Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 118587 dokumen yang sesuai dengan query
cover
Dzikry Dalwatul Ielmi
"Sumber tenaga atau penggerak pada sebuah industri mengahasilkan panas yang sangat tinggi. Namun pada kenyataanya banyak tidak termanfaatkan hanya dibuang sebagai salah satu sisa proses. Namun walau ada pemanfaatan teknologi panas, hanya digunakan untuk mengalirkan panas dengan cepat sebagai teknologi pendinginan. Salah satu teknologi penukar kalor adalah Heat Pipe yang fungsinya sebagai penghantar kalor. Panas tinggi yang tidak terpakai dapat dimanfaatkan, sebagai contoh untuk memanaskan ducting sebagai alat dehumidifikasi tanpa memberi daya tambahan untuk prosesnya. Salah satu kebutuhan dehumidifikasi ada pada industri elektronik yang sangat sensitif terhadap kelembaban. Pada Skripsi ini dilakukan perencanaan penggunan Heat Pipe berbentuk U sebagai alat untuk memanaskan udara (dehumidifikasi). Tahap berikutnya dilakukan pembuatan konstruksi U-bend heat pipe untuk proses dehumidifikasi. Tahap selanjutnya dilakukan pengujian terhadap konstruksi U-bend heat pipe. Setelah pengujian dilanjutkan dengan analisa dengan konstruksi heat pipe yang dibuat apakah memenuhi tingkat kelembaban udara yang dibutuhkan industri elektronik, JEDEC J-STD-020 Standard <30 °C dan <60 %RH. Heat recovery terbaik didapatkan dari kondisi kecepatan udara 1.0 m/s dan temperature inlet 35 oC yaitu sebesar 175,20 W. Sementara efektifitas terbaik berada pada kondisi kecepatan udara 0.5 m/s dan temperature masuk 30 oC yaitu sebesar 26,09 %. Dari perolehan data, sistem heat pipe dapat memenuhi standar keadaan temperature dan RH sesuai JEDEC STD-020.

Power Source or driver in an industry make heat very high. Thus most of them cant be used and just become waste. But most of using heat waste just for cooling process. One of heat transfer technology is heat pipe. Heat pipe can move heat from one side to another side. Heat that usually wasted could be moved to reheating air in the ducting. Heat pipe can work without initial power. One necessary in HVAC is to control air moisture. Electronic industry very sensitive about humidity, if air condition too wet can make electronic part fail with the electrostatic discharge. In this final task consisting some work path, first design heat pipe configuration from u-bend heat pipe heat exchanger that already given. Next, experiment that analize performance of the heat pipe configuration. The output of the HVAC for electronic industry that specific for some fabrication is about 30 °C and below 60 %RH. Best heat recovery gain from 1.0 m/s intake velocity and temperature 35 °C as 175,20 W. Best Effectivity gain from 0,5 intake velocity and temperature 30 °C as 26,09 %. In different variable some condition make the configuration fulfill of standrard before. For next experiment the system could be more effective with improvement."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Auli Rahman
"Kelembaban merupakan parameter yang menunjukan kandungan air dalam udara. Untuk menurunkan kelembaban, dapat dilakukan dehumidifikasi dengan proses overcooling dan reheating menggunakan cooling coil dan heater. Dengan menggunakan U-bend heat pipe, proses dehumidifikasi dapat dilakukan tanpa menggunakan alat pemanas tambahan. Dengan begitu kita dapat menghemat energi yang dipakai daripada sistem sebelumnya. Salah satu kebutuhan dehumidifikasi adalah untuk memenuhi kebutuhan termal dari ruang bersih. Pada Skripsi ini dilakukan permodelan dan simulasi sistem U-bend Heat Pipe sebagai dehumidifier. Simulasi dilakukan dengan menggunakan software ANSYS FLUENT 2020 R1 Student Version. Kemudian dari hasil simulasi dilakukan analisa apakah dengan model konfigurasi heat pipe yang dibuat apakah memenuhi kebutuhan termal ruang bersih sesuai dengan ASHRAE Standard 22 - 24 °C dan 40 - 60 % RH serta karakteristik efektivitas heat pipe terhadap temperatur dan kecepatan inlet. Hasil simulasi menunjukan heat recovery tertinggi didapatkan dari kondisi kecepatan udara 2.0 m/s dan temperatur inlet 45 °C yaitu sebesar 199.30 W. Efektivitas terbaik berada pada kondisi kecepatan udara 0.5 m/s yaitu sebesar 55.4 %. Dari perolehan data, efektivitas berbanding terbalik dengan kecepatan inlet dan sistem heat pipe dapat memenuhi standar keadaan temperatur dan RH dari ruang bersih. U-Bend Heat Pipe baik diterapkan untuk dehumidifikasi karena dapat menggantikan fungsi heater dan mengurangi beban pendinginan sebesar 55.4 % pada kecepatan inlet 0.5 m/s untuk menurunkan relative humidity sampai dengan 57% RH.

Humidity is an important parameter to show water vapour contained in air. Overcooling and reheating using cooling coil and heater can be used to lower the humidity. With Ubend heat pipe, dehumidification can be done without additional heater. So the energy used will be lower than previous system. One of the needs of dehumidification is to satisfy thermal needs of a cleanroom. In this final project, U-bend Heat Pipe system is being modelled and simulated for dehumidification. System is simulated with ANSYS FLUENT 2020 R1 Student Version software. The simulation result then be analyzed to see if the said heat pipe system is fulfilling thermal needs of the cleanroom corresponding to ASHRAE Standard 22 - 24 °C and 40 - 60% RH. Also to observe the characteristic of heat pipe effectivity to inlet velocity and inlet temperature. The simulation result shows highest heat recovery 199.30 W is obtained on 2.0 m/s inlet velocity and 45 °C inlet temperature. The best effectivity 55.4 % is obtained on 0.5 m/s. The simulation shows that effectivity is directly proportional to inlet velocity and heat pipe system can fulfill the standard thermal needs of a cleanroom. U-Bend Heat Pipe is recommended to be applied for dehumidification because it can replace heater’s function and lighten the cooling load by 55.4 % at 0.5 m/s inlet velocity to lower the relative humidity up to 57% RH.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Trisno Anggoro
"Tingginya konsumsi energi dari sistem tata udara di rumah sakit, khususnya ruang operasi, disebabkan adanya persyaratan khusus yang harus dipenuhi untuk memastikan kondisi lingkungan di dalam ruang operasi yang steril serta bersih bagi staf dan pasien. Oleh karena itu, perlu adanya langkah konservasi energi di bangunan rumah sakit dengan menerapkan metode dan peralatan yang dapat menurunkan konsumsi energi tanpa mengorbankan kenyamanan sekaligus meningkatkan kualitas udara yang bersih dan steril. Integrasi heat pipe dalam suatu sistem tata udara merupakan salah satu contoh aplikasi peningkatan efisiensi energi. Studi eksperimental dilakukan untuk menginvestigasi kinerja termal dari heat pipe sebagai alat penukar kalor (heat exchanger) atau yang umum disebut dengan heat pipe heat exchanger (HPHE).
Pada penelitian ini HPHE dirancang dan dibuat untuk me-recovery kalor di dalam udara yang keluar dari simulator ruangan. HPHE terdiri dari heat pipe jenis tubular dengan fluida kerja air yang disusun staggered hingga sebanyak 6 baris dengan ukuran menyesuaikan dimensi ducting (lebar 470 mm, tinggi 300 mm, tebal 20 mm) dan ditambahkan fins di sepanjang heat pipe tersebut. Dimensi heat pipe yang digunakan memiliki panjang 700 mm, diameter luar 13 mm, dan 30 fins terpasang di masing-masing heat pipe. Terdapat beberapa parameter yang mempengaruhi kinerja HPHE.
Serangkaian eksperimen dilakukan untuk mengetahui pengaruh dari temperatur inlet udara di dalam ducting (30°C, 35°C, 40°C, 45°C), jumlah baris heat pipe (2 baris, 4 baris, 6 baris), dan kecepatan udara masuk (1 m/s, 1.5 m/s, 2 m/s). Hasilnya menunjukkan bahwa efektivitas HPHE mengalami peningkatan seiring dengan kenaikan temperatur inlet udara. Efektivitas terbesar diperoleh ketika menggunakan 6 baris heat pipe dengan kecepatan aliran udara masuk 1 m/s dan temperatur inlet udara 45°C. Jika ruang operasi rumah sakit beroperasi selama 8 jam/hari dan 365 hari/tahun, maka penurunan konsumsi energi pada sistem tata udara rumah sakit, khususnya ruang operasi, dapat diketahui dari prediksi besarnya heat recovery yang mencapai 4.1 GJ/tahun.

The high-energy consumption of hospitals HVAC systems, particularly the operating room, due to the specific requirements that must be met to ensure the environmental conditions in the operating room are healthy, convenient, and safe for staff and patients. Therefore, energy conservation efforts are needed in the hospital by applying the method and device that can reduce electricity consumption without sacrificing comfort while improving air quality is clean and sterile. The use of heat pipes in an HVAC system is one example of the application of energyefficiency improvements. Experimental studies conducted to investigate the thermal performance of the heat pipe as a heat exchanger or commonly named a heat pipe heat exchanger (HPHE).
In this study, HPHE is designed to recover the heat of exhaust air from a room simulator. HPHE consists of a tubular heat pipe with water as a working fluid that is arranged staggered by up to six rows with sizes to fit ducting dimensions (width: 470 mm, height: 300 mm, thickness: 20 mm) and added fins along the heat pipe. The tubular heat pipe has a length of 700 mm, an outer diameter of 13 mm, and 30 fins mounted on each heat pipe. Several parameters affect performance HPHE.
A series of experiments was conducted to determine the effect of the inlet air temperature in the ducting (30°C, 35°C, 40°C, 45°C). Moreover, the influence of the number of heat pipe rows (two rows, four rows, six rows) and velocity air (1 m/s, 1.5 m/s, 2m/s) was also investigated. The results show that the effectiveness of HPHE increase in line with the rise in inlet air temperature. The highest effectiveness was obtained when using 6-row heat pipes with the inlet air velocity of 1 m/s and the inlet air temperature of 45°C. The reduction of energy consumption in HVAC system can be seen from the prediction annual heat recovery with 8 h/day and 365 days/year will be 4.1 GJ/yr.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45937
UI - Tesis Membership  Universitas Indonesia Library
cover
Farhan Aditya Wibowo
"Sistem HVAC pada office building berperan penting untuk menyediakan kenyamanan yang ideal bagi pengguna di dalamnya. Hal ini menyebabkan besarnya konsumsi energi di sektor perkantoran. Penelitian ini bertujuan untuk mengetahui efektifitas dan heat recovery dari penggunaan heat pipe heat exchanger dan return air. Volume return air yang digunakan dalam penelitian ini sebesar 30% dan HPHE yang digunakan berjumlah dua modul yang terdiri dari 3 baris heat pipe per modul. Pada inlet evaporator dialiri udara dengan variasi temperatur: 30, 35, 40, dan 45°C, serta dengan kecepatan 1,0; 1,5; dan 2,0 m/s. Beban pada ruangan bervariasi 200 dan 300W. Hasil dari percobaan ini mendapatkan nilai efektifitas HPHE terbesar pada percobaan temperature udara masuk 45oC; vin 1m/s; vout 2m/s; dan beban ruangan 200W yaitu sebesar 0,403 atau 40,3%. Heat recovery HPHE terbesar didapatkan pada percobaan temperature udara masuk 45oC; vin 2m/s; vout 2m/s; dan beban ruangan 200W yaitu sebesar 398,720W. Hasil dari penelitian menunjukkan bahwa penggunaan return air memengaruhi temperatur inlet evaporator.

HVAC systems in office buildings play an important role in providing ideal comfort for users in the building. This causes a large amount of energy consumption in the office sector. This study aims to determine the effectiveness and heat recovery from the use of heat pipe heat exchangers and return air. The return air volume used in this study was 30% and the HPHE used was two modules consisting of 3 lines of heat pipe per module. At the inlet of the evaporator, air flows with variations in temperature: 30, 35, 40, and 45°C, and with a speed of 1.0; 1.5; and 2.0 m/s. The load on the room varies between 200 and 300W. The results of this experiment get the greatest HPHE effectiveness value at the 45oC intake air temperature experiment; vin 1m/s; vout 2m/s; and 200W room load that is equal to 0.403 or 40.3%. The largest HPHE heat recovery was found in the 45oC intake air temperature experiment; vin 2m/s; vout 2m/s; and the room load is 200W, which is 398,720W. The results of the study indicate that the use of return water affects the inlet temperature of the evaporator."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Rafif Diyartazhar
"Konsumsi energi dari sistem pengkondisian udara pada gedung perkantoran menempati urutan tertinggi pada konsumsi energi keseluruhan dari gedung tersebut. Penelitian ini bertujuan untuk mengetahui pengaruh penggunaan heat pipe heat exchanger (HPHE) pada sistem heating, ventilation and air conditioning (HVAC) office building dan menganalisis penggunaan korelasi Sp number. HPHE yang digunakan pada penelitian ini merupakan straight HPHE yang terdiri dai 6 baris yang terdiri dari empat heat pipe pada tiap baris. Temperatur fresh air divariasikan pada temperatur 30, 35, 40 dan 45  °C dengan kecepatan udara masuk pada sisi evaporator (ve,in) sebesar 1,0; 1,5 dan 2,0 m/s. Penelitian dilakukan pada model sistem HVAC office building dengan beban ruangan pada chamber pengujian divariasikan pada nilai 200 dan 300 W. Hasil eksperimen menunjukkan Nilai efektifitas terbesar 40,324% pada kecepatan udara inlet (vin) 1,0 m/s dengan temperatur fresh air 45 °C dan beban ruangan sebesar 200 W. Heat recovery HPHE terbesar mencapai 398,72 W pada variasi kecepatan udara inlet 2,0 m/s dengan temperatur fresh air 45 °C dan beban ruangan 200 W. Nilai absolute error terkecil dari penggunaan korelasi Sp number terdapat pada variasi kecepatan udara inlet 2,0 m/s dengan beban ruangan 300 W, yaitu sebesar 11% dan absolute error terbesar pada variasi kecepatan udara inlet 1,0 m/s dengan beban ruangan 200 W, yaitu sebesar 51,17%.

 


The energy consumption of the air conditioning system in an office building ranks highest in the overall energy consumption of the building. This study aims to determine the effect of using a heat pipe heat exchanger (HPHE) on the heating, ventilation and air conditioning (HVAC) office building system and analyze the use of Sp number correlation. The HPHE used in this study is a straight HPHE consisting of 6 lines consisting of four heat pipes in each row. The temperature of fresh air was varied at temperatures of 30, 35, 40 and 45 °C with the air velocity entering the evaporator side (ve, in) of 1.0; 1.5 and 2.0 m/s. The research was conducted on an office building HVAC system model with room loads in the testing chamber varied at values of 200 and 300 W. The experimental results show the greatest effectiveness value is 40.324% at the inlet air velocity (vin) 1.0 m/s with a fresh air temperature of 45 °C. and room load of 200 W. The largest HPHE heat recovery reached 398.72 W at a variation of the inlet air velocity 2.0 m/s with a fresh air temperature of 45 °C and a room load of 200 W. The smallest absolute error value from the use of the Sp number correlation was found in the variation of the inlet air velocity of 2.0 m/s with a room load of 300 W, which is 11% and the largest absolute error in the variation of the inlet air velocity of 1.0 m/s with a room load of 200 W, which is 51.17%.

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adam Prihananda Marda
"Sistem HVAC pada ruang bersih clean room rumah sakit diharuskan terus bekerja selama 24 jam untuk menyediakan kualitas udara yang ideal bagi aktivitas di dalamnya. Hal ini menyebabkan besarnya konsumsi energi di bangunan rumah sakit. Penelitian ini bertujuan untuk mengetahui efektivitas dan heat recovery dari Heat Pipe Heat Exchanger. HPHE yang digunakan pada penelitian ini terdiri dari 12 heat pipe per modul dengan susunan staggered.
Jumlah modul divariasikan sebanyak 3 kali, yaitu 1, 2, dan 3 modul. HPHE dilengkapi dengan fin untuk memperluas permukaan kontak dengan aliran udara. Setiap variasi jumlah modul ini diuji pada model sistem HVAC ruang bersih. Pada inlet evaporator dialiri udara dengan variasi temperatur: 28, 30, 35, dan 40°C, serta dengan kecepatan 1,5; 2,0; dan 2,5 m/s.
Hasil dari eksperimen menunjukkan bahwa nilai heat recovery terbesar yaitu 1654,72 kJ/h terjadi pada pengujian 3 modul dengan temperatur udara inlet evaporator 40°C dan kecepatan 2,5 m/s, sedangkan efektifitas HPHE terbesar didapatkan ketika pengujian 3 modul dengan temperatur udara inlet evaporator 35°C dan kecepatan 1,5 m/s dengan nilai 48,73. Hasil pengujian menunjukkan bahwa HPHE dapat digunakan sebagai precooler untuk menghemat konsumsi energi pada sistem HVAC.

HVAC system in hospitals clean room are required to continue working for 24 hours to provide the ideal air quality for the activities therein. This causes huge amount of energy consumption in hospital buildings itself. This study aims to determine the effectiveness and heat recovery of HPHE. The HPHE used in this study consisted of 12 heat pipes per module, in which the line was arranged staggered.
The number of module is varied 3 times, which are 1, 2, and 3 modules. Heat pipe is made of copper and contains working fluid in the form of water with 50 filling ratio. HPHE equipped with fin to expand the contact surface with airflow. Each variation of the number of modules is tested on the HVAC system model of clean room. In the evaporator inlet, air flowing to the variation of temperature 28, 30, 35, and 40°C, and at speeds of 1.5, 2.0, 2.5 m s.
The use of HPHE can recover heat as much as 1654.72 kJ h. The highest effectiveness of this HPHE is 48.729 , was obtained when using three modules, air temperature inlet evaporator Te,i 35°C, and air speed of inlet 1.5 m s. The test results show that HPHE can be used as precooler to save energy consumption in HVAC system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lutfy Faluthi Firdaus
"ABSTRAK
Peralatan penukar panas tipe shell and tube merupakan peralatan yang berfungsi untuk mentransfer panas di antara dua atau lebih fluida. Di industri pengolahan minyak, peran peralatan ini sangatlah penting. Kegagalan pada alat penukar panas akan berdampak terhadap keandalan, ketersediaan, dan keamanan peralatan secara keseluruhan, yang pada akhirnya dapat menyebabkan kerugian finansial. Oleh karena itu, penyelidikan perlu dilakukan untuk mengetahui akar penyebab kegagalan tabung penukar panas, sehingga kegagalan yang serupa tidak terulang kembali di kemudian hari. Penyelidikan dilakukan pada bagian shell dan tube yang meliputi pengamatan lapangan, pengukuran dimensi, pengamatan visual, serta melakukan pengujian tidak merusak menggunakan die penetran.
Dari pengamatan pada bagian shell, tidak tampak ada tanda kerusakan pada bagian luar maupun dalam, sedangkan pengamatan pada bagian tube tampak tanda kerusakan sehingga dilakukan pengujian metalografi dengan mikroskop optik dan pemindaian mikroskop elektron, dan analisis komposisi kimia.
Hasil analisis menyimpulkan bahwa akar penyebab kegagalan pada tube adalah karena retak korosi retak tegang (stress corrosion cracking), yang disebabkan oleh kombinasi dari lingkungan kerja asam dan tegangan tarik.

ABSTRACT
Shell and tube type heat exchanger is the equipment that functioned to transfer heat between two or more fluids. In the oil processing industry, the role of this equipment is very important. Failure of the heat exchanger will have an impact on the overall reliability, availability and safety of the equipment, which in turn can cause financial losses. Therefore, an investigation needs to be carried out to find out the root cause of the failure of the heat exchanger tube, so that similar failures do not recur in the future. Investigations were carried out on the shell and tube sections which included field observations, dimensional measurements, visual observations, as well as non-destructive testing using die penetrants.
From observations on the shell, there were no visible signs of damage either on the outside or inside, while observations on the tube showed signs of damage so metallographic testing with optical microscop and scanning electron microscop, and chemical composition analysis were carried out.
The results of the analysis concluded that the root cause of failure in the tube is due to stress corrosion cracking, which is caused by a combination of acid working environment and tensile stress."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Wirawan
"Laporan ini merupakan tugas akhir penulis dalam studinya di Queensland University of Technology (QUT), Brisbane, Australia. Penulis bergabung ke dalam tim projek Dual Fuel Engine dengan pengawasan Dr. Richard Brown yang berpusat pada penelitian, perancangan, pelaksanaan dan mengoptimalkan system dual fuel yang ditemukan dan dipatentkan (7,000,573 B2) oleh Mr. Uli Kruger. Di dalam tim ini, setiap anggota memiliki kontribusi masing-masing guna mengembangkan projek tersebut.
Projek penulis memusatkan pada beberapa hal, sebagai berikut: testing dual fuel engine, kaliberasi ethanol injector dan design heat exchanger. Tujuan utama dalam projek penulis adalah untuk merancang heat exchanger untuk mesin Dual Fuel yang digunakan untuk experiment lebih lanjut. Dengan perhitungan thermodynamic yang akurat diharapkan rancangan heat exchanger ini bias menyediakan energy yang cukup untuk memanaskan ethanol menjadi gas di dalam system dual fuel tersebut.
Tujuan lain dari projek ini adalah menampilkan hasil dari experiment yang dilaksanakan pada bunlan Desember 2008 dan kalibrasi ethanol injector. Menganalisa performa mesin dan mengidentifikasi setiap masalah yang mungkin timbul dalam system dual fuel. Kaliberasi ethanol injector dilakukan untuk mengetahui apakah injector yang dipilih sesuai dengan system tersebut. Mesin yang digunakan dalam projek ini adalah Mesin diesel buatan Ford dengan kapasitas 2701CC, 4 Cilinder. Kecepatan rata-rata mencapai 2500rpm, dengan ukuran bore x stroke: 108.2 x 115 (mm), volume perindahan 1057 dan rasio kompresi 15.5:1. Mesin ini yang kemudian dimodifikasi dengan Kruger dual fuel system sehingga dapat menggunakan campuran diesel dan ethanol sebagai bahan bakar.
Penggunaan campuran Ethanol dengan diesel sebagai bahan bakar, atau bias juga disebut biodiesel diharapkan dapat menjawab masalah lingkungan yang ada pada saat ini. Masalah lingkungan ini yang mendorong penelitian untuk mengurangi kebutuhan dalam sumber energy yang tidak dapat diperbaharui. Mobil merupakan sumber karbon dioxida, gas rumahkaca yang utama penyebab pemanasan global. Dalam system Dual Fuel ini, diperlukan heat exchanger yang dapat menghasilkan energy yang sama untuk memanaskan ethanol di dalam system udara bahan bakar berdasarkan perhitungan dan rancangan yang sesuai. Perhitungan lain yang harus di pikirkan dalam rancangan adalah area pemasangan heat exchanger yang sangat terbatas.
Penulis mencoba menyelesaikan masalah di atas menggunakan design type double pipe. Pemilihan type ini didasari beberapa alas an, yaitu: designnya yang sederhana, kemudahan pemasangan, ukuran yang dapat disesuaikan dengan area yang ada, dan biaya yang murah. Ukuran yang digunakan dalam rancangan tersebut disesuaikan dengan keterbatasan area, yang kemudian dimodifikasi lebih lanjut guna mencapai hasil yang maksimal. Double pipe heat exchanger dalam bentuk tradisionalnya merupakan alat yang paling sederhana untuk mengalihkan panas antara dua cairan atau gas, terdiri dari pipa di dalam pipa dengan hubungan yang tepat untuk kedua cairan atau gas tersebut, seperti yang dapat dilihat pada gambar 2.1.Perhitungan rancangan heat exchanger untuk mesin yang digunakan sebagai pegujian akan diterangkan lebih lanjut pada Chapter 3."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51019
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Yunus
"Pada teknologi penyimpanan basah, bahan bakar nuklir bekas disimpan di rak penyimpanan yang ditempatkan di dalam kolam air. Untuk mempertahankan temperatur air kolam agar berada pada batas kondisi operasi normal, panas yang dihasilkan akibat sisa peluruhan bahan bakar akan didinginkan oleh sistem pendingin. Pada penelitian ini akan dilakukan upaya penghematan energi pada sistem pendingin kolam bahan bakar bekas khususnya pada sistem chiller. Tujuan dari penelitian ini adalah mengembangkan desain Heat pipe Heat Exchanger (HPHE) pada sistem refrigerasi yang digunakan pada sistem pendingin loop sekunder. Dengan menggunakan sistem refrigerasi yang dilengkapi HPHE ini diharapkan dapat meningkatkan efektifitas dan penghematan penggunaan energi. Prototipe HPHE yang dikembangkan terdiri 5 buah heat pipe yang disusun sejajar dan dipasang diantara evaporator dan kompresor. Untuk melihat pengaruh HPHE terhadap performa sistem, maka dilakukan pengujian sistem refrigerasi dengan dan tanpa HPHE dan variasi beban kalor pada evaporator dengan variasi temperatur awal air 35 °C, 40 °C, 45 °C, 50 °C, dan 55 °C. Proses pengujian dilakukan selama 30 menit dengan daya penuh. Dari hasil pengujian diperoleh bahwa seiring dengan peningkatan variasi temperatur air, sistem refrigerasi mengalami penurunan kerja kompresor, peningkatan efek pendinginan, serta kenaikan coefficient of performance (COP). Penggunaan HPHE pada sistem refrigerasi terbukti mampu meningkatkan performa sistem dengan kerja kompresor yang semakin menurun, serta efek pendingin dan nilai COP yang semakin meningkat. Hasil optimal diperoleh pada variasi temperatur awal 55 °C dengan nilai kerja kompresor 48,1 kJ/kg, efek pendinginan 282,03 kJ/kg, dan COP 5,9. Resistansi termal HPHE semakin menurun seiring dengan kenaikan variasi temperatur air dengan nilai resitansi terbaik yaitu 0,37 °C/W. Dengan demikian, HPHE sangat potensial untuk diterapkan di sistem refrigerasi termasuk pada sistem pendingin kolam bahan bakar nuklir bekas demi meningkatkan efisiensi pendinginan dan menurunkan konsumsi listrik.

In wet storage technology, spent fuel is stored on storage racks placed within a water pool. To maintain the water pool temperature within the limits of normal operating conditions, the heat generated due to the residual decay of the spent fuel will be cooled by the cooling system. This study aims to implement energy-saving in the chiller system of the spent fuel pool cooling system, particularly focusing on the chiller system. The objective of this research is to develop a Heat Pipe Heat Exchanger (HPHE) design for the refrigeration system used in the secondary loop of the cooling system. By incorporating the HPHE in the refrigeration system, it is expected to enhance efficiency and energy conservation. The developed prototype of the HPHE consists of five parallelly arranged heat pipes installed between the evaporator and the compressor. To assess the impact of the HPHE on the system's performance, refrigeration system testing is conducted with and without the HPHE, considering variations in heat load on the evaporator with variation of initial water temperatures of 35 °C, 40 °C, 45 °C, 50 °C, and 55 °C. The testing process is carried out over 30 minutes at full power. Results from the testing indicate that with an increase in water temperature variations, The refrigeration system undergoes a reduction in compressor work, an enhancement in cooling efficiency, and an increase in the coefficient of performance (COP). The utilization of HPHE in the refrigeration system proves more effective in enhancing system performance, with a decreasing compressor work, an increasing cooling effect, and an elevated COP. The optimal results were obtained at an initial temperature variation of 55 °C, yielding a compressor work value of 48.1 kJ/kg, a cooling effect of 282.03 kJ/kg, and a COP of 5.9. The thermal resistance of the HPHE decreases with an increase in water temperature variation, with the best resistance value being 0.37 °C/W. Therefore, HPHE demonstrates significant potential for application in refrigeration systems, including those used in the cooling of spent fuel pools, to improve cooling efficiency and reduce electrical consumption."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Syahrul Muhammaddiyah
"Heat Pipe Exchanger telah banyak diaplikasikan di berbagai bidang, Salah satu bidang aplikasinya pada sistem Heating Ventilating Air Conditioning HVAC ruang operasi. Sistem HVAC ruang operasi rumah sakit memiliki parameter : temperatur, kelembaban relatif, kebersihan dan pergantian udara perjam. Parameter merupakan syarat mutlak untuk menjaga kualitas udara dalam ruangan indoor air quality dan kenyamanan termal ruang operasi. Rentang temperatur ruang operasi adalah 20-24 °C dan kelembaban relatif pada 30-60 RH. Nilai pergantian udara dalam ruangan operasi minimal 20 kali.
Tujuan penelitian untuk mendapatkan nilai efektifitas dan nilai heat recovery dari Heat Pipe Heat Exchanger HPHE yang diuji pada sistem tata udara. HPHE adalah piranti pasif yang mampu memberikan fungsi penghematan energi pada sistem tata udara. HPHE didisain terdiri dari 42 batang heat pipe tubular dilengkapi 120 wavy fin pada evaporator dan kondenser. HPHE dengan konfigurasi 3, 2, dan 1 baris, tiap konfigurasi diuji pada sistem tata udara dengan variasi temperatur aliran udara inlet evaporator : 28, 30, 35, 40, dan 45°C dan variasi kecepatan udara inlet pada 1, 1.5, dan 2 m/detik.
Hasil pengujian dari 3 konfigurasi HPHE didapatkan nilai ?T evaporator sebesar 3,24-10,99°C dan nilai efektifitas HPHE dalam rentang 48,3 - 55. Nilai efektifitas tertinggi 55 didapatkan pada kecepatan udara inlet 1 m/detik dan temperatur 45°C pada konfigurasi HPHE 3 Baris. Nilai heat recovery tertinggi dari pengujian terhadap HPHE adalah 6.614 kJ/Jam dihasilkan pada setting kecepatan udara inlet 2 m/detik dengan konfigurasi HPHE 3 Baris.

Heat Pipe Heat Exchanger has been widely applied in various fields. One area of application is on the operating room Heating Ventilating Air Conditioning HVAC system. The hospital operating room HVAC system has parameters temperature, relative humidity, cleanliness and air change per hour. Parameters are an absolute requirement to maintain indoor air quality indoor air quality and thermal comfort of the operating room. The operating room temperature range is 20-24°Celcius and relative humidity at 30-60 RH. The value of indoor air change at least 20 times per hour.
The objective of the study was to obtain the efficiency and heat recovery values of Heat Pipe Heat Exchangers HPHE tested on the air system. HPHE is a passive device that provides energy saving function in the HVAC system. The HPHE is designed to consist of 42 tubular heat pipe tubes equipped with 120 wavy fins on evaporator and condenser. HPHE with 3, 2, and 1 row configurations, each configuration tested on an air system with variations of evaporator inlet airflow temperature 28, 30, 35, 40, and 45°C and variations in air velocity at 1, 1.5, and 2 m seconds.
Test results from 3 HPHE configurations obtained T evaporator value of 3.24 10.99°C and HPHE effectiveness value in the range of 48.3 55. The highest effectiveness value of 55 was obtained at air velocity of inlet 1 m sec and temperature 45°C in HPHE 3 row configuration.The highest HPHE heat recovery value of 6,614 kJ hour was obtained at air velocity of 2 m sec inlet with HPHE 3 row configuration.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T47780
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>