Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 52611 dokumen yang sesuai dengan query
cover
Yohanes Gunawan
"

Indonesia kaya akan energi panas bumi sehingga pemanfaatannya perlu ditingkatkan untuk mendukung diversifikasi energi yang ramah lingkungan. Dengan menggunakan heat pipe sebagai perangkat transfer panas dalam pemanfaatan langsung energi panas bumi untuk pengeringan diharapkan akan mengatasi beberapa kendala dalam usaha meningkatkan penggunaan energi tersebut. Tujuan dari penelitian ini adalah untuk menyelidiki kinerja termal dari penggunaan heat pipe heat exchanger (HPHE) sebagai alat transfer panas dari fluida panas bumi temperatur rendah ke udara panas untuk pengeringan. Komoditas yang dipilih untuk percobaan adalah daun teh. Simulator fluida panas bumi (air panas) menggunakan air yang dipanaskan dengan pemanas berkapasitas 9000 Watt dan dialirkan dengan pompa. Heat pipe yang digunakan memiliki panjang 700 mm dengan diameter luar 10 mm, fluida kerja dalam heat pipe menggunakan air dengan filling ratio 50%, jumlah heat pipe yang digunakan adalah 42 buah yang sebagai HPHE. Untuk menambah luas bidang perpindahan panas, di sisi kondensor HPHE dipasang fin dengan jumlah 181 pcs. Fin terbuat dari aluminium dengan ketebalan 0,105 mm dengan ukuran 76 x 345 mm. Hasil penelitian menunjukkan bahwa nilai efektifitas HPHE terbesar yaitu 79,59 % didapat ketika menggunakan temperatur air panas 60°C, dan kecepatan udara inlet 0.2 m/s. Efektifitas HPHE terkecil yaitu 66% didapat ketika menggunakan temperatur air panas 40°C, dan kecepatan udara inlet 0.6 m/s. Model matematika Page adalah model terbaik untuk merepresentasikan perilaku pelayuan daun teh PTPN VII, sehingga penggunaan HPHE pada pemanfaatan langsung energi panas bumi temperatur rendah untuk pelayuan daun teh, dapat diterima dan layak untuk digunakan.


Indonesia is rich in geothermal energy and needs to be improved to support environmentally friendly energy diversification. Using heat pipes as a heat transfer device in direct use of geothermal energy for drying is expected to overcome several challenges in increasing energy use. The purpose of this study was to test the thermal performance of the use of a heat pipe heat exchanger (HPHE) as a means of transferring heat from low enthalpy geothermal fluid to hot air for drying. The agricultural product that has been choosen is tea leaves. The geothermal fluid (hot water) simulator uses heated water with a capacity of 9000 Watts and is flowed by a pump. The heat pipe used has a length of 700 mm with an outer diameter of 10 mm, a hot working fluid pipe using water with a filling ratio of 50%, the number of heat pipes used is 42 pieces which are HPHE. To increase the heat replacement area, fins are installed on the side of the HPHE condenser with 181 pcs. Fin is made of aluminum with a thickness of 0.105 mm with a size of 76 x 345 mm. The results showed the greatest effectiveness of HPHE was 79.59% obtained by compilation using 60° C hot air temperature, and inlet air velocity of 0.2 m / s. The effectiveness of HPHE which was increased by 66% was obtained using a hot air temperature of 40 ° C, and an inlet air velocity of 0.6 m / s. Page`s mathematical model is the best model to represent the protection of the tea leaves of the PTPN VII variety, using HPHE in direct use of low temperature geothermal energy for tea leaves, is acceptable and useful to use.

"
2019
T53057
UI - Tesis Membership  Universitas Indonesia Library
cover
Kukuh Tri Margono
"

Kopi merupakan salah satu komoditas utama Indonesia yang bersaing di pasar dunia. Namun, produksi kopi di Indonesia masih menghadapi beberapa hambatan. Salah satu masalah utama dari produksi kopi adalah pengeringan. Selama ini proses pengeringan masih menggunakan cara konvensional yaitu menggunakan panas dari cahaya matahari. Akan tetapi, cuaca yang tidak menentu menjadi salah satu faktor terhambatnya proses pengeringan. Oleh karena itu, diperlukan sebuah sumber energi yang dapat menghasilkan panas dan tidak bergantung pada musim/cuaca. Energi yang mungkin digunakan adalah energy panas bumi. Panas bumi entalpi rendah (T<90oC) umumnya digunakan untuk kegiatan sehari seperti mandi, memasak, dan menghangatkan rumah.

Untuk memanfaatkan panas bumi yang ada, digunakan sebuah teknologi penghantar panas yang disebut Heat Pipe. Heat pipe merupakan salah satu penghantar panas dengan memanfaatkan perubahan fasa suatu material. Heat pipe yang digunakan dalam penelitian bentuk straight dengan konfigurasi stagger. Variasi pada penelitian ini adalah temperatur (50, 60, 70 oC) dan kecepatan udara (0,2; 0,4; 0,6 m/s).

Hasil dari penelitian ini menunjukkan bahwa pengeringan paling cepat terjadi pada temperatur 70oC dan kecepatan 0,6 m/s. sedangkan paling lambat terjadi pada temperatur 50oc dan kecepatan 0,2 m/s. Hal ini membuktikan bahwa temperatur dan kecepatan udara berbanding lurus dengan laju pengeringan.

 


Coffe is one of the main Indonesia’s commodity which compete in international market. But, Indonesia’s coffee production still face some problem. One of the main problem is for drying process. All this time, mostly coffee producers use conventional method by using heat source from sunlight. However, uncertain weather become one of factor which slow down drying process. Therefore, an energy source that can produce heat and independent to weather is needed. Energy which is possible to be used for those criteria is geothermal energy. Low enthalpy geothermal energy usually used for daily activity such as bathing, cooking, and warming of house.

Heat pipe as a heat conductor technology is used for utilization of geothermal energy. Heat pipe is a heat conductor which use phase changing material Untuk memanfaatkan panas bumi yang ada, digunakan sebuah teknologi penghantar panas yang disebut Heat Pipe. Heat pipe merupakan salah satu penghantar panas dengan memanfaatkan perubahan fasa suatu material. Straight heat pipe with staggered configuration is used for this experiment. Temperature (50, 60, 70 oC) and air speed (0.2, 0.4, 0,.6 m/s) are variations for the experiment.

The result shows that drying process with temperature 70oC and 0.6 m/s air speed is the fastest while the slowest is at 50oC and air speed 0.2 m/s. This result prove that drying process is directly proportional with temperature and air speed.

"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizal Al Faqih
"Sumber energi panas bumi terdiri dari beberapa jenis, salah satunya adalah sumber energi panas bumi temperatur rendah seperti hot spring. Pemanfaatan energi panas bumi dapat dilakukan dengan cara direct use tanpa memindahkan fluida menggunakan heat exchanger, yaitu Thermosyphon. Pemanfaatan sumber energi panas bumi temperatur rendah salah satunya adalah untuk pengeringan bahan pangan. Pengeringan bahan pangan saat ini masih menggunakan metode konvensional yaitu metode open sun drying yang bergantung pada kondisi cuaca, waktu pengeringan yang cukup lama dan terjadi kontaminasi silang antara produk yang dikeringkan dengan udara sekitar. Pada penelitian ini, dilakukan simulasi Computational Fluid Dynamics (CFD) dan eksperimental untuk mengetahui performa thermosyphon sebagai heat exchanger untuk proses pengeringan, serta untuk mengetahui sebaran distribusi temperatur pada area drying chamber dan pengaruh kecepatan udara terhadap distribusi temperatur pada area drying chamber. Simulasi dilakukan dengan asumsi thermosyphon pada bagian condenser sudah memiliki panas dengan temperatur 60, 70 dan 80 0C yang dihembuskan udara dengan kecepatan udara 0.2 m/s, 0.4 m/s dan 0.6 m/s. Sumber energi panas bumi disimulasikan menggunakan air panas dengan temperatur 60 0C yang dipanaskan oleh 9 kW heater. Eksperiment menggunakan thermosyphon heat exchanger yang terbuat dari pipa tembaga sebanyak 18 buah yang disusun staggered. Thermosyphon memiliki panjang 700 mm dan diameter 1 inchi serta menggunakan demineralize water sebagai fluida kerja dengan filling ratio 55%. Thermosyphon heat exchanger ditambahkan fin dengan material tembaga tebal 0.5 mm sebanyak 34 buah dan dimensi 360 x 140 mm. Temperatur drying chamber tertinggi sebesar 45 0C dari hasil simulasi dicapai ketika temperatur thermosyphon 80 0C dan kecepatan udara 0.2 m/s. Efektifitas tertinggi thermosyphon heat exchanger dari hasil pengujian adalah 0.29 pada pengujian temperatur air panas 70 0C dan kecepatan udara 0.2 m/s. Validasi telah dilaksanakan dengan tingkat error temperatur drying chamber hasil simulasi ± 1 – 2 0C.

Geothermal energy sources consist of several types; one of them is a low-temperatur geothermal energy source such as a hot water source. The utilization of geothermal energy can be done by direct use without withdrawal of the fluid using a heat exchanger, namely Thermosyphon. The utilization of low-temperatur geothermal energy sources is for the Food drying process. The drying process currently still using conventional methods, namely the open sun drying method, which, regardless of the weather, has longer drying time and causes cross-contamination between products and the air itself. In this study were conducting Fluid Dynamics Computing (CFD) simulation and experimental to determine the thermosyphon performance as a heat exchanger for the drying process, determine the temperatur distribution in the drying chamber and discover an effect of air velocity to the temperatur of drying chamber. The simulation assumes that the thermosyphon on the condenser section has already heated at temperaturs of 60, 70, and 80 0C, which is blown by air with an air velocity of 0.2 m/s, 0.4 m/s and 0.6 m/s. The source of geothermal energy was simulated by 60 0C water that was heated by a 9-kW heater and flowed by a pump. The Experiment using a thermosyphon heat exchanger made from 18 copper pipes in a staggered arrangement. The thermosyphon has 700 mm length and 1-inch diameter, which uses demineralized water as a working fluid with a filling ratio of 55%. Thermosyphon heat exchangers added 34 pcs fins, made from 0,5 mm thick copper plate with 360 ​​x 140 mm dimensions. The maximum drying chamber temperatur that occurs from simulations is 45 0C at thermosyphon temperatur 80 0C and an air velocity of 0.2 m/s. The highest effectiveness of Thermosyphon heat exchanger is 0.29 from experimental with hot water temperatur 70 0C and air velocity 0.2 m/s. Validation has been carried out that the temperatur drying chamber of simulation case error is ± 1 – 2 0C.
"
Depok: Fakultas Teknik Universitas Indonesia , 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Farhan Aditya Wibowo
"Sistem HVAC pada office building berperan penting untuk menyediakan kenyamanan yang ideal bagi pengguna di dalamnya. Hal ini menyebabkan besarnya konsumsi energi di sektor perkantoran. Penelitian ini bertujuan untuk mengetahui efektifitas dan heat recovery dari penggunaan heat pipe heat exchanger dan return air. Volume return air yang digunakan dalam penelitian ini sebesar 30% dan HPHE yang digunakan berjumlah dua modul yang terdiri dari 3 baris heat pipe per modul. Pada inlet evaporator dialiri udara dengan variasi temperatur: 30, 35, 40, dan 45°C, serta dengan kecepatan 1,0; 1,5; dan 2,0 m/s. Beban pada ruangan bervariasi 200 dan 300W. Hasil dari percobaan ini mendapatkan nilai efektifitas HPHE terbesar pada percobaan temperature udara masuk 45oC; vin 1m/s; vout 2m/s; dan beban ruangan 200W yaitu sebesar 0,403 atau 40,3%. Heat recovery HPHE terbesar didapatkan pada percobaan temperature udara masuk 45oC; vin 2m/s; vout 2m/s; dan beban ruangan 200W yaitu sebesar 398,720W. Hasil dari penelitian menunjukkan bahwa penggunaan return air memengaruhi temperatur inlet evaporator.

HVAC systems in office buildings play an important role in providing ideal comfort for users in the building. This causes a large amount of energy consumption in the office sector. This study aims to determine the effectiveness and heat recovery from the use of heat pipe heat exchangers and return air. The return air volume used in this study was 30% and the HPHE used was two modules consisting of 3 lines of heat pipe per module. At the inlet of the evaporator, air flows with variations in temperature: 30, 35, 40, and 45°C, and with a speed of 1.0; 1.5; and 2.0 m/s. The load on the room varies between 200 and 300W. The results of this experiment get the greatest HPHE effectiveness value at the 45oC intake air temperature experiment; vin 1m/s; vout 2m/s; and 200W room load that is equal to 0.403 or 40.3%. The largest HPHE heat recovery was found in the 45oC intake air temperature experiment; vin 2m/s; vout 2m/s; and the room load is 200W, which is 398,720W. The results of the study indicate that the use of return water affects the inlet temperature of the evaporator."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Trisno Anggoro
"Tingginya konsumsi energi dari sistem tata udara di rumah sakit, khususnya ruang operasi, disebabkan adanya persyaratan khusus yang harus dipenuhi untuk memastikan kondisi lingkungan di dalam ruang operasi yang steril serta bersih bagi staf dan pasien. Oleh karena itu, perlu adanya langkah konservasi energi di bangunan rumah sakit dengan menerapkan metode dan peralatan yang dapat menurunkan konsumsi energi tanpa mengorbankan kenyamanan sekaligus meningkatkan kualitas udara yang bersih dan steril. Integrasi heat pipe dalam suatu sistem tata udara merupakan salah satu contoh aplikasi peningkatan efisiensi energi. Studi eksperimental dilakukan untuk menginvestigasi kinerja termal dari heat pipe sebagai alat penukar kalor (heat exchanger) atau yang umum disebut dengan heat pipe heat exchanger (HPHE).
Pada penelitian ini HPHE dirancang dan dibuat untuk me-recovery kalor di dalam udara yang keluar dari simulator ruangan. HPHE terdiri dari heat pipe jenis tubular dengan fluida kerja air yang disusun staggered hingga sebanyak 6 baris dengan ukuran menyesuaikan dimensi ducting (lebar 470 mm, tinggi 300 mm, tebal 20 mm) dan ditambahkan fins di sepanjang heat pipe tersebut. Dimensi heat pipe yang digunakan memiliki panjang 700 mm, diameter luar 13 mm, dan 30 fins terpasang di masing-masing heat pipe. Terdapat beberapa parameter yang mempengaruhi kinerja HPHE.
Serangkaian eksperimen dilakukan untuk mengetahui pengaruh dari temperatur inlet udara di dalam ducting (30°C, 35°C, 40°C, 45°C), jumlah baris heat pipe (2 baris, 4 baris, 6 baris), dan kecepatan udara masuk (1 m/s, 1.5 m/s, 2 m/s). Hasilnya menunjukkan bahwa efektivitas HPHE mengalami peningkatan seiring dengan kenaikan temperatur inlet udara. Efektivitas terbesar diperoleh ketika menggunakan 6 baris heat pipe dengan kecepatan aliran udara masuk 1 m/s dan temperatur inlet udara 45°C. Jika ruang operasi rumah sakit beroperasi selama 8 jam/hari dan 365 hari/tahun, maka penurunan konsumsi energi pada sistem tata udara rumah sakit, khususnya ruang operasi, dapat diketahui dari prediksi besarnya heat recovery yang mencapai 4.1 GJ/tahun.

The high-energy consumption of hospitals HVAC systems, particularly the operating room, due to the specific requirements that must be met to ensure the environmental conditions in the operating room are healthy, convenient, and safe for staff and patients. Therefore, energy conservation efforts are needed in the hospital by applying the method and device that can reduce electricity consumption without sacrificing comfort while improving air quality is clean and sterile. The use of heat pipes in an HVAC system is one example of the application of energyefficiency improvements. Experimental studies conducted to investigate the thermal performance of the heat pipe as a heat exchanger or commonly named a heat pipe heat exchanger (HPHE).
In this study, HPHE is designed to recover the heat of exhaust air from a room simulator. HPHE consists of a tubular heat pipe with water as a working fluid that is arranged staggered by up to six rows with sizes to fit ducting dimensions (width: 470 mm, height: 300 mm, thickness: 20 mm) and added fins along the heat pipe. The tubular heat pipe has a length of 700 mm, an outer diameter of 13 mm, and 30 fins mounted on each heat pipe. Several parameters affect performance HPHE.
A series of experiments was conducted to determine the effect of the inlet air temperature in the ducting (30°C, 35°C, 40°C, 45°C). Moreover, the influence of the number of heat pipe rows (two rows, four rows, six rows) and velocity air (1 m/s, 1.5 m/s, 2m/s) was also investigated. The results show that the effectiveness of HPHE increase in line with the rise in inlet air temperature. The highest effectiveness was obtained when using 6-row heat pipes with the inlet air velocity of 1 m/s and the inlet air temperature of 45°C. The reduction of energy consumption in HVAC system can be seen from the prediction annual heat recovery with 8 h/day and 365 days/year will be 4.1 GJ/yr.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45937
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
Aliefka Satria Kusumah
"Rumah sakit mengonsumsi sejumlah besar energi, terutama pada sistem HVAC karena persyaratan khusus yang harus dipenuhi untuk memastikan bahwa kondisi lingkungannya sehat, nyaman dan aman. Maka dari itu, untuk mengurangi konsumsi listrik tanpa mengorbankan kenyamanan dan pada saat yang bersamaan juga meningkatkan kualitas udara dalam ruangan, pemanfaatan Heat Pipe Heat Exchanger (HPHE) tipe-U disarankan. Sebuah studi eksperimental dilakukan untuk menyelidiki kinerja termal heat pipe yang berbentuk U dalam memulihkan panas udara buangan dari simulator ruang. HPHE tipe-U terdiri dari beberapa heat pipe tipe-U berbentuk tabung dengan air sebagai fluida kerja dan disusun staggered hingga dua baris. Diameter luar setiap pipa panas adalah 10 mm dan panjang 720 mm dengan tanpa fin. Serangkaian percobaan dilakukan untuk mengetahui pengaruh suhu udara masuk. Pengaruh jumlah baris pipa panas dan kecepatan udara juga diselidiki. Percobaan menunjukkan bahwa semakin tinggi suhu udara masuk, semakin efektif kinerja HPHE tipe-U. Kapasitas pendinginan sistem telah meningkat. Hal ini ditunjukkan oleh penurunan suhu udara yang masuk ke koil pendingin sebesar 1,73 °C dengan efektifitas 7,64%. Hasil ini dicapai ketika menggunakan 12 HPHE tipe-U yang disusun staggered, kecepatan udara 1,5 m/s, dan suhu udara masuk evaporator 45 °C. Ketika kecepatan udara 2,5 m/s, sistem mencapai jumlah pemulihan panas terbesar yaitu 2190,425 kJ/jam.

Hospitals consume large amounts of energy, especially in HVAC systems because special requirements must be met to ensure that the environmental conditions are healthy, comfortable and safe. Therefore, to reduce electricity consumption without sacrificing comfort and at the same time also improve indoor air quality, the use of U-type Heat Pipe Heat Exchanger (HPHE) is recommended. An experimental study was conducted to investigate the thermal performance of U-shaped heat pipes in recovering exhaust air heat from the space simulator. The U-type HPHE consists of several tubular U-type heat pipes with water as working fluid and is arranged staggered up to two row. The outer diameter of each heat pipe is 10 mm and the length is 720 mm with no fin. A series of experiments were carried out to determine the effect of the incoming air temperature. The effect of the number of hot pipe lines and air velocity was also investigated. The experiment shows that the higher the temperature of the inlet air, the more effective the U-type HPHE is. System cooling capacity has increased. This is indicated by a decrease in the temperature of the air entering the cooling coil by 1.73 ° C with an effectiveness of 7.64%. This result was achieved when using 12 type-U HPHE which were arranged staggered, air velocity 1.5 m/s, and air temperature entering the evaporator 45 ° C. When the air velocity is 2.5 m/s, the system reaches the largest amount of heat recovery, which is 2190.425 kJ/hour."
Depok: Fakultas Teknik Universitas Indonesia , 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adam Prihananda Marda
"Sistem HVAC pada ruang bersih clean room rumah sakit diharuskan terus bekerja selama 24 jam untuk menyediakan kualitas udara yang ideal bagi aktivitas di dalamnya. Hal ini menyebabkan besarnya konsumsi energi di bangunan rumah sakit. Penelitian ini bertujuan untuk mengetahui efektivitas dan heat recovery dari Heat Pipe Heat Exchanger. HPHE yang digunakan pada penelitian ini terdiri dari 12 heat pipe per modul dengan susunan staggered.
Jumlah modul divariasikan sebanyak 3 kali, yaitu 1, 2, dan 3 modul. HPHE dilengkapi dengan fin untuk memperluas permukaan kontak dengan aliran udara. Setiap variasi jumlah modul ini diuji pada model sistem HVAC ruang bersih. Pada inlet evaporator dialiri udara dengan variasi temperatur: 28, 30, 35, dan 40°C, serta dengan kecepatan 1,5; 2,0; dan 2,5 m/s.
Hasil dari eksperimen menunjukkan bahwa nilai heat recovery terbesar yaitu 1654,72 kJ/h terjadi pada pengujian 3 modul dengan temperatur udara inlet evaporator 40°C dan kecepatan 2,5 m/s, sedangkan efektifitas HPHE terbesar didapatkan ketika pengujian 3 modul dengan temperatur udara inlet evaporator 35°C dan kecepatan 1,5 m/s dengan nilai 48,73. Hasil pengujian menunjukkan bahwa HPHE dapat digunakan sebagai precooler untuk menghemat konsumsi energi pada sistem HVAC.

HVAC system in hospitals clean room are required to continue working for 24 hours to provide the ideal air quality for the activities therein. This causes huge amount of energy consumption in hospital buildings itself. This study aims to determine the effectiveness and heat recovery of HPHE. The HPHE used in this study consisted of 12 heat pipes per module, in which the line was arranged staggered.
The number of module is varied 3 times, which are 1, 2, and 3 modules. Heat pipe is made of copper and contains working fluid in the form of water with 50 filling ratio. HPHE equipped with fin to expand the contact surface with airflow. Each variation of the number of modules is tested on the HVAC system model of clean room. In the evaporator inlet, air flowing to the variation of temperature 28, 30, 35, and 40°C, and at speeds of 1.5, 2.0, 2.5 m s.
The use of HPHE can recover heat as much as 1654.72 kJ h. The highest effectiveness of this HPHE is 48.729 , was obtained when using three modules, air temperature inlet evaporator Te,i 35°C, and air speed of inlet 1.5 m s. The test results show that HPHE can be used as precooler to save energy consumption in HVAC system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ragil Sukarno
"Sistem pengkondisian udara (HVAC) mempunyai peranan yang sangat dominan dalam memberikan kenyamanan ruang bagi penghuninya. Namun kebutuhan energi untuk pengoperasiannya sangat tinggi, sehingga dibutuhkan sistem HVAC yang lebih efesien dengan konsumsi energi yang lebih rendah. Sistem energy recovery dengan menggunakan heat pipe merupakan cara yang sangat efektif dalam usaha penghematan energi dan mengurangi efek global warming. Tujuan dari penelitian ini adalah untuk mengembangkan desain dan konfigurasi baru dari heat pipe heat exchanger (HPHE) sebagai media precooling dan media reheating pada sistem pengkondisian udara. Selain itu juga untuk mengembangkan sebuah korelasi karakteristik parameter desain dan parameter operasi HPHE terhadap efektifitas perpindahan kalor dan penghematan energi serta untuk mengetahui pengaruh penggunaan HPHE terhadap kinerja dari sistem pengkondisian udara dalam bentuk coefficient of performance (COP). Dari hasil eksperimen dan analisis kinerja akan dikembangkan sebuah aplikasi perangkat lunak atau software untuk mengevaluasi desain HPHE yang bisa digunakan untuk memprediksi efektifitas HPHE, suhu udara keluar setelah melewati sisi evaporator HPHE (precooling) dan potensi penghematan energi dari penggunaan sistem HVAC yang dilengkapi HPHE. Metode penelitian yang dilakukan adalah eksperimen. Untuk mengetahui karakteristik dan kinerja sistem HVAC yang dikombinasikan dengan HPHE dilakukan eksperimen dengan memvariasikan konfigurasi straigth heat pipe, U-shaped heat pipe, dan gabungan straigth dan U-shaped heat pipe. Straigth heat pipe divariasikan dalam 3, 6, dan 9 baris, dan terdiri dari 4 heat pipe per baris. Sedangkan pada U-shaped heat pipe divariasikan dalam 1 dan 2 baris, dan masing-msaing 8 heat pipe per baris. Straigth dan U-shaped heat pipe dilengkapi dengan sirip-sirip wavy fin untuk memperluas area perpindahan kalor. Eksperimen dikondisikan pada suhu udara masuk antara 30 – 45 oC dan kecepatan udara masuk 1,5 - 2,5 m/s. Analisis menggunakan metode ε-NTU juga dilakukan untuk memprediksi efektifitas, suhu keluar sisi evaporator, dan energy recovery HPHE. Hasil penelitian menunjukkan bahwa penggunaan straigth HPHE memberikan efek yang besar terhadap penurunan suhu di sisi evaporator HPHE atau precooling. Penurunan suhu udara segar yang masuk pada sisi evaporator HPHE paling tinggi adalah 9,1 oC dan penghematan energi maksimal adalah sebesar 567,3 W pada 0,080 m3/s. Penggunaan U-shaped HPHE memberikan dampak positif terhadap precooling dan reheating. Penurunan suhu udara segar paling tinggi sebesar 4,0 oC dan pada saat yang sama memberikan efek reheating paling tinggi sebesar 4,5 oC, menghasilkan penghematan energi precooling dan reheating paling tinggi masing-masing adalah sebesar 228,1 W, dan penurunan kelembaban relatif ruangan sebesar 21,1 % yang dicapai pada penggunaan 2 baris U-shaped HPHE. Hasil pengujian sistem energy recovery gabungan Straigth dan U-shaped HPHE memperlihatkan bahwa penambahan U-shaped HPHE untuk sistem energy recovery pada sistem HVAC memberikan pengaruh yang signifikan. Penurunan suhu total maksimal mencapai 10,7 oC dan penurunan kelembaban relatif mencapai maksimal 25,5 %. Pada pengujian yang dilakukan berdasarkan standar ruangan untuk ruang isolasi di rumah sakit, menunjukkan bahwa penerapan sistem energy recovery gabungan straigth dan U-shaped HPHE memberikan kombinasi yang paling baik, dimana memberikan penghematan energi yang signifikan, sekaligus memberikan pengaruh positif dalam usaha mencapai kondisi ruangan sesuai yang dipersyaratkan. Sistem HVAC yang dilengkapi dengan HPHE dapat meningkatkan efisiensi sistem HVAC dalam bentuk Coefficient of performance (COP), dimana penggunaan straigth HPHE dapat meningkatkan COP 6–55% dan penggunaan U-shaped HPHE 2 baris dapat meningkatkan COP 8 – 39 %. Dari hasil pengujian dan analisis bilangan tak berdimensi telah dihasilkan sebuah korelasi Sp number yang bisa digunakan untuk memprediksi tahanan thermal dari sebuah heat pipe tunggal. Selain itu juga telah dihasilkan sebuah persamaan ε-NTU terkoreksi yang bisa digunakan untuk memprediksi efektifitas HPHE, yang mana kedua persamaan ini akan sangat berguna untuk mengetahui kinerja sebuah heat pipe baik dalam tahap desain maupun tahap pengoperasian. Pengembangan software HPHE yang menggunakan metode ε-NTU terkoreksi juga memberikan hasil yang akurat, dimana tingkat kesesuaian suhu udara keluar evaporator secara prediksi dari software dan hasil eksperimen minimal sebesar 99 %. Sehingga, software ini dapat digunakan sebagai acuan awal untuk memprediksi kinerja suatu desain HPHE sebelum dilakukan tahap desain dan manufaktur.

Sistem pengkondisian udara (HVAC) mempunyai peranan yang sangat dominan dalam memberikan kenyamanan ruang bagi penghuninya. Namun kebutuhan energi untuk pengoperasiannya sangat tinggi, sehingga dibutuhkan sistem HVAC yang lebih efesien dengan konsumsi energi yang lebih rendah. Sistem energy recovery dengan menggunakan heat pipe merupakan cara yang sangat efektif dalam usaha penghematan energi dan mengurangi efek global warming. Tujuan dari penelitian ini adalah untuk mengembangkan desain dan konfigurasi baru dari heat pipe heat exchanger (HPHE) sebagai media precooling dan media reheating pada sistem pengkondisian udara. Selain itu juga untuk mengembangkan sebuah korelasi karakteristik parameter desain dan parameter operasi HPHE terhadap efektifitas perpindahan kalor dan penghematan energi serta untuk mengetahui pengaruh penggunaan HPHE terhadap kinerja dari sistem pengkondisian udara dalam bentuk coefficient of performance (COP). Dari hasil eksperimen dan analisis kinerja akan dikembangkan sebuah aplikasi perangkat lunak atau software untuk mengevaluasi desain HPHE yang bisa digunakan untuk memprediksi efektifitas HPHE, suhu udara keluar setelah melewati sisi evaporator HPHE (precooling) dan potensi penghematan energi dari penggunaan sistem HVAC yang dilengkapi HPHE. Metode penelitian yang dilakukan adalah eksperimen. Untuk mengetahui karakteristik dan kinerja sistem HVAC yang dikombinasikan dengan HPHE dilakukan eksperimen dengan memvariasikan konfigurasi straigth heat pipe, U-shaped heat pipe, dan gabungan straigth dan U-shaped heat pipe. Straigth heat pipe divariasikan dalam 3, 6, dan 9 baris, dan terdiri dari 4 heat pipe per baris. Sedangkan pada U-shaped heat pipe divariasikan dalam 1 dan 2 baris, dan masing-msaing 8 heat pipe per baris. Straigth dan U-shaped heat pipe dilengkapi dengan sirip-sirip wavy fin untuk memperluas area perpindahan kalor. Eksperimen dikondisikan pada suhu udara masuk antara 30 – 45 oC dan kecepatan udara masuk 1,5 - 2,5 m/s. Analisis menggunakan metode ε-NTU juga dilakukan untuk memprediksi efektifitas, suhu keluar sisi evaporator, dan energy recovery HPHE. Hasil penelitian menunjukkan bahwa penggunaan straigth HPHE memberikan efek yang besar terhadap penurunan suhu di sisi evaporator HPHE atau precooling. Penurunan suhu udara segar yang masuk pada sisi evaporator HPHE paling tinggi adalah 9,1 oC dan penghematan energi maksimal adalah sebesar 567,3 W pada 0,080 m3/s. Penggunaan U-shaped HPHE memberikan dampak positif terhadap precooling dan reheating. Penurunan suhu udara segar paling tinggi sebesar 4,0 oC dan pada saat yang sama memberikan efek reheating paling tinggi sebesar 4,5 oC, menghasilkan penghematan energi precooling dan reheating paling tinggi masing-masing adalah sebesar 228,1 W, dan penurunan kelembaban relatif ruangan sebesar 21,1 % yang dicapai pada penggunaan 2 baris U-shaped HPHE. Hasil pengujian sistem energy recovery gabungan Straigth dan U-shaped HPHE memperlihatkan bahwa penambahan U-shaped HPHE untuk sistem energy recovery pada sistem HVAC memberikan pengaruh yang signifikan. Penurunan suhu total maksimal mencapai 10,7 oC dan penurunan kelembaban relatif mencapai maksimal 25,5 %. Pada pengujian yang dilakukan berdasarkan standar ruangan untuk ruang isolasi di rumah sakit, menunjukkan bahwa penerapan sistem energy recovery gabungan straigth dan U-shaped HPHE memberikan kombinasi yang paling baik, dimana memberikan penghematan energi yang signifikan, sekaligus memberikan pengaruh positif dalam usaha mencapai kondisi ruangan sesuai yang dipersyaratkan. Sistem HVAC yang dilengkapi dengan HPHE dapat meningkatkan efisiensi sistem HVAC dalam bentuk Coefficient of performance (COP), dimana penggunaan straigth HPHE dapat meningkatkan COP 6–55% dan penggunaan U-shaped HPHE 2 baris dapat meningkatkan COP 8 – 39 %. Dari hasil pengujian dan analisis bilangan tak berdimensi telah dihasilkan sebuah korelasi Sp number yang bisa digunakan untuk memprediksi tahanan thermal dari sebuah heat pipe tunggal. Selain itu juga telah dihasilkan sebuah persamaan ε-NTU terkoreksi yang bisa digunakan untuk memprediksi efektifitas HPHE, yang mana kedua persamaan ini akan sangat berguna untuk mengetahui kinerja sebuah heat pipe baik dalam tahap desain maupun tahap pengoperasian. Pengembangan software HPHE yang menggunakan metode ε-NTU terkoreksi juga memberikan hasil yang akurat, dimana tingkat kesesuaian suhu udara keluar evaporator secara prediksi dari software dan hasil eksperimen minimal sebesar 99 %. Sehingga, software ini dapat digunakan sebagai acuan awal untuk memprediksi kinerja suatu desain HPHE sebelum dilakukan tahap desain dan manufaktur."
Depok: Fakultas Teknik Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Raden Gavin Coraggio Puntadewa
"Pengurangan pemakaian energi merupakan salah satu tujuan terbesar dari perkembangan ilmu pengetahuan saat ini. Salah satu sektor dimana pemakaian energi terus meningkat adalah pada sektor komersil, terutama pada bangunan rumah sakit. Ruang-ruang bersih di rumah sakit memiliki kondisi-kondisi tertentu seperti tekanan ruangan yang perlu diatur sedemikian rupa untuk dapat melakukan fungsinya dengan baik. Salah satu solusi untuk mengurangi energi yang dipakai oleh sistem HVAC pada rumah sakit yang tidak mengorbankan kondisi-kondisi yang perlu dipenuhi merupakan pengaplikasian air-to-air heat exchanger, terutama dalam bentuk heat pipe. Penelitian ini bertujuan untuk mencari hubungan antara nilai heat recovery dan efektifitas yang dihasilkan oleh pemasangan Heat Pipe Heat Exchanger pada kondisi tekanan yang dibutuhkan oleh ruang isolasi dan ruang bersih rumah sakit. Hasil simulasi yang telah dilakukan menunjukkan bahwa nilai heat recovery serta efektifitas performa HPHE memiliki peningkatan yang signifikan dalam kondisi tekanan ruangan non-netral. Nilai heat recovery tertinggi ditemukan pada 0,07 kg/s inlet mass flow evaporator, kondisi tekanan ruang negatif, suhu inlet evaporator 40 oC, dan suhu inlet kondenser 22 oC dengan nilai heat recovery 331,35 W, sementara kondisi tekanan netral pada 0,05 kg/s inlet mass flow evaporator, kondisi tekanan ruangan netral, suhu inlet evaporator 30 oC, dan suhu inlet kondenser 22 oC menghasilkan heat recovery terendah dengan nilai 97,38 W. Kondisi tekanan non-netral ditemukan untuk dapat menghasilkan kenaikan pada nilai heat recovery hingga 300% lebih tinggi daripada nilai heat recovery pada kondisi tekanan netral. Penemuan dari penelitian ini menunjukkan bahwa pemakaian HPHE dapat lebih berpengaruh kepada upaya penghematan energi untuk ruangan tertentu seperti ruang isolasi dan ruang bersih rumah sakit dan bahwa penelitian lebih lanjut perlu dilakukan untuk meningkatkan pemahaman tentang fenomena ini.

The reduction of energy use is one of the biggest goals of the development of science today. One such sector where energy consumption continues to increase is in the commercial sector, especially in hospital buildings. Clean rooms in hospitals have certain conditions such as room pressure that needs to be regulated in such a way as to be able to function properly. One proposed solution to reduce the energy used by HVAC systems in hospitals that do not sacrifice conditions that need to be met is the application of air-to-air heat exchangers, especially in the form of heat pipes. This study aims to find the relationship between the value of heat recovery and the effectiveness generated by the installation of the Heat Pipe Heat Exchanger on the pressure conditions required by hospital isolation and clean rooms. The simulation results that have been done show that the value of heat recovery and the effectiveness of HPHE performance have a significant increase in non-neutral room pressure conditions. The highest heat recovery value was found at 0,07 kg/s inlet mass flow evaporator, negative room pressure conditions, inlet evaporator temperature 40 oC, and condenser inlet temperature 22 oC with a heat recovery value 331,35 W, while at neutral pressure condition with 0,05 kg/s inlet mass flow evaporator, evaporator inlet temperature of 30 oC, and condenser inlet temperature of 22 oC results in a heat recovery value of 97.38 W. Non-neutral pressure conditions were found to produce an increase in heat recovery values up to 300% higher than the heat recovery value under neutral pressure conditions. The findings from this study indicate that the use of HPHE can be more influential on energy saving efforts for certain rooms such as isolation rooms and hospital clean rooms and that future research should be done to increase the understanding behind this phenomenon"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>