Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 168175 dokumen yang sesuai dengan query
cover
Muhammad Bachtiar Yusuf
"ABSTRAK
Hidrogen telah diketahui sebagai faktor penting untuk produk semikondukor silikon. Silikon sebagai material yang paling melimpah dan layak sebagai semikonduktor membutuhkan kondisi layak untuk didapatkan sifat listrik dan optik yang tepat. Fenomena adsorpsi hidrogen pada silikon telah dipelajari menggunakan simulasi komputasi dan eksperimen oleh para peneliti. Simulasi dinamika molekuler menggunakan potensial Lennard-Jones telah dilakukan untuk mendemonstrasikan kemampuan adsorpsi hidrogen permukaan silikon (001) dan (111) dengan variasi temperatur sebesar 233 K, 253 K, 273 K, dan 293 K yang diterapkan pada tekanan 1, 2, 5, 10, dan 15 atm. Berdasarkan hasil simulasi, didapatkan jumlah hidrogen yang diadsorpsi oleh permukaan silikon meningkat apabila jumlah panas dalam sistem berkurang. Tanpa meninjau aspek entropi, permukaan kristal Si (001) memiliki kemampuan adsorpsi lebih tinggi dibandingkan Si (111) disebabkan oleh energi bebas permukaan yang lebih tinggi. Hal tersebut jelas terlihat pada tekanan 15 atm dibandingkan variasi tekanan lainnya Kapasitas adsorpsi paling tinggi dimiliki oleh Si (001) 233 K pada 15 atm dengan jumlah konsentrasi hidrogen teradsorpsi 0,166430075% wt., dan paling rendah dimiliki oleh Si (111) 293K pada 1 atm senilai 0,004759865% wt.

ABSTRACT
Hydrogen was known as important factor for silicon semiconductor product. Silicon as the most abundant and feasible material for semiconductor needs precisely proper condition to have the exact optical and electrical properties. The hydrogen adsorption on silicon phenomena had been studied through computational simulations and experiment by researchers. Molecular dynamics simulation using a Lennard-Jones potential was conducted to demonstrate the hydrogen adsorption capability of silicon surface (001) and (111) with various temperatur applied, 233 K, 253 K, 273 K, and 293 K at pressure 1, 2, 5, 10, dan 15 atm. The amount of hydrogen adsorbed by silicon surfaces were higher as the amount heat of the system decreases. Without considering entropy, Si (001) had higher adsorption capability due to its higher energy surface than Si (111). It had shown where the pressure was at 15 atm, the difference seemed way more obvious than other pressure condition. Si (001) on 233 K at 15 atm had the highest adsorption capacity with 0,17% wt., of hydrogen. The lowest amount of hydrogen capacity was achieved by Si (111) on 293 K at 1 atm with 0,0048% wt."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Hanif Abdurrahman
"ABSTRAK

Hidrogen merupakan salah satu sumber energi masa depan karena bersifat ramah lingkungan. Namun dalam pengembangannya masih terdapat beberapa masalah dalam metode penyimpanannya. Pada beberapa penelitian, ditemukan bahwa material berbasis silikon merupakan salah satu kandidat yang baik sebagai media penyimpanan hidrogen. Pada penelitian ini, penulis ingin melihat pengaruh temperatur dan tekanan terhadap adsorpsi hidrogen pada silika amorf dengan menggunakan simulasi dinamika molekuler menggunakan potensial Lennard-Jones. Pada simulasi ini temperatur yang digunakan yaitu 233, 253, 273 dan 293 K serta tekanan pada setiap temperatur bervariasi yaitu 1, 2, 5, 10 dan 15 atm. Simulasi ini berhasil menggambarkan dan mengindikasikan bahwa silika amorf memiliki kemampuan untuk menyimpan hidrogen yang cukup baik dimana temperatur dan tekanan mempengaruhi jumlah hidrogen yang teradsorpsi. Pengaruh temperatur yaitu pada temperatur yang lebih rendah (233 K), maka jumlah konsentrasi hidrogen yang terserap pada silika amorf akan semakin besar. Sementara pada temperatur yang lebih tinggi maka hasilnya akan menurun. Hasil adsorpsi terbaik terjadi pada tekanan yang lebih tinggi (15 atm) pada temperatur rendah (233 K) dengan konsentrasi hidrogen sebesar 0,048116%.


ABSTRACT
Hydrogen is one of the future source energy because it has environmentally friendly. However, there are still some problems in the storage method of hydrogen. In several studies, it was found that Silicon based material is a promising candidate as a hydrogen storage medium. In this study, the effect of various temperature and pressure to the adsorption of hydrogen on amorphous silica with molecular dynamics simulation using Lennard-Jones potential. In this simulation, the temperature that i used are 233, 253, 273 and 293 K with pressure at each temperature are 1, 2, 5, 10, and 15 atm. The simulations had successfully visualize and indicate that amorphous silica has a good hydrogen storage capability where temperature and pressure affect the amount of hydrogen adsorbed.. At low temperature (233 K), the hydrogen concentration are relatively high than at higher temperature. The best result of hydrogen capacity is 0,048116% that occurred at high pressure (15 atm) with low temperature (233 K) condition.

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Billy Adhitya Ramadhan
"ABSTRAK
Hidrogen merupakan salah satu unsur yang melimpah dimuka bumi, hidrogen ditemukan bersenyawa dengan atom lain sehingga banyak terdapat di udara (seperti H2 dan NH2) maupun air (H2O), ketersediannya di kerak bumi sebesar 15,4%. Karena ketersediannya yang melimpah dan kemampuan menghasilkan sumber energi tanpa menghasilkan polusi udara dan air, maka hidrogen diproyeksikan sebagai sumber energi masa depan. Namun pemilihan material untuk alat penyimpanan hidrogen sangat penting karena hidrogen dalam fasa gas merupakan molekul yang reaktif sehingga membutuhkan penyimpanan dengan material yang tepat. Selain dari faktor keamanan, efektivitas adsorpsi hidrogen ke permukaan material juga menjadi fokusan utama. Oleh karena itu dipilihlah Grafena oksida, Grafena oksida adalah lembaran yang terbentuk dari lapisan tunggal Grafit oksida yang mudah untuk disintetis yang memiliki sifat elektoronik dan optik yang baik. Kelebihan menggunakan material Grafena oksida adalah harganya yang lebih murah dibanding Grafena murni dan tersedia dengan jumlah yang banyak. Gas yang dapat diserap material ini antara lain H2, CH4, CO2, N2, NH3, NO2, H2S, dan SO2. Riset yang dilakukan secara simulasi ini memungkinkan untuk menguji efektivitas adsorpsi dengan variasi temperatur dan tekanan yang lebih luas dan menggunakan biaya yang relatif lebih rendah dibandingkan dengan riset eksperimental. Maka riset yang dilakukan penulis menggunakan metode Simulasi Dinamika Molekuler. Variasi temperatur yang digunakan adalah 77 K, 100 K, 200 K, 250 K, 295K dan tekanan memiliki variasi 1 bar, 5 bar, 10 bar, 20 bar, 40 bar dan 80 bar pada sistem yang dibuat konstan. Hasil yang didapat akan dibandingkan dengan literatur hasil riset secara ekperimental.

ABSTRACT
Hydrogen is one of the abundant elements on earth, hydrogen is found in compound with other atoms so that there are many in the air (such as H2 and NH2) and water (H2O), its availability in the earth's crust is 15.4%. Due to its abundant availability and ability to produce energy sources without producing air and water pollution, hydrogen is projected as a future energy source. But the selection of materials for hydrogen storage devices is very important because hydrogen in the gas phase is a reactive molecule that requires storage with the right material. Aside from safety factors, the effectiveness of hydrogen adsorption onto the surface of the material is also the main focus. Therefore graphene oxide was chosen, graphene oxide is a sheet formed from a single layer of graphite oxide which is easy to synthesize which has good electric and optical properties. The advantage of using graphene oxide material is that the price is cheaper than pure graphene and is available in large quantities. The gases that can be absorbed by this material include H2, CH4, CO2, N2, NH3, NO2, H2S, and SO2. Research conducted in this simulation makes it possible to test the effectiveness of adsorption with a wider variety of temperatures and pressures and uses a relatively lower cost compared to experimental research. Then the research conducted by the author uses the Molecular Dynamics Simulation method. The temperature variations used are 77 K, 100 K, 200 K, 250 K, 295 K, the pressure has a variation of 1 bar, 5 bar, 10 bar, 20 bar, 40 bar and 80 bar in a constant system. The results obtained will be compared with the research results experimentally."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahman Hadi
"Gas Hidrogen memiliki manfaat sebagai bahan bakar yang bermanfaat untuk sumber energi masa depan karena menurunkan ketergantungan akan minyak bumi dan pengurangan polusi udara. Penyimpanan hidrogen adalah masalah utama yang harus ditaklukkan untuk keberhasilan implementasi teknologi sel bahan bakar dalam aplikasi transportasi dan ini merupakan tantangan ilmu material utama. Salah satu solusi untuk mengatasi permasalahan tersebut adalah dengan menggunakan metode adsorpsi. Material reduced Graphene Oxide (rGO) merupakan salah satu material yang berpotensial untuk digunakan sebagai media penyimpanan gas hidrogen. Pada penelitian ini, penulis ingin melihat pengaruh temperatur dan tekanan terhadap adsorpsi hidrogen pada reduced Graphene Oxide (rGO) dengan menggunakan simulasi dinamika molekuler menggunakan potensial Lennard-Jones.Pada riset ini, penulis menggunakan metode Simulasi Dinamika Molekuler. Variasi temperatur yang digunakan pada simulasi ini adalah 77, 100, 150, 200, 273, dan 298 K dengan variasi tekanan pada tiap temperatur adalah 1, 2, 5, 10, 15, 20, 40, 80. dan 100 bar. Hasil simulasi kemudian dibandingkan dengan hasil riset secara eksperimental yang telah dilakukan oleh peneliti lainnya. Pada temperatur tinggi, hasil simulasi mendekati hasil riset secara eksperimental. Namun pada temperatur rendah, hasil simulasi memiliki perbedaan secara signifikan dari riset secara eksperimental.

Hydrogen gas has benefits as a useful fuel for future energy sources because it reduces dependence on petroleum and reduces air pollution. Hydrogen storage is a major problem that must be conquered for the successful implementation of fuel cell technology in transportation applications and this is a major material science challenge. One solution to overcome these problems is to use the adsorption method. Reduced Graphene Oxide (rGO) material is a material that has the potential to be used as a storage medium for hydrogen gas. In this study, the authors wanted to see the effect of temperature and pressure on hydrogen adsorption on reduced Graphene Oxide (rGO) using molecular dynamics simulations using Lennard-Jones potential. In this research, the authors used the Molecular Dynamics Simulation method. Temperature variations used in this simulation are 77, 100, 150, 200, 273, and 298 K with variations in pressure at each temperature are 1, 2, 5, 10, 15, 20, 40, 80. and 100 bar. The simulation results are then compared with the results of experimental research conducted by other researchers. At high temperatures, the simulation results approach experimental research results. However, at low temperatures, the simulation results have a significant difference from experimental research.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ihsan Ahmad Zulkarnain
"Penggunaan gas hidrogen sebagai sumber energi pada sel bahan bakarmenjadikannya sebagai potensi sumber energi di masa depan Salah satu permasalahan yang cukup perlu diperhatikan pada pemanfaatan hidrogen sebagai sumber energi ini adalah media penyimpanannya Untuk dapat menyimpan hidrogen dalam jumlah besar diperlukan tekanan operasi yang sangat tinggi dan temperatur yang sangat rendah Penyimpanan hidrogen dapat ditingkatkan dengan pemanfaatan fenomena adsorpsi gas hidrogen pada media berporos seperti Carbon Nanotube CNT Kapasitas adsorpsi hidrogen pada CNT ini juga dapat ditingkatkan dengan menyisipkan unsur doping pada CNT Salah satunya adalah dengan menyisipkan senyawa alkali metal seperti Lithium Simulasi dinamika molekuler proses adsorpsi hidrogen pada CNT dengan Lithium sebagai unsur doping ini memberikan perkiraan bahwa kapasitas adsorpsi hidrogendapat meningkat hingga 100 dibandingkan dengan kapasitas adsorpsi hidrogen pada CNT tanpa doping Lithium pada tekanan 40 atm dan temperatur 293 K dari sebelumnya 1 wt menjadi 2 wt

The uses of hydrogen gas as energy resources in fuel cell let it to be future energy resources potential One of the problems which need to be concerned about the uses of hydrogen gas as energy resources is its storage medium To be able to store hydrogen gas in large amount very high operational pressure and very low operational temperature are required Hydrogen storage capacity can be improved by using adsorption phenomena of hydrogen gas on porous medium like Carbon Nanotube CNT Hydrogen adsorption capacity of CNT can be improved too by inserting alkaline metal such as Lithium into CNT Molecular dynamic simulation of hydrogen adsorption process on Lithium doped CNT predicts that its hydrogen adsorption capacity can be improved until 100 compared to its hydrogen adsorption capacity without Lithium at pressure of 40 atm and temperature of 293 K from 1 wt become 2 wt"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Hapsari Safitri
"Dewasa ini pengembangan teknologi penyimpanan gas Hidrogen sebagai energi tanpa emisi terus dilakukan, terutama sebagai bahan bakar kendaraan ringan. Penggunaan material Boron Triazine sebagai modifikasi Carbon Nano Tube CNT untuk menyimpan gas Hidrogen secara adsorpsi merupakan salah satu pilihan untuk meningkatkan kapasitas CNT dalam menyimpan gas Hidrogen dan ringan sehingga mengurangi berat sistem secara keseluruhan dalam tangki penyimpanan. Penelitian ini menggunakan 2 metode sebagai perbandingan yaitu metode simulasi dinamika molekul dengan struktur modifikasi CNT pada ruang penyebaran hidrogen VMD, Packmol, Lammps yang kemudian diikuti dengan analisa termodinamika molekuler, dan metode Artificial Neural Network dengan menggunakan MATLAB. Kedua metode ini dilakukan untuk mengetahui kapasitas CNT yang sudah dimodifikasi untuk menyimpan gas Hidrogen. Wt yang tinggi dimiliki oleh Boron-Triazin CNT dengan temperatur 77 Kelvin yaitu 7.81. Konversi penggunaan Hidrogen pada 1 CNT material Boron Triazin menjadi listrik sebesar 0.17182 kWh/kg.

Nowadays the development of storage technology for Hydrogen as energy without emissions continues to be done, especially as light vehicle fuel. The use of Boron Triazine material as a modified Carbon Nano Tube CNT to store Hydrogen by adsorption is one of options to increase CNT capacity in storing Hydrogen and also light weight thereby reducing the overall system weight in storage tanks. This research uses two methods as comparison which are molecular dynamics simulation method with CNT modification structure on hydrogen dispersion chamber VMD, Packmol, Lammps followed by molecular thermodynamic analysis, and Artificial Neural Network method using Matlab. Both methods are performed to determine the capacity of CNT that have been modified to store Hydrogen. Highest wt is owned to Boron Triazine CNT with temperature 77 Kelvin which is 7.81 . So conversion of Hydrogen usage on 1 CNT of Boron Triazin material into electricity is 0.17182 kWh kg."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Prolessara Prasodjo
"Adsorpsi gas hidrogen dalam material berpori seperti karbon merupakan teknik penyimpanan hidrogen bertekanan yang efektif dan sangat menjanjikan untuk diaplikasikan pada sistem penyimpanan hidrogen sebagai bahan bakar terutama pada kendaraan. Nanotube karbon (NTC) merupakan salah satu material karbon yang sangat berpotensi untuk digunakan dalam penyimpanan hidrogen selain karbon aktif.
Potensi penyerapan gas hidrogen pada nanotube karbon yang dihasilkan dari produksi lokal diuji kemampuannya pada penelitian ini. Pengujiannya meliputi penentuan kapasitas adsorpsi gas hidrogen serta dinamika adsorpsi dan desorpsinya dari nanotube karbon produksi lokal pada temperatur isotermal 25 ºC dan tekanan 0-1000 Psia. Sebagai pembanding hasil percobaan, dilakukan juga uji yang sama terhadap nanotube karbon komersial yang diproduksi dari Chinese Academy of Sciences.
Dari hasil pengujian adsorpsi gas hidrogen dengan kedua NTC menunjukkan bahwa kapasitas adsorpsi hidrogen terus meningkat secara seiring dengan meningkatnya tekanan pada temperatur isotermal 25 ºC. NTC lokal mempunyai kapasitas adsorpsi yang lebih rendah dibandingkan dengan kapasitas adsorpsi NTC komersial. Pada tekanan sekitar 960 psia, kapasitas adsorpsi NTC lokal dan NTC komersial berturut-turut 0,09 % dan 0,13 % berat. Mekanisme adsorpsi yang terjadi pada kedua NTC didasarkan pada interaksi fisik. Secara umum, data adsorpsi hidrogen dari kedua adsorben dapat direpresentasikan dengan baik oleh permodelan Langmuir, dengan % AAD di bawah 5. Dari hasil data dinamika dapat diketahui bahwa proses adsorpsi dan desorpsi pada kedua NTC berlangsung sangat cepat. Pada tekanan tertinggi (960 Psia), kesetimbangan adsorpsi dan desorpsi tercapai mendekati waktu 30 detik, sedangkan pada NTC lokal tercapai pada waktu 2 detik. Waktu pencapaian kesetimbangan pada proses adsorpsi baik pada NTC lokal maupun komersial pada tekanan tinggi lebih cepat dibandingkan pada tekanan rendah. Waktu pencapaian kesetimbangan pada proses desorpsi sedikit lebih cepat pada tekanan tinggi pada NTC komersial sedangkan pada NTC komersial hampir sama pada tekanan tinggi dan rendah. Secara keseluruhan dinamika adsorpsi dan desorpsi yang terjadi pada NTC lokal dan komersial baik pada tekanan rendah sampai tekanan tinggi dapat direpresentasikan dengan baik oleh model dinamika Gasem dan Robinson dengan % AAD di bawah 2.

Adsorption of hydrogen gas in porous material such as carbon is a effective pressurized hydrogen storage technique and very promising for application in hydrogen storage system for fuel, especially in vehicles. Carbon nanotubes (CNT) is one of the most potential of carbon materials for use in hydrogen storage beside activated carbon.
Potential of hydrogen gas adsorption in carbon nanotubes generated from local production was tested in this study. The test includes the determination of hydrogen gas adsorption capacity and dynamics of adsorption and desorption of carbon nanotubes local production at isothermal temperature 25 ºC and pressure 0- 1000 Psia. As a comparison the results of the experiment, also conducted similar tests on commercially produced carbon nanotubes of the Chinese Academy of Sciences.
From the test results of hydrogen gas adsorption with both CNT show that the hydrogen adsorption capacity increased with increasing pressure at isothermal temperature of 25ºC. Local CNT has a lower adsorption capacity compared with the adsorption capacity of commercial CNT. At pressures around 960 psia, the adsorption capacity of local and commercial CNT is 0.09% and 0.13% weight respectively. Adsorption mechanism that occurs at both the CNT based on physical interactions. In general, the hydrogen adsorption data of both the adsorbent can be represented well by the Langmuir model, with % AAD of less than 5. From the data, it is known that the dynamics of adsorption and desorption processes at both the CNT happened very quickly. At highest pressure (960 Psia), adsorption and desorption equilibrium of local CNT is reached approximately in 30 seconds, while commercial CNT is reached in 2 seconds. The rate of adsorption equilibrium at both local and commercial CNT at high pressure more rapidly than at low pressures. At process of desorption, the time of equilibrium is reached slightly faster at high pressure than low pressure in the commercial CNT, but almost similar in local CNT. Overall dynamics of adsorption and desorption that occurred at both CNT at low pressure to high pressure can be presented well by the model Gasem and Robinson with % AAD below 2.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
T27896
UI - Tesis Open  Universitas Indonesia Library
cover
Falah Riski Kuskendrianto
"ABSTRAK
Nitrogen sebagai unsur yang banyak terdapat di alam dapat dimanfaatkan sebagai gas yang diserap untuk membantu dalam mengkarakterisasi material, khususnya pada permukaan material. Menurut Brunauer-Emmet-Teller (BET) teori, nitrogen digunakan sebagai gas pengkarakterisasi material karena kemampuan pada kemurniannya yang tinggi dan dapat berinteraksi dengan zat padat. Sejauh ini BET hanya menghasilkan data berupa sifat kuantitatif namun tidak menunjukkan fenomena-fenomena yang dapat terlihat oleh karena itu, digunakan simulasi dinamika molekuler dan membuat pemodelannya untuk mengamati fenomena yang terjadi pada saat adsorpsi nitrogen pada silika amorf yang merupakan material berpori dengan luas permukaan yang besar. Pada penelitian ini simulasi dinamika molekuler yang dilakukan diatur dalam keadaan isotermis, dimana temperatur yang digunakan sebanyak 3 variabel yakni : 77 K, 100 K, dan 150 K pada variasi tekanan yang digunakan 1,3,5,7,  dan 10 atm. Berdasarkan hasil yang diperoleh dari simulasi menunjukkan pada saat temperatur 77 K memiliki kemampuan yang optimal dalam mengadsorpsi nitrogen dibandingkan temperatur 100 K dan 150 K.

 


Nitrogen as an element that is widely found in nature, can be used as a gas that is absorbed to help characterize materials, especially on the surface of the material. According Brunauer-Emmet-Teller (BET) is a theory where nitrogen is used as a gas characterizing material because of its ability to high purity and can interact with solid elements. So far, BET only produces data in the form of quantitative properties but does not show phenomena that can be seen, because of that, molecular dynamics simulations can be done and modeling it to observe the phenomenon that occurs during nitrogen adsorption in amorphous silica which is a porous material with a large surface area. In this study the molecular dynamics simulations are arranged in a state of isotherm, where the temperature used is 3 variables: 77 K, 100 K and 150 K in the variation of pressure used 1, 3, 5, 7, and 10 atm. Based on the results obtained from the simulation, it was found that on 77 K temperature had the optimal ability to adsorb nitrogen compared to 100 K and 150 K."

2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Correlation between silicon content and in-steam corrosion rate of Zr 1.5WT%-Si Ingot. Silicon is normally added in a small amount to a Zr - alloy to improve its corrosion resistance without having to sacrifice its neutronic property. An excessive amount of silicon addition is known to have caused faster corrosion rate. The objective of this research was to observe the effect of silicon content on the corrosion rate of Zr - 1.5wt%Nb-Si ingot. The ingot speciments had various silicon contents of 0.1 wt%, 0,2 wt% and 0.25wt%. All them were annealed at 400 oc, 600 oC and 800 oC for four and six hours. The corrosion test was conducted in an autoclove at 8 bars and 350 oC for 8, 15 and 24 hours..."
Artikel Jurnal  Universitas Indonesia Library
cover
Haryadi Wibowo
"Produksi hidrogen dengan menggunakan metanol atau gliserol sebagai elektron donor pada fotokatalis TiO2, TiNT, Pt/TiO2 dan Pt/TiNT pada suhu reaksi dari 30 oC sampai dengan 70 oC telah diteliti. Metanol dan gliserol efektif sebagai elektron donor untuk produksi hidrogen secara fotokatalisis. Penggunaan metanol lebih unggul 10% dari gliserol pada semua katalis dalam total produksi hidrogen. Produksi hidrogen terbaik ditunjukkan oleh fotokatalis Pt(1%)/TiNT dengan metanol sebagai elektron donor, yaitu sebesar 2306 µmol/gcat, sementara total hidrogen dengan gliserol sebesar 2120 µmol/gcat. Penggunaan dopan Pt pada fotokatalis menghasilkan produksi hidrogen dua kali lebih besar dibandingkan dengan tanpa dopan.

Hidrogen production with methanol or glycerol as sacrificial agent using TiO2, TiO2 Nanotubes, Pt/TiO2 and Pt/TiO2 Nanotubes photocatalysts at reaction temperature 30 oC to 70 oC have been investigated. Methanol and glycerol were effective for hydrogen production and the best result was methanol with Pt(1%)/TiO2 that have 2306 µmol/gcat, meanwhile with glycerol only produce 2120 µmol/gcat. The other photocatalyst also have the same pattern, which metanol give 10% higher result on total hydrogen production. Catalyst with Pt give twice higher hydrogen production rather than with no Pt.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
T40844
UI - Tesis Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>