Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 54959 dokumen yang sesuai dengan query
cover
Medio Feby Fitriana
"Magnesium (Mg) merupakan logam ringan dan dapat diserap tubuh melalui proses degradasi atau bersifat biodegradable. Namun Magnesium dan paduannya mengalami degradasi yang sangat cepat di dalam lingkungan fisiologis akibatnya kekuatan mekanik dari implan akan menurun. Untuk meningkatkan ketahanan korosi dari paduan magnesium dapat dilakukan dengan metode anodizing. Lapisan oksida yang dihasilkan dari proses anodizing memiliki banyak retakan dan pori pada permukaannya. Retakan dan pori ini dapat ditutup melalui metode sealing beeswax-colophony. Proses anodizing dilakukan pada tegangan konstan 5 volt dalam elektrolit 0.5 M Na3PO4 pada suhu 30°C ± 1°C dengan variasi waktu 10, 20, dan 30 menit. Pada waktu 10, 20, dan 30 menit terukur tebal lapisan 6, 14, dan 16 μm. Optimasi waktu anodizing dihasilkan pada anodizing 20 menit. Untuk mengetahui laju korosi paduan magnesium yang telah di anodizing dan sealing dilakukan dengan uji hilang berat (invitro) selama 14 hari dalam larutan 0,9% NaCl pada suhu 37°C. Hasil uji hilang berat divalidasi dengan uji potentiodynamic polarization. Hasil uji hilang berat yang menunjukkan laju korosi dari substrat; anodizing; substrat + beeswax-colophony sealing; anodizing + hidrotermal sealing; anodizing + beeswax-colophony sealing berturut-turut yaitu 7,91; 6,26; 5,0; 6,06; dan 3,30 mmpy. Hasil uji polarisasi menunjukkan peningkatan ketahanan korosi yang diperlihatkan oleh kenaikan potensial korosi untuk substrat; anodizing; substrat + beeswax-colophony sealing; anodizing + hidrotermal sealing; anodizing + beeswax-colophony sealing berturut-turut adalah -1.49, -1.57, -1.54, -1.43, dan -1,17 VAg/AgCl dan penurunan arus korosi berturut-turut 5.72x10-4, 3.40x10-5, 2.54x10-8, 2.19x10-5 , dan 3.19x10-8 A/cm2. Hasil tersebut menunjukkan bahwa perlakuan anodizing dan sealing dengan beeswax-colophony terbukti dapat meningkatkan ketahanan korosi paduan AZ31 2 kali lipat.

Magnesium (Mg) is the light metals and absobable materials by the human body through a process of degragradation known as biodegradable. However, Mg and its alloys has a rapid corrosion rate in physiological environtment causes reduction of mechanical properties of implants. Anodizing is widely used to increase corrosion resistance of magnesium alloys. The oxide layer produced while anodizing process has many cracks and porous on its surface. Cracks and porous could covered by beeswax-colophony sealing method. The anodization process was carried out at constant voltage 5 volt in electrolyte of 0.5 M Na3PO4 at 30 ° C ± 1 ° C with variations of time 10, 20, and 30 minutes. The thickness of layer was measured at 10, 20, and 30 minutes are 6, 14, 16 μm respectively. Anodizing time optimization was obtained at 20 minutes. to determine the corrosion rate of anodized and sealed magnesium alloy was carried out by in-vitro test for 14 days on 0.9% NaCl solution at 37 ° C. The results of the weight loss test were validated by potentiodynamic polarization test. The weight loss test results exhibits the rate of corrosion of the substrate, anodizing; substrate + beeswax-colophony sealing; anodizing + hydrothermal sealing; anodizing + beeswax-colophony sealing are 7.91, 6.26, 5.0, 6.06, and 3.30 mmpy respectively. The results of corrosion on AZ31 show by increased corrosion potential, -1.49, -1.57, -1.54, -1.43, and -1.17 VAg/AgCl and decreased corrosion currents, 5.72x10-4, 3.40x10-5, 2.54x10-8, 2.19x10-5, and 3.19x10-8 A/cm2 on the substrate; anodizing; substrate + beeswax-colophony sealing; anodizing + hydrothermal sealing; anodizing + beeswax-colophony sealing. These results prove anodizing and coatings increase corrosion resistance of AZ31 twice.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Suryo Sembodo
"Paduan aluminium AA7075-T7351 merupakan paduan keras yang memiliki keunggulan sifat mekanis, ringan, dan dapat di recycle sehingga paduan ini banyak di aplikasikan sebagai material struktur. Untuk meningkatkan ketahanan korosi paduan tersebut diperlukan rekayasa permukaan sehingga umur pakai material ini menjadi lebih lama dengan cara anodisasi. Optimasi ketahanan korosi dan kekerasan mekanik diperoleh dengan variasi suhu elektrolit dan penambahan aditif etanol pada elektrolit asam sulfat. Morfologi dan ketebalan lapisan oksida yang dihasilkan diamati dari foto SEM, ketahanan korosi sampel diuji dengan metode elektrokimia, dan karakteristik sifat mekanis permukaan didapat dari uji kekerasan. Anodisasi pada suhu 0°C mampu meningkatkan ketebalan lapisan oksida hingga 46%, kekerasan mikro sampai dengan 83%, dan meningkatkan ketahanan korosi. Anodisasi pada suhu 0°C dengan penambahan etanol 10 vol% dalam elektrolit asam sulfat pada paduan aluminium AA7075-T7351 menghasilkan lapisan oksida paling tebal (75,75µm), kekerasan mikro paling besar (281.06 HV), serta ketahanan korosi paling tinggi (Icorr = 10-5 µA/cm2).
AA7075-T7351 aluminum alloy is a hard alloy that has the advantage of mechanical properties, lightweight, and can be recycled so that this alloy is widely applied as a structural material. To improve the corrosion resistance of these alloys, surface engineering is needed so that the lifetime of this material becomes longer by anodizing. Optimization of corrosion resistance and mechanical hardness is obtained by variations in electrolyte temperature and the addition of ethanol into sulfuric acid electrolytes. The morphology and thickness of the resulting oxide layer were observed from SEM photographs, the corrosion resistance of the samples was tested by electrochemical methods, and the characteristics of surface mechanical properties were obtained from hardness tests. Anodization at 0 ° C can increase the thickness of the oxide layer by up to 46%, micro hardness up to 83%, and increase corrosion resistance. Anodization at 0 ° C with the addition of 10 vol% ethanol in sulfuric acid electrolyte in aluminum alloy AA7075-T7351 resulted in the thickest oxide layer (75.75µm), the greatest micro hardness (281.06 HV), and the highest corrosion resistance (Icorr = 10-5 µA/cm2)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Farhan
"

Lapisan anodik yang ditumbuhkan pada paduan AA7075 dengan metode hard anodizing tidak seragam karena lambatnya reaksi oksidasi pada presipitat. Dalam penelitian ini, pengaruh penambahan Etilen Glikol (EG) sebagai zat aditif pada elektrolit dalam proses hard anodizing pada logam paduan AA7075 diteliti melalui karakterisasi morfologi, sifat mekanik dan sifat korosi lapisan anodizing yang dihasilkan. Uji korosi metode elektrokimia pada larutan 3% NaCl + 1% HCl. Senyawa EG dipilih karena umum digunakan sebagai zat antibeku pada industri logam dan memiliki sifat inhibitor korosi dalam sistem pendingin. Penambahan EG pada elektrolit meningkatkan laju reaksi oksidasi dari presipitat yang terdapat pada substrat, sehingga menghasilkan struktur lapisan yang lebih seragam di sepanjang antarmuka oksida-logam. Namun konsumsi energi pada reaksi oksidasi presipitat menyebabkan berkurangnya oksidasi pada matrix aluminium sehingga lapisan yang dihasilkan menjadi lebih tipis. Selain itu, pelepasan gas oksigen yang terjadi selama proses oksidasi presipitat terjebak dalam lapisan membentuk pori sehingga kekerasan menurun dari 196,2 HV menjadi 117,8; 115,2; dan 107,7 HV masing-masing dengan penambahan 10, 20, dan 30 % EG. Ketahanan korosi lapisan anodik menjadi 30 mV lebih tinggi, nilai potensial korosi menjadi 10 mV lebih positif, arus korosi menjadi 80 µA/cm2 lebih rendah, dan nilai resistansi polarisasi naik 100 Ω lebih tinggi dengan penambahan 10% EG sedangkan pada konsentrasi EG yang lebih tinggi menurunkan ketahanan korosi lapisan. EG yang optimum untuk menghasilkan lapisan dengan sifat mekanik dan ketahanan korosi yang baik adalah 10%. Lapisan anodik yang mengandung EG sensitif terhadap hydrothermal sealing.

 


The anodic layer grown on AA7075 alloy with the hard-anodizing method is not uniform because of the slow oxidation reaction at precipitate. In this study, the effect of adding Ethylene Glycol (EG) as an additive to electrolytes in the process of hard anodizing on alloy metals AA7075 was examined through morphological characterization, mechanical properties and corrosion properties of the anodizing layer produced. Electrochemical method corrosion test on a 3% NaCl + 1% HCl solution. EG compounds are chosen because they are commonly used as antifreeze substances in the metal industry and have corrosion inhibitor properties in the cooling system. The addition of EG to electrolytes increases the rate of oxidation reactions from the precipitates found on the substrate, resulting in a more uniform layer structure along the metal-oxide interface. However, energy consumption in precipitate oxidation reactions leads to reduced oxidation in the aluminum matrix so that the resulting layer becomes thinner. In addition, the release of oxygen gas that occurs during the oxidation process of the precipitate is trapped in the pore-forming layer so that the hardness decreases from 196.2 HV to 117.8; 115.2; and 107.7 HV each with the addition of 10, 20 and 30% EG. The corrosion resistance of the anodic layer is 30 mV higher, the corrosion potential value is 10 mV more positive, the corrosion current is 80 µA/cm2 lower, and the polarization resistance value rises 100 Ω higher with the addition of 10% EG whereas at the higher EG concentration reduce coating corrosion resistance. The optimum EG for producing layers with good mechanical properties and corrosion resistance is 10%. Anodic layer containing EG is sensitive to hydrothermal sealing

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Asweda Luluk Saptaningrum
"Magnesium dan paduannya telah digunakan di berbagai industri karena memiliki rasio kekuatan terhadap berat yang tinggi, modulus elastisitas dan densitas yang rendah, serta sifat mampu bentuk dan manufaktur yang baik. Namun, magnesium memiliki ketahanan korosi dan aus yang rendah. Untuk mengatasi hal tersebut, diperlukan rekayasa permukaan pada paduan magnesium. Plasma Electrolytic Oxidation (PEO) menghasilkan lapisan keramik oksida yang dapat meningkatkan ketahanan korosi dan aus paduan magnesium. Jenis elektrolit yang digunakan karakteristik dan waktu hidup plasma. Dalam penelitian ini, proses PEO dilakukan pada paduan AZ91 dalam elektrolit berbasis campuran silikat, fosfat, dan hidroksida yaitu Na3PO4, Na2SiO3, dan KOH. Proses PEO dilakukan dengan menggunakan rapat arus konstan sebesar 533 A/m2 selama 10 menit. Parameter proses tersebut dipilih untuk memperlama waktu hidup plasma. Pada penelitian sebelumnya, plasma hanya dapat hidup selama 2 menit. Hasil analisis SEM-EDS menunjukkan bahwa lapisan PEO yang dihasilkan memiliki dua tipe warna, yaitu abu-abu dan putih dengan morfologi dan komposisi berbeda. Bagian putih memiliki morfologi yang tidak seragam dan banyak retakan, dibandingkan dengan bagian abu-abu yang memiliki sedikit pori dan retakan. Ketebalan lapisan yang terbentuk sebesar 53 ± 3 μm. Berdasarkan hasil analisis fasa XRD, terdapat fasa kristal dan amorf Mg2SiO4, Mg3(PO4)2, dan MgO pada lapisan PEO. Hasil tersebut dikonfirmasi oleh hasil analisis EDS dengan terdeteksinya unsur-unsur terkait. Bagian putih memiliki konsentrasi Si yang lebih tinggi dibandingkan bagian abu-abu. Bagian abu-abu memiliki daya tahan abrasi yang lebih tinggi dibandingkan lapisan putih yang ditunjukkan dari nilai spesifikasi abrasinya, yaitu 0,684 × 10-5 mm3/mm dibanding 1,48 × 10-5 mm3/mm. Hasil karakterisasi dan uji mekanik menunjukkan lapisan PEO yang terbentuk tebal dan memiliki ketahanan aus yang baik karena plasma dapat hidup sampai 10 menit.

Magnesium and its alloys have been used in various industries due to their high strength-to-weight ratio, low modulus of elasticity and density, as well as good formability and manufacturability. However, magnesium has low corrosion resistance and wear resistance. To overcome these challenges, surface engineering is required for magnesium alloys. Plasma Electrolytic Oxidation (PEO) produces a ceramic oxide layer that can enhance the corrosion resistance and wear resistance of magnesium alloys. The type of electrolyte used determines the characteristics and lifetime of the plasma. In this study, the PEO process was performed on the AZ91 alloy using an electrolyte based on a mixture of silicate, phosphate, and hydroxide, namely Na3PO4, Na2SiO3, and KOH. The PEO process was carried out using a constant current density of 533 A/m2 for 10 minutes. These process parameters were chosen to prolong the plasma lifetime. In previous studies, the plasma could only last for 2 minutes. The results of SEM-EDS analysis showed that the produced PEO layer had two different colors, namely gray and white, with different morphologies and compositions. The white part exhibited non-uniform morphology and numerous cracks compared to the gray part, which had fewer pores and cracks. The thickness of the formed layer was measured to be 53 ± 3 μm. Based on XRD phase analysis, crystal and amorphous phases of amorf Mg2SiO4, Mg3(PO4)2, and MgO were detected in the PEO layer. These findings were confirmed by EDS analysis, which detected related elements. The white part had a higher concentration of Si compared to the gray part. The gray part exhibited higher abrasion resistance compared to the white layer, as indicated by the abrasion specification values, which were 0,684 × 10-5 mm3/mm and 1,48 × 10-5 mm3/mm, respectively. The characterization and mechanical testing results indicated that the formed PEO layer was thick and had good wear resistance due to the plasma lifetime reaching 10 minutes."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Farhan
"Lapisan anodik yang ditumbuhkan pada logam paduan aluminium AA7075 dengan metode hard anodizing tidak seragam disebabkan oleh lambatnya reaksi oksidasi pada presipitat. Penambahan senyawa organik dalam elektrolit diharapkan dapat mempercepat laju oksidasi. Dalam penelitian ini, pengaruh penambahan Etilen Glikol sebagai zat aditif pada elektrolit dalam proses hard anodizing pada logam paduan AA7075 diteliti melalui karakterisasi morfologi, sifat mekanik dan sifat korosi lapisan anodizing yang dihasilkan. Uji korosi dilakukan dengan metode elektrokimia meliputi open circuit potential (OCP), potentiodynamic polarization (PDP), dan electrochemical impedance spectroscopy (EIS) pada larutan 3% NaCl + 1 % HCl. Senyawa EG dipilih karena umum digunakan sebagai zat antibeku pada industri logam dan juga memiliki sifat inhibitor korosi saat digunakan pada sistem pendingin. Hasil yang didapatkan dengan penambahan etilen glikol pada elektrolit mampu meningkatkan laju reaksi oksidasi dari presipitat yang terdapat pada substrat, sehingga menghasilkan struktur lapisan yang lebih seragam di sepanjang antarmuka oksida-logam. Namun konsumsi energi pada reaksi oksidasi presipitat menyebabkan berkurangnya oksidasi pada matrix aluminium sehingga lapisan yang dihasilkan menjadi lebih tipis. Selain itu, pelepasan gas oksigen yang terjadi selama proses oksidasi presipitat terjebak dalam lapisan membentuk pori. Hal ini menyebabkan penurunan nilai kekerasan dari 196,2 HV menjadi 117,8; 115,2; dan 107,7 HV masing- masing dengan penambahan 10, 20, dan 30 % EG. Uji korosi menunjukkan peningkatan ketahanan korosi lapisan anodik dengan penambahan 10% EG sedangkan pada konsentrasi EG yang lebih tinggi cenderung menurunkan ketahanan korosi. Hal ini ditunjukkan oleh nilai OCP yang menjadi 30 mV lebih tinggi, nilai potensial korosi yang menjadi 10 mV lebih positif dan arus korosi yang menjadi 80 μA/cm2 lebih rendah, juga nilai resistansi polarisasi (Rp) yang naik 100 Ω lebih tinggi pada lapisan anodik yang ditumbuhkan di elektrolit yang mengandung 10 EG dibandingkan tanpa EG. Sedangkan penambahan 20 dan 30 EG menurunkan nilai OCP, potensial korosi, dan impedansi lapisan. Konsentrasi EG yang optimum untuk menghasilkan lapisan dengan sifat mekanik dan ketahanan korosi yang baik adalah 10 %. Lapisan anodik yang mengandung EG sensitif terhadap perlakuan hydrothermal sealing. Sementara lapisan yang ditumbuhkan dalam elektrolit tanpa EG menunjukkan peningkatan ketahanan korosi setelah sealing, lapisan yang ditumbuhkan dalam elektrolit yang mengandung EG mengalami penurunan ketahan korosi. Penyebab fenomena tersebut diluar area penelitian ini dan disarankan diteliti lebih lanjut dalam penelitian kedepannya
.The anodic oxide film formed on aluminium alloy AA7075 under a hard anodization method was not uniform due to the slow oxidation reaction occurred on the precipitates. Addition of organic compound in the electrolyte is expected to accelerate the oxidation rate. In this research, the effect of additive ethylene glycol (EG) in the electrolyte on the hard anodization process on the AA7075 alloy was investigated through characterization of the morphology, mechanical properties, and corrosion properties of the resulting film. The corrosion tests were conducted by electrochemical methods including open circuit potential (OCP), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS) methods in 3% NaCl + 1% HCl solution. The EG compound was chosen because it is commonly used as antifreeze substance in the metal industry and its role as corrosion inhibitor in a cooling system. The results showed that addition of EG in the electrolyte enhanced the oxidation reaction on the precipitate in the substrate, resulting in a more uniform structure along the oxide-metal interface. However, energy consumption due to the oxidation reaction on the precipitate resulted in the reduction of oxidation reaction on the matrix, hence, the resulting film was thinner. Moreover, the release of oxygen gas during oxidation reaction of the precipitate was trapped inside the film creating pores. The pores decreased the film hardness from 196.2 HV in the 0 EG electrolyte to 117.8; 115.2; and 107.7 HV for 10, 20, and 30% EG electrolytes, respectively. The corrosion tests showed an improvement of corrosion resistance on the anodic film with the addition of 10% EG in the electrolyte while addition of higher EG concentration tended to decrease the corrosion resistance. It was demonstrated by the OCP that was 30 mV higher, the corrosion potential that was 10 mV higher and the corrosion current density that was 80 μA/cm2 lower, as well as the polarization resistant that was 100 Ω higher than that of formed in the electrolyte without EG. The addition of 20 and 30 EG reduced the OCP, corrosion potential, and impedance of the film. The optimum EG concentration to obtain the film with good mechanical and corrosion properties is 10 %. The EG containing film was sensitive to the hydrothermal sealing. While the film formed in the electrolyte without EG showed an improvement of corrosion after sealing, the film formed in EG containing electrolyte showed a decrease in corrosion resistance. The reason for such phenomenon was outside the scope of this research and was suggested for further research."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zaki Vernando
"Anodizing adalah salah satu teknik yang digunakan untuk meningkatkan ketahanan korosi logam aluminium. Sayangnya, teknik ini memiliki beberapa kelemahan yang dapat menghambat pembentukan film oksida anodik dalam logam tersebut. Untuk mengatasi masalah ini, banyak senyawa organik telah ditambahkan ke larutan elektrolit yang digunakan dalam proses anodisasi ini. Penambahan senyawa organik ini bertujuan untuk meningkatkan laju pertumbuhan dan karakteristik film oksida anodik yang terbentuk nantinya.
Dalam penelitian ini, pengaruh penambahan Ethylene Glycol (EG) ke sifat-sifat film oksida anodik dalam lingkungan korosif dan laju pertumbuhan film oksida anodik diselidiki, yaitu dengan merekam kurva tegangan-waktu dari proses anodisasi, mengamati penampilan permukaan, mengamati bentuk morfologis film, mengukur ketebalan film, mengukur kekerasan film, dan menguji ketahanan film dalam lingkungan korosif. Proses anodisasi dilakukan pada arus konstan, yaitu 300 A / m2 dalam larutan 2M H2SO4 dengan suhu di bawah 10°C. Proses anodisasi dilakukan dalam tiga waktu yang berbeda, yaitu 30 menit, 45 menit, dan 60 menit. EG ditambahkan ke larutan elektrolit dengan konsentrasi 0, 10, 20, hingga 30%.
Hasil penelitian ini menunjukkan bahwa penambahan EG meningkatkan laju reaksi elektrokimia pada permukaan logam aluminium yang dibuktikan dengan peningkatan kemiringan pada kurva tegangan-waktu, yaitu dari 0,1 V / menit menjadi 0,6 V / menit sebagai EG konsentrasi meningkat dalam larutan. Lamanya waktu yang digunakan dalam proses anodisasi dan jumlah komposisi EG dalam larutan elektrolit mempengaruhi tingkat ketebalan film dan juga kekerasan film yang terbentuk. Karakterisasi awal sampel menunjukkan bahwa sampel yang dianodisasi dalam 45 menit memberikan hasil yang lebih baik dibandingkan yang lain. Uji ketahanan korosi yang dilakukan pada sampel anodisasi dalam waktu 45 menit menunjukkan bahwa semakin besar komposisi EG dalam larutan elektrolit membuat film oksida anodik yang terbentuk menjadi semakin lemah terhadap serangan korosi.

Anodizing is one of the techniques used to increase aluminum metal corrosion resistance. Unfortunately, this technique has several disadvantages that can inhibit the formation of anodic oxide films in the metal. To overcome this problem, many organic compounds have been added to the electrolyte solution used in this anodizing process. The addition of organic compounds aims to increase the growth rate and characteristics of anodic oxide films formed later.
In this study, the effect of adding Ethylene Glycol (EG) to the properties of anodic oxide films in a corrosive environment and the rate of growth of anodic oxide films was investigated, namely by recording the voltage-time curve of the anodizing process, observing the surface appearance, observing the morphological shape of the film, measuring film thickness, measure film hardness, and test film resistance in corrosive environments. The anodizing process is carried out at a constant current, which is 300 A / m2 in a 2M H2SO4 solution with temperatures below 10°C. The anodizing process is carried out in three different times, namely 30 minutes, 45 minutes and 60 minutes. EG is added to the electrolyte solution at concentrations of 0, 10, 20, up to 30%.
The results of this study indicate that the addition of EG increases the rate of electrochemical reaction on the surface of the aluminum metal as evidenced by an increase in the slope of the voltage-time curve, ie from 0.1 V / min to 0.6 V / min as the EG concentration increases in solution. The length of time used in the anodizing process and the amount of EG composition in the electrolyte solution affect the level of film thickness and also the hardness of the film formed. Initial characterization of the sample shows that the anodized sample in 45 minutes gives better results than the others. Corrosion resistance tests conducted on anodized samples within 45 minutes showed that the greater the composition of EG in the electrolyte solution made the anodic oxide film formed became weaker against corrosion attack.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jaihan Syifa Salsabilla
"Paduan aluminium banyak digunakan dalam berbagai aplikasi, terutama di bidang otomotif dan penerbangan karena keunggulannya. Aluminium bersifat ringan, kekuatan tinggi, serta densitas rendah. Namun, sifat mekanik dan ketahanan korosinya perlu ditingkatkan. Plasma Electrolytic Oxidation (PEO) adalah metode terbaru untuk melindungi aluminium dengan menumbuhkan lapisan keramik oksida pada permukaannya. Dalam penelitian ini, proses PEO dilakukan pada paduan aluminium seri 1100 dan 7075-T735 dengan elektrolit campuran 30 g/Na2SiO3, 30 g/l KOH, dan 20 g/l TEA dengan rapat arus 200 A/m2 selama 6 menit. Kedua jenis seri paduan tersebut digunakan sebagai pembanding dalam proses PEO dimana seri 1100 tergolong Al murni sedangkan seri 7075 memiliki banyak presipitat. Hasil uji korosi dengan menggunakan uji elektrokimia menunjukkan bahwa sampel AA7075-T735 berlapis PEO memiliki ketahanan korosi yang paling baik. Hal ini dibuktikan dengan nilai rapat arus korosi (icorr) terendah, yaitu mencapai 5,91x10-7 A.cm-2 dan loop kapasitif yang paling besar serta ketidakhadiran loop induktif pada kurva Nyquist. Dari uji hilang berat juga diperoleh hasil rata-rata hilang berat yang lebih rendah pada sampel AA7075-T735 dibandingkan dengan AA1100. Ketahanan korosi sampel berlapis PEO mengikuti perilaku substratnya. Sampel AA1100 mengalami degradasi coating yang lebih dominan daripada AA7075-T735. Hal ini berkaitan dengan porositas dan kepadatan lapisan PEO pada kedua sampel.

Aluminum alloys are widely used in various applications, especially in the automotive and aviation industries, due to their advantages. Aluminum is lightweight, has high strength, and low density. However, its mechanical properties and corrosion resistance need improvement. Plasma Electrolytic Oxidation (PEO) is the latest method used to protect aluminum by growing a ceramic oxide layer on its surface. In this study, the PEO process was applied to aluminum alloys of series 1100 and 7075-T735 using an electrolyte mixture of 30 g/L Na2SiO3, 30 g/L KOH, and 20 g/L TEA with a current density of 200 A/m2 for 6 minutes. Both alloy series were used as comparators in the PEO process, with series 1100 being classified as pure Al, while series 7075 has numerous precipitates. Corrosion tests using electrochemical analysis showed that the PEO-coated AA7075-T735 sample exhibited the best corrosion resistance. This was evident from its lowest corrosion current density (icorr) value, which reached 5.91x10-7 A.cm-2 , as well as the largest capacitive loop and the absence of an inductive loop in the Nyquist curve. Weight loss tests also indicated that the average weight loss was lower in the AA7075-T735 sample compared to AA1100. The corrosion resistance of the PEO-coated samples followed the behavior of their substrates. The AA1100 sample experienced more dominant coating degradation compared to AA7075-T735, which was related to the porosity and density of the PEO layer in both samples."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deva Rifa Nurgantini
"Aluminium (Al) adalah logam ringan dengan massa jenis 2,7 g/cm3. Untuk melindungi permukaan paduan Al dari lingkungan korosif dan abrasif, dibutuhkan rekayasa permukaan seperti PEO. Karakteristik lapisan oksida hasil PEO dipengaruhi oleh arus dan durasi proses. Penelitian ini bertujuan untuk menganalisis evolusi morfologi dan pengaruhnya terhadap karakteristik mekanik dan ketahanan korosi lapisan PEO. PEO diaplikasikan pada paduan Al 7075-T651 menggunakan elektrolit 30 g/l Na2SiO3-30 g/l KOH-30 g/l Na3PO4 dengan rapat arus konstan 200 A/m2. Waktu proses PEO divariasikan 10, 15, dan 20 menit. Lapisan PEO dikarakterisasi menggunakan X-Ray Diffractometer (XRD) untuk menganalisis komposisi fasa kristal, Scanning Electron Microscopy-Energy Dispersive x-ray Spectroscopy (SEM-EDS) untuk menganalisis morfologi permukaan dan komposisi unsur. Perilaku korosi pada sampel dievaluasi melalui uji elektrokimia, yaitu Potentiodynamic Polarization (PDP) dan Electrochemical Impedence Spectroscopy (EIS). Hasil analisis XRD mengindikasikan bahwa lapisan PEO bersifat amorf. Konsentrasi oksigen dalam lapisan yang dideteksi dengan EDS meningkat seiring bertambahnya durasi proses PEO sesuai dengan peningkatan ketebalan lapisan. Hasil uji elektrokimia PDP dan EIS menunjukkan sampel PEO 15 menit memiliki ketahanan korosi terbaik dengan nilai rapat arus korosi terendah sebesar 2,28 dan nilai hambatan tertinggi sebesar 1,038 dan 1,123. Hasil uji mekanik menunjukkan PEO 10 menit memiliki nilai keausan tertinggi sebesar dan nilai kekerasan sebesar 129,8 HV; PEO 15 menit memiliki nilai keausan sebesar dan nilai kekerasan sebesar 131,8 HV; dan PEO 20 menit memiliki nilai keausan terendah yaitu dan nilai kekerasan tertinggi yaitu 142 HV yang menunjukkan bahwa sampel dengan durasi lebih lama dapat menghasilkan sifat mekanik yang lebih unggul

Aluminium (Al) is a lightweight metal with a density of 2,7 g/cm3. To protect the surface of Al alloys from corrosive and abrasive environments, surface engineering techniques such as Plasma Electrolytic Oxidation (PEO) are required. The characteristics of the PEO-derived oxide layers are influenced by the current and process duration. This study aims to analyze the morphological evolution and its impact on the mechanical properties and corrosion resistance of PEO layers. PEO was applied to Al 7075-T651 alloy using an electrolyte of 30 g/l Na2SiO3-30 g/l KOH-30 g/l Na3PO4 with a constant current density of 200 A/m2. The PEO process duration was varied at 10, 15, and 20 minutes. The PEO layers were characterized using X-Ray Diffractometer (XRD) to analyze the composition of crystalline phases, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS) to analyze surface morphology and elemental composition. Corrosion behavior was evaluated through electrochemical tests, namely Potentiodynamic Polarization (PDP) and Electrochemical Impedance Spectroscopy (EIS). XRD analysis indicated that the PEO layers were amorphous. The oxygen concentration in the detected layers using EDS increases with the duration of the PEO process, in line with the increase in layer thickness. Electrochemical tests PDP and EIS showed that the PEO 15 minute sample exhibited the best corrosion resistance with the lowest corrosion current density of 2,28 and the highest resistance values of 1,038 and 1,123. Mechanical test results indicated that the PEO 10 minute sample had the highest wear resistance of and a hardness value of 129,8 HV; PEO 15 minute sample had a wear resistance of and a hardness value of 131,8 HV; and PEO 20 minute sample had the lowest wear resistance of and the highest hardness value of 142 HV, suggesting that longer process durations produce superior mechanical properties."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Reynaldo Putrayadi
"Magnesium (Mg) merupakan logam ringan yang memiliki beragam aplikasi, termasuk dalam industri otomotif dan sebagai bahan implan biodegradable. Meskipun penting, kelemahan utama magnesium adalah ketahanan korosinya yang rendah terutama dalam lingkungan yang mengandung klorida. Oleh karena itu, perbaikan sifat korosi magnesium diperlukan melalui rekayasa permukaan. Salah satu metode yang efektif dalam rekayasa permukaan magnesium adalah metode plasma electrolytic oxidation (PEO). Penelitian ini bertujuan untuk memahami pengaruh perbedaan kation yang digunakan sebagai elektrolit untuk PEO terhadap sifat mekanik dan ketahanan korosi lapisan PEO pada paduan magnesium AZ31. Elektrolit yang dimaksud adalah KOH dan NaOH. Dalam penelitian ini, dilakukan proses PEO pada paduan magnesium AZ31 menggunakan larutan basa seperti KOH, NaOH, dan campuran KNa. Proses ini menggunakan rapat arus 1000 A/m2 pada suhu 30ºC dalam waktu 10 menit. Sampel yang dihasilkan kemudian dianalisis menggunakan beberapa metode, termasuk pengamatan morfologi dan komposisi dengan SEM-EDS, uji mekanik untuk mengukur ketahanan aus dan kekerasan, serta eksperimen elektrokimia dengan EIS dan PDP. Larutan KOH, NaOH, dan KNa dapat meningkatkan ketahan korosi dan sifat mekanik lapisan PEO pada paduan magnesium AZ31. Data uji korosi menunjukkan bahwa larutan KOH memiliki tingkat korosi paling tinggi dibandingkan dengan NaOH dan KNa dengan nilai rapat arus dan resistansi polarisasi sebesar 7,31 × 10-5 A/cm2 dan 280 Ω.cm2 . Uji mekanik mengindikasikan peningkatan kekerasan dan ketahanan aus pada sampel yang diuji dengan larutan campuran KNa dengan nilai kekerasan sebesar 71 Hv dan nilai spesifik abrasi sebesar 9,07 × 10-6 mm3 /mm. Hal ini disebabkan oleh nilai at% dari unsur O pada elektrolit KNa lebih tinggi dibandingkan elektrolit NaOH dan KOH.

Magnesium (Mg) is a lightweight metal with diverse applications, including the automotive industry and as a material for biodegradable implants. Despite its significance, magnesium's primary weakness lies in its low corrosion resistance, particularly in chloride-containing environments. Therefore, improving magnesium's corrosion resistance is essential through surface engineering. One effective method for surface engineering of magnesium is the Plasma Electrolytic Oxidation (PEO) technique. This research aims to understand the influence of different cations used as electrolytes for PEO on the mechanical properties and corrosion resistance of PEO coatings on the AZ31 magnesium alloy. The electrolytes in focus are KOH and NaOH. In this study, the PEO process was conducted on the AZ31 magnesium alloy using basic solutions such as KOH, NaOH, and a mixture of KNa. The process employed a current density of 1000 A/m2 at a temperature of 30ºC for 10 minutes. The produced samples were then analyzed using various methods, including morphology and composition observation with SEM-EDS, mechanical testing for wear resistance and hardness measurement, as well as electrochemical experiments using EIS and PDP. KOH, NaOH, and KNa solutions successfully enhanced the corrosion resistance and mechanical properties of PEO coatings on the AZ31 magnesium alloy. Corrosion test data indicated that the KOH solution exhibited the highest corrosion rate compared to NaOH and KNa, with corrosion current density and polarization resistance values of 7,31 × 10-5 A/cm2 and 280 Ω.cm2 , respectively. Meanwhile, mechanical tests indicated improved hardness and wear resistance in samples treated with the KNa mixed solution, showing a hardness value of 71 Hv and specific abrasion value of 9,07 × 10-6 mm3 /mm. This can be attributed to the higher atomic percentage of oxygen in the KNa electrolyte compared to NaOH and KOH."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adi Saputra
"Luasnya aplikasi aluminium didalam kehidupan sehari-hari memunculkan suatu tantangan serta peluang baru yaitu bagaimana mempertahankan dan meningkatkan kualitas dari produk-produk aluminium, sehingga produk-produk tersebut mempunyai umur pakai yang lama serta tahan terhadap abrasi, korosi, ramah lingkungan serta memiliki nilai estetik didalam pemakaiannya. Suatu metode yang digunakan untuk meningkatkan ketahanan aluminium terhadap abrasi dan korosi yaitu anodizing. Dimana metode ini merupakan proses elektrokimia yang menghasilkan lapisan oksida yang tipis pada permukaan logam yang dioksidasi dengan menggunakan arus listrik melalui suatu media elektrolit. Lapisan oksida hasil anodizing akan memberikan karakteristik permukaan yang dapat direkayasa; kekerasan, ketahanan abrasi dan korosi, serta konsisten dalam ketebalan permukaan. Metode anodizing merupakan metode yang relatif mudah dan murah untuk suatu proses rekayasa permukaan dan dapat diwarnai untuk tujuan dekorasi.
Salah satu proses anodizing yang digunakan adalah anodizing tipe II dengan media larutan elektrolit berupa asam sulfat 15% berat dengan pH: 2, tegangan 15 Volt, rapat arus 1,83 A/dm2. Variabel yang digunakan dalam penelitian ini adalah variasi temperatur elektrolit yaitu 28ºC, 23ºC, 18ºC, 13ºC dan 9ºC, sehingga diharapkan dapat diketahui pengaruh dari variasi tersebut terhadap nilai kekerasan, dan ketebalan dari lapisan oksida aluminium.
Hasil penelitian menunjukkan bahwa dengan penurunan temperatur dari temperatur 28ºC, 23ºC, 18ºC, 13ºC hingga 9ºC menyebabkan nilai kekerasan lapisan oksida aluminum meningkat, yaitu masing-masing sebesar 71μHV, 100 μHV, 110 μHV, 128 μHV. dan 220 μHV. Dengan ketebalan lapisan oksida non-etsa pada temperatur 28ºC, 18ºC dan 9ºC dicapai masing-masing sebesar 24μm, 17 μm, 11 μm. Hasil yang paling optimum dicapai pada temperatur 9_C dengan nilai kekerasan tertinggi 220 μHV dan ketebalan lapisan oksida mencapai 11 μm."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S41653
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>