme analyzed by leasing solar performance-based rent (PBR) schemes. The optimization results obtained are the modul PV used is 2,100 kW, annual electricity production of rooftop solar power plant is 3,005,331 kWh/year, investment cost is 1.785.246 USD with using local pv modul and 1.341.424 USD with PV Module Local Content Exemption (Imported PV Module)  and the required area is 1.19 Ha. The tariff obtained from the calculation of 4 scenarios is 10.23 cent USD/kWh for scenario 1; 9.86 cent USD/kWh for scenario 2, 7.71 cent USD/kWh for scenario 3; 7.4 cent USD/kWh for scenario 4; 6.98 cent USD/kWh for scenario 5 and 6.44 cent USD/kWh for scenario 6. During the TPO contract, the biggest savings occurred in scenario 6 with potential savings of 22.840 USD/year. The application of TPO is only feasible for scenario 5 and scenario 6 because the tariff is lower than the PLN tariff."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Pancer Honggo Buwono
"PLTS atap merupakan salah satu teknologi energi terbarukan yang semakin meningkat perkembangan dan penggunaannya di dunia dalam mendukung transisi energi dengan tujuan meninggalkan penggunaan energi fosil dan beralih ke energi terbarukan untuk mewujudkan nihil emisi karbon. Transisi ini memiliki dampak yang salah satunya adalah pada bisnis kelistrikan di perusahaan utilitas listrik. Penelitian ini menggunakan pemodelan sistem dinamis untuk menggambarkan hubungan antara variabel yang menjelaskan pengaruh penetrasi PLTS atap rumah tangga pada pendapatan perusahaan utilitas listrik yang disesuaikan dengan pasar kelistrikan di Indonesia. Pemodelan yang dibangun mengadopsi dari model difusi Bass, dengan obyek penelitian pelanggan rumah tangga PLN dengan daya >2200VA. Obyek perusahaan utilitas listrik adalah PLN, pembangkit listrik PLN dan IPP. Area penelitian adalah Jawa Bali dengan periode waktu tahun 2022-2050. Hasil dari penelitian ini adalah penetrasi PLTS atap rumah tangga berpengaruh negatif yang mengakibatkan penurunan keuangan dari perusahaan utilitas listrik. Faktor-faktor yang penting yang berpengaruh terhadap penetrasi PLTS atap adalah batas kapasitas jaringan, insentif dan tingkat adopsi. Kondisi keuangan perusahaan utilitas listrik Indonesia masih ditopang oleh besarnya pelanggan listrik dengan daya <2200VA (non-prosumer) yang sebagian disubsidi oleh pemerintah, sehingga penetrasi PLTS atap tidak membuat jatuh keuangan perusahaan utilitas. Faktor-faktor batas kapasitas jaringan listrik dan besarnya insentif berdampak yang rendah, tidak berdampak pada perubahan BPP, penurunan keuntungan bersih PLN pada kisaran Rp 1,01 triliun - Rp 3,49 triliun, tahun terdampak dari 2033-2035 dan waktu pulih 3 - 8 tahun. Besaran insentif 65% adalah faktor berdampak paling rendah dibanding yang lain. Sedangkan untuk faktor-faktor tingkat adopsi dari PLTS atap (menurut model bass-diffussion, innovation factor dan imitation factor), berdampak besar dengan terjadinya kenaikan BPP, penurunan keuntungan bersih PLN antara Rp 11,99 triliun - Rp 17,49 triliun, dan waktu pulih yaitu 12 - 16 tahun. Sedangkan penurunan konsumsi listrik non-prosumer sebesar <2% akan menyebabkan ketidakstabilan kondisi bisnis kelistrikan di Indonesia, karena terjadi kenaikan BPP dan penurunan keuntungan PLN sebesar >Rp 14,24 triliun. Untuk konsumsi listrik non-prosumer sebesar 2%, pemerintah masih mempunyai dana dengan mengalokasikan penghematan subsidi listrik sebesar Rp 4.409,96 triliun untuk menutupi kerugian dari perusahaan utilitas listrik Rp 3.278,71 triliun, serta memiliki selisih sebesar Rp 1.131,25 triliun untuk pengembangan energi terbarukan. Pemerintah Indonesia perlu memperhatikan besarnya penetrasi PLTS atap rumah tangga agar dapat diimbangi dengan kemampuan perusahaan utilitas listrik untuk melakukan transformasi bisnis sehingga program transisi energi berjalan dengan lancar, yang dapat digunakan melalui mekanisme instrumen kebijakan dengan mengatur tingkat insentif dan batas kapasitas jaringan. Selain itu, pemerintah perlu mendorong perusahaan utilitas listrik terutama PLN untuk mengembangkan bisnis model baru yang menyesuaikan kondisi transisi energi ke depan.

Rooftop Photovoltaic (PV) is one of the renewable energy technologies that is increasing in development and use in the world in supporting the energy transition with the aim of leaving the use of fossil energy to use clean renewable energy (zero carbon emission). This transition has an impact, one of which is on the electricity business in the utility power company. This study applies dynamic system modeling to describe the relationship between variables that explain the impact of household rooftop PV penetration on utility power companies revenue in Indonesia. The model is based on the Bass diffusion model, and the study's object is PLN household customers with a power >2200VA. For utility power companies, the objects are PLN, PLN power plants, and IPPs. Meanwhile, the study will focus on Java and Bali from 2022 to 2050. This study gives the result that the penetration of a household rooftop PV has a negative effect which impacted to the decline in the financial condition of the utility power company. Important factors that influence the penetration of a household rooftop PV are grid capacity threshold, incentives, and adoption rates. The financial condition of Indonesian utility power companies is still supported by the large number of electricity customers with a power <2200VA (non-prosumer) which is also partially subsidized by the government, so that the penetration of a household rooftop PV does not make the utility power company's finances fall. The factors such as a grid capacity threshold and the amount of incentives have a low impact, have no impact on changes in BPP, a decrease in PLN's net profit in the range of Rp. 1.01 trillion - Rp. 3.49 trillion, the year of impact is from 2033-2035 and recovery time is 3 - 8 years. The 65% incentive is the lowest impact factor compared to the others. Meanwhile, the adoption rate factors of a household rooftop PV (according to bass-diffussion model, innovation factor and imitation factor), have a large impact with the increase in BPP, a decrease in PLN's net profit between Rp. 11.99 trillion - Rp. 17.49 trillion, and recovery time is 12 - 16 years. Furthermore, a <2% decline in non-prosumer electricity consumption may induce instability in Indonesia's electrical business, due to an increase in BPP and a loss of >Rp 14.24 trillion in PLN profit. For a 2% non-prosumer electricity consumption, the government can still have sufficient funds by allocating Rp. 4,409.96 trillion in electricity subsidy savings to cover losses from utility power companies of Rp. 3,278.71 trillion, leaving a Rp. 1,131.25 trillion differences for renewable energy development. The Indonesian government must balance the high penetration of household rooftop PV with the ability of utility power companies to transform their businesses so that the energy transition program can proceed smoothly, which can be used through policy mechanisms by setting incentive levels and grid capacity threshold. Moreover, the government needs to encourage utility power companies, especially PLN, to develop new business models that adapt to future energy transition conditions."
Jakarta: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Firas Irfansyah Kurniawan
"

Indonesia sedang berusaha untuk meningkatkan penetrasi pembangkit listrik Energi Baru Terbarukan (EBT) dengan tujuan untuk menekan emisi karbon yang dihasilkan oleh pembangkit listrik berbahan bakar fosil yang saat ini masih menjadi pemeran utama dalam pembangkitan tenaga listrik di Indonesia. Pembangkit Listrik Tenaga Surya (PLTS) menjadi salah satu pembangkit listrik EBT yang mengalami tren positif dalam beberapa tahun terakhir, khususnya di negara beriklim tropis seperti Indonesia. Berdasarkan Rencana Umum Energi Nasional (RUEN), Indonesia telah memasang target penggunaan pembangkit EBT sebesar 23% pada tahun 2025 dan 31% pada tahun 2050. Pertumbuhan penduduk yang diikuti dengan masalah keterbatasan lahan menjadi salah satu tantangan tersendiri bagi ketercapaian target tersebut. Salah satu upaya yang dapat dilakukan untuk mengatasi polemik tersebut adalah dengan menerapkan sistem PLTS atap yang terinterkoneksi dengan jaringan distribusi. Namun, penetrasi PLTS atap pada jaringan distribusi dapat menimbulkan masalah krusial terkait kestabilan sistem akibat sifat intermitensi PLTS serta karakteristik PLTS yang tidak memiliki nilai inersia. Battery Energy Storage System (BESS) dapat digunakan sebagai ancillary services untuk mempertahankan kestabilan frekuensi dan tegangan pada jaringan distribusi dengan angka penetrasi PLTS atap yang tinggi. Penelitian ini bertujuan untuk menentukan konfigurasi kapasitas dan pengaturan droop pada BESS yang paling optimal agar suatu jaringan distribusi tegangan menengah, yang di dalamnya terdapat penetrasi PLTS atap, dapat mempertahankan kestabilannya saat terjadi gangguan peralihan berupa hilangnya seluruh daya pembangkitan dari PLTS atap. Penelitian ini dilakukan menggunakan kombinasi perangkat lunak DIgSILENT PowerFactory untuk menjalankan simulasi kestabilan (RMS/EMT) dan MATLAB untuk mengolah data hasil simulasi. Hasil yang diperoleh dari penelitian ini menunjukkan bahwa semakin besar angka penetrasi PLTS atap pada suatu jaringan distribusi tegangan menengah, akan membutuhkan kapasitas BESS optimum yang lebih besar untuk mempertahankan kestabilan saat terjadi gangguan peralihan, sedangkan BESS dengan nilai pengaturan droop yang lebih kecil, BESS dapat mempertahankan kestabilan pada sistem dan skenario yang sama, namun dengan kapasitas optimum yang lebih kecil.


Indonesia is on its way to increase the penetration of Renewable Energy Sources (RES) power plants in order to reduce carbon emissions produced by fossil fuel power plants, which still play a major role in Indonesia’s electricity generation. Solar Photovoltaic (PV) power plant is one of the Renewable Energy Sources (RES) power plants that is having a positive trend in recent years, especially in tropical countries such as Indonesia. According to Rencana Umum Energi Nasional (RUEN), Indonesia has set the target of RES power plants usage for 23% by 2025 and 31% by 2050. The population growth, accompanied by the land limitation problem, poses a significant challenge for Indonesia to achieve those targets. A solution that can be done to address this issue is by implementing rooftop PV power plants that are interconnected with the distribution network. However, the penetration of rooftop PV power plants can pose crucial issues related to the system’s stability due to its intermittency and its lack of inertia. Battery Energy Storage Systems (BESS) can be used as ancillary services to maintain the frequency and voltage stability in the distribution network with high penetration of rooftop PV power plants. This research aims to determine the optimum capacity and droop setting for BESS, in order to maintain the stability of a medium-voltage distribution network, which includes the penetration of rooftop PV power plants, during a transient disturbance such as complete loss of power generation from rooftop PV power plants in the system. This research is conducted by using a combination of DIgSILENT PowerFactory for running the stability (RMS/EMT) simulation, and MATLAB for processing simulation output data. The results obtained from this research show that a higher amount of rooftop PV power plants penetration in a medium-voltage distribution network will require a larger capacity of BESS to maintain the system’s stability during the transient disturbance. On the other hand, BESS with lower droop settings can maintain the stability of the same system and with the same scenario, with a smaller capacity.

"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Francesco Theodore Budiman
"Energi listrik merupakan salah satu kebutuhan utama dalam kehidupan modern. Akan tetapi, pertumbuhan penduduk di Indonesia cenderung meningkatkan konsumsi listrik. Sementara itu, ketersediaan energi fosil semakin terbatas. Meskipun potensi energi matahari di Indonesia mencapai 207,8 GWp, pemanfaatan energi surya hanya mencapai peringkat keempat dalam penggunaan energi terbarukan, yakni sebesar 322,6 MW pada tahun 2023. Oleh sebab itu, pengoptimalan penggunaan energi surya melalui sistem pembangkit listrik tenaga surya (PLTS) sangat penting. Gedung Departemen Teknik Elektro Universitas Indonesia dengan konsumsi listrik yang relatif besar dijadikan sebagai lokasi studi. Penelitian mencakup simulasi konfigurasi PLTS Atap On-Grid dan Off-Grid dengan variasi penambahan generator set. PLTS Off-Grid juga disimulasikan dengan jenis Baterai Lead Acid dan Baterai Lithium Ion, dengan biaya komponen masing-masing $235,72/kWh dan $392,87/kWh, serta dengan spesifikasi teknis menurut standar HOMER Pro. Semua konfigurasi dan skema PLTS akan dibandingkan untuk mendapatkan yang paling optimal berdasarkan biaya Net Present Cost (NPC). Hasil simulasi HOMER Pro dan analisis menunjukkan bahwa Baterai Lithium Ion merupakan baterai yang paling optimal untuk PLTS Off-Grid. Penambahan generator set meningkatkan NPC pada sistem On-Grid optimal, tetapi menurunkan NPC pada sistem Off-Grid optimal. PLTS On-Grid akan optimal tanpa penambahan generator set. Sementara, PLTS Off-Grid akan optimal dengan penambahan generator set dan penggunaan Baterai Lithium Ion. Analisis ekonomi dengan parameter Net Present Value (NPV), Internal Rate of Return (IRR), dan Payback Period menunjukkan bahwa PLTS On-Grid tanpa generator set optimal layak untuk diimplementasikan.

Electricity is one of the primary necessities in modern life. However, Indonesia’s population growth tends to increase electricity consumption. Meanwhile, fossil energy availability is becoming increasingly limited. Despite Indonesia’s solar energy potential reaching 207.8 GWp, solar energy utilization only ranked fourth in renewable energy usage, reaching 322.6 MW in 2023. Therefore, optimizing solar energy utilization through solar photovoltaics plants (PLTS) is crucial. The Department of Electrical Engineering Building at the University of Indonesia, with its relatively high electricity consumption, is chosen as the study site. The research includes simulating On-Grid and Off-Grid Rooftop PLTS configurations with variations in the addition of generator set. Off-Grid PLTS is also simulated with Lead Acid and Lithium Ion Batteries, with component costs $235.72/kWh and $392.87/kWh, respectively, and technical specifications according to HOMER Pro standards. All PLTS configurations and schemes will be compared to obtain the most optimal for one based on the Net Present Cost (NPC). The HOMER Pro simulation results and analysis show that adding generator sets increases the NPC in optimal On-Grid system but decreases it in optimal Off-Grid systems. On-Grid PLTS will be optimal without adding a generator set, while Off-Grid PLTS will be optimal with the addition of a generator set and the use of Lithium Ion Batteries. Economic analysis with Net Present Value (NPV), Internal Rate of Return (IRR), and Payback Period parameters indicates that optimal On-Grid PLTS without a generator set is feasible for implementation."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Avisiena Mumtaza
"

Di Indonesia, penetrasi pembangkit energi baru terbarukan (EBT) khususnya PLTS atap sedang marak, hal ini dapat dilihat dari jumlah instalasi PLTS atap yang naik sebesar 700% dari tahun 2018 sampai ke akhir tahun 2020. Peningkatan PLTS atap pada sistem distribusi tegangan menengah ini dapat menyebabkan permasalahan jika pemasangannya jika tidak perhatikan. Permasalahan tersebut adalah permasalahan kestabilan sistem tenaga listrik akibat sifat intermittent dari PLTS atap tersebut. Salah satu cara untuk mengatasi permasalahan tersebut adalah dengan menggunakan Battery Energy Storage System (BESS) sebagai ancillary services. Dengan menggunakan BESS pemasangan PLTS atap bisa semakin ditingkatkan lagi selama kapasitas BESS tersebut masih memadai. Namun, Kapasitas BESS tersebut tidak mungkin dinaikan begitu saja, karena semakin besar kapasitas BESS maka akan semakin besar juga harga investasinya. Tujuan dari penelitian ini adalah untuk meningkatkan penetrasi PLTS atap dengan cara menentukan kapasitas dan pengaturan droop pada BESS sebagai ancillary services yang terpasang secara terdistribusi. Kasus pada penelitian ini ditentukan berdasarkan tingkat penetrasi PLTS atap, dimana untuk setiap kasus akan diterapkan BESS ke sistem secara terdistribusi dan pada setiap kasus akan terdapat variasi droop yang berbeda. Penentuan kapasitas BESS optimal dilakukan dengan menggunakan metode iterasi yang akan dilakukan pada perangkat lunak DIgSILENT PowerFactory dan MATLAB. Hasil penelitian ini menunjukkan bahwa pemasangan BESS ini akan membantu kestabilan sistem distribusi tegangan menengah dan penetrasi PLTS atap pada sistem distribusi tegangan menengah dapat ditingkatkan sampai dengan 80% dari total bebannya. Namun, hal tersebut hanya bisa dilakukan jika parameter Rate of Change of Frequency (RoCoF) diabaikan. Jika RoCoF tidak diabaikan maka penetrasi PLTS atap pada sistem distribusi tegangan menengah hanya dapat ditingkatkan hingga 20% dari total beban sistem.


In Indonesia, renewable energy generation, especially solar panel rooftop, is on the rise. This can be seen from the number of rooftop solar panel installations which have increased by 700% from 2018 to the end of 2020. The increased rooftop solar panel usage in medium voltage distribution systems can caused problems if it’s too much. One of these problem is the stability problem caused by the intermittent nature of rooftop solar panels. One way to overcome this problem is to use Battery Energy Storage System (BESS) as ancillary service. With BESS rooftop solar panel installation in medium voltage distribution system can be increased as long as BESS or its capacity can handle it. However, it is impossible to increase the capacity of BESS just like that, because the greater the capacity of BESS, the greater the investment price. The aim of this study is to increase the penetration of rooftop solar power panels by determining the capacity and droop settings of BESS as ancillary services that are installed in a distributed manner. Determination of the optimal BESS capacity is carried out using the iteration method which will be carried out on the DIgSILENT PowerFactory and Matlab software. The results of this study indicate that the installation of BESS will help stabilize the medium voltage distribution system with high rooftop solar panel penetration and the penetration of rooftop PLTS in medium voltage distribution systems can be increased up to 80% of the total load. However, this can only be done if the Rate of Change of Frequency (RoCoF) is ignored. But if we consider the RoCoF parameter, then the penetration of rooftop solar panels in medium voltage distribution system can only be increased up to 20% of the total system load.

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Selly Danastri
"Energi matahari merupakan salah satu sumber energi yang paling banyak potensinya di muka bumi. Sel surya mengubah sinar matahari langsung menjadi listrik yang kemudian dikenal sebagai fotovoltaik (PV). Saat ini, bifacial pv menjadi sesuatu yang menjanjikan untuk digunakan karena memiliki konversi yang lebih tinggi dari monofacial PV. adanya 2 sisi pada bifacial PV (atas-bawah) akan menghasilkan daya energi yang lebih tinggi, namun permasalahan saat ini konversi energi dari bifacial PV belum maksimal, bagaimanapun penelitian ini tetap penting untuk diteliti lebih jauh.
Untuk mendapatkan hasil yang maksimal, bifacial PV membutuhkan desain reflektor yang tepat dengan mengukur sudut kemiringan dari panel surya, jarak antara panel dan reflektor serta warna dari reflektor. Alat ukur seaward PV 200 yang merupakan alat ukur parameter kelistrikan sistem panel surya yang memenuhi standar IEC 62446 dan IEC 61829 juga digunakan agar dapat mengukur daya yang dihasilkan.
Penelitian ini bertujuan mendesain modul reflektor untuk panel surya jenis bifacial supaya dapat meningkatkan dan mengoptimalkan performa yang diakibatkan dari pantulan reflektor yang ada di bagian bawah solar panel bifacial.
Dari hasil dan analisis pengukuran didapatkan desain modul reflektor dengan sudut kemiringan 5° , jarak antar panel surya dan reflektor 10 cm (panel surya-reflektor tidak sejajar), dengan warna menggunakan warna putih menghasilkan daya terbaik dari pantulan iradiasi matahari, sehingga bisa didapatkan desain yang dapat meningkatkan dan mengoptimalkan panel surya jenis bifacial."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>