Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 133956 dokumen yang sesuai dengan query
cover
Robby Samuel S.
"ABSTRAK
Proses reduksi selektif bijih nikel laterit dengan penambahan aditif NaCl dan gas pereduksi CO, diikuti dengan proses separasi magnetik telah dipelajari dalam penelitian ini. Karakterisasi bijih menunjukan kandungan nikel sebesar 1,4% dan besi sebesar 50,5% dengan fasa-fasa dalam bijih yaitu gutit (FeOOH), lizardit (Mg3(Si2O5)(OH)4), olivin ((Fe,Mg)2SiO4), dan kuarsa (SiO2). Proses reduksi dilakukan dengan variasi temperatur 900, 1000, dan 1100 °C, waktu tahan 30-180 menit, dan dengan penambahan 10% aditif NaCl. Proses separasi magnetik yang dilakukan menggunakan metode basah dan kekuatan magnet sebesar 500 gauss untuk memisahkan produk konsentrat dan tailing. Bijih hasil reduksi dikarakterisasi dengan menggunakan pengujian metalisasi, X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) yang dilengkapi dengan Energy Dispersive X-Ray Spectroscopy (EDS) serta konsentrat dan tailing diidentifikasi dengan alat uji X-Ray Flourescence (XRF). Fasa yang terdapat dalam bijih hasil reduksi yaitu kamasit (FeNi), magnetit (Fe3O4), wustit (FeO), natrium klorida (NaCl) dan fayalit (Fe2SiO4). Hasil percobaan menunjukkan derajat metalisasi nikel dan besi meningkat seiring dengan meningkatnya temperatur dari 900-1100 °C dan waktu tahan reduksi dari 30-180 menit oleh karena semakin intensnya proses kloridasi, segregasi, dan reduksi pada bijih. Hal ini berdampak pada meningkatnya kadar nikel dan besi pada konsentrat hasil proses separasi magnetik. Perolehan nikel meningkat seiring dengan meningkatnya temperatur dan waktu tahan reduksi oleh karena semakin banyaknya nikel yang terbebas dari fasa pengandungnya, sementara fayalit semakin banyak terbentuk sehingga perolehan besi menurun. Kadar dan perolehan optimum yang didapat yaitu berturut-turut 2,8% dan 59,2% untuk nikel, dan 58,16% dan 34,27% untuk besi. Derajat metalisasi digunakan sebagai parameter kinetika reduksi dan didapatkan model Avrami-Erofeyev sebagai model yang merepresentasikan mekanisme nukleasi pada proses reduksi. Energi aktivasi yang didapat yaitu sebesar 38,1622 kJ/mol atau 9,12 kkal/mol dengan tahapan pengendali laju reaksi yaitu gabungan antara difusi gas dan reaksi kimia antarmuka.

ABSTRACTK
Selective reduction process of lateritic nickel ore using CO and NaCl additive were studied in this work. Ore characterization result shows the nickel grade of 1.4% and iron grade of 50,5% with phases contained in the ores were goethite (FeOOH), lizardite (Mg3(Si2O5)(OH)4), olivine ((Fe,Mg)2SiO4) and quartz (SiO2). The temperature of reduction process varied from 900, 1000, and 1100 °C with reduction time of 30-180 min and 10% NaCl additives. Magnetic separation process were done using wet methode and magnetic intensity of 500 gauss to separate concentrate and tailing. The reduced ore were characterisized using metallization test, X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) with Energy Dispersive X-Ray Spectroscopy (EDS) while the concentrate and tailing were identified using X-Ray Flourescence (XRF). Kamacite (FeNi), magnetite (Fe3O4), wustite (FeO), natrium chloride (NaCl) dan fayalite (Fe2SiO4) were the phases present in the reduced ore. The result shows that the degree of metallization of nickel and iron increases with the increasing temperature from 900 to 1100 °C and holding time from 30 to 180 minutes because of the increasing intensity of the chloridization, segregation and reduction process. This has an impact on increasing the grade of nickel and iron on the concentrate. The recovery of nickel was increased along with the increasing temperature and holding time because of the increasing amount of nickel liberated from its bearing phase, while fayalite were increasingly formed so that the recovery of iron was decreased. The optimum grade and recovery resulted from the experiment was 2.8% and 59.2% for nickel respcetively, and 58.16% and 34.27% for iron. The degree of metallization was used as reduction kinetics paramter and the model representing the reduction proces was Avrami-Erofeyef with its nucleation mechanism. The resulting activation energy of 38.1622 kJ/mol or 9,12 kkal/mol with combined gas diffusion and interfacial chemical reaction as the rate-controlling step."
2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Shofi
"Proses reduksi selektif dan pemisahan magnetik bijih nikel kadar rendah dengan kandungan Ni, Fe, Mg, dan Si masing-masing sebesar 1,4 , 50,5 , 1,81 , dan 16,5 telah dilakukan melalui mekanisme dua tahap peningkatan panas dengan penambahan aditif Na2SO4 dan NaCl. Na2SO4 dan NaCl diketahui mampu membebaskan nikel dan besi dari fasa olivin dan juga menekan metalisasi besi dengan proses sulfidasi, kloridasi, dan segregasi. NaCl yang ditambahkan bertujuan untuk menggantikan sebagian Na2SO4 untuk mengurangi kandungan sulfur sisa pada konsentrat yang dihasilkan. Penahanan pada temperatur awal pre-heating dilakukan untuk memaksimalkan reaksi reduksi nikel dalam fasa goethit sekaligus menekan reduksi besi oksida, sedangkan penahanan pada temperatur lanjut reduksi bertujuan untuk proses pembebasan nikel pada fasa lizardit dan mendukung pertumbuhan partikel feronikel dengan mekanisme aglomerasi partikel pada fasa leleh sistem Fe-FeS eutektik yang terbentuk. Oleh karena itu, kedua perlakuan pemanasan tersebut dapat meningkatkan kadar, perolehan dan derajat metalisasi dari nikel. Hasil optimal didapatkan pada bijih hasil reduksi dengan penambahan 11 satu stoikiometri arang cangkang sawit, 10 Na2SO4, dan 10 NaCl pada temperatur pemanasan awal 500 C selama 90 menit, diikuti dengan pemanasan lanjut selama 90 menit pada temperatur 1150 C, yang menghasilkan konsentrat feronikel dengan kadar dan perolehan nikel masing-masing sebesar 5,53 dan 85,89 , serta derajat metalisasi nikel sebesar 93,69 . Ukuran partikel feronikel yang dihasilkan pada sampel tersebut berukuran 61,75 m, jauh lebih besar dibandingkan ukuran butir sampel tanpa penambahan aditif atau temperatur reduksi yang lebih rendah 1050 C yaitu berturut-turut sebesar 5 m dan 28,5 m. Fasa-fasa yang terbentuk dengan penambahan aditif Na2SO4 dan NaCl yaitu kamasit FeNi , wustit FeS , fayalit, dan nepheline, yang merupakan indikasi berjalannya proses optimasi reduksi selektif dengan memaksimalkan pembebasan nikel dari fasa olivin dan menekan pembentukan logam besi sehingga perolehan, kadar, dan derajat metalisasi nikel meningkat.

Selective reduction and magnetic separation process of low grade nickel ore with Ni, Fe, Mg and Si contents of 1.4 , 50.5 , 1.81 and 16.5 has been conducted with two stage thermal upgrading mechanism with addition of Na2SO4 and NaCl. These two additives is known to be capable of liberating nickel and iron from olivine phase, as well as suppressing iron metallization with sulphidation, chloridization and segregation process. The addition of NaCl was aimed to substitute some part of Na2SO4 to reduce residual sulphur content of the produced ferronickel concentrate. The retention of roasting at initial temperature pre heating was done to maximize reductive reaction of nickel within goethite phase and to suppress the reduction of iron oxide, while the retention of roasting at final temperature reduction was done to focus the nickel liberation from lizardite phase and to promote ferronickel particle growth using agglomeration mechanism within the formed molten phase of Fe FeS eutectic system. Therefore, these two thermal treatment could improve the grade, recovery and metallization of nickel. The optimal result obtained was the reduced ore with 11 palm kernel shell reductor, 10 Na2SO4, and 10 NaCl at initial roasting temperature of 500 C for 90 minutes, followed by final roasting temperature of 1150 C for 90 minutes which resulted ferronickel concentrat with 5.53 grade, 85.9 recovery and 93.86 metallization. The resulting particle size of the aformentioned sample is 61.75 m, far bigger compared to sample without additives or lower reducing temperature 1050 C which is 5 m and 28.5 m, respectively. The formed phase of the reduced ore with the addition of Na2SO4 and NaCl was kamacite FeNi , wustite FeS , fayalite and nepheline, which indicates the optimization process of selective reduction through maximalizing nickel liberation from olivine and suppresing the formation of metallic iron resulting in improved nickel grade, recovery and metallization."
Depok: Fakultas Teknik Universitas Indonesia, 2018
T49604
UI - Tesis Membership  Universitas Indonesia Library
cover
Idecia Amely
"Reduksi selektif merupakan chemical treatment yang mereduksi nikel secara selektif dan mencegah konversi material penganggu. Banyak indikator yang mempengaruhi efektivitas reduksi, salah satunya adalah basisitas. Penelitian ini bertujuan untuk mengetahui dosis reduktor yang tepat berdasarkan stoikiometri dan pengaruh basisitas dengan penambahan CaO berdasarkan basisitas ternary. Bijih nikel laterit jenis limonit, aditif Na2SO4, dan reduktor batu bara bituminous 0,71%S dengan variasi stoikiometri 0,1-0,5 digerus dan dibentuk menjadi pellet berukuran 10-15mm. Proses reduksi dilakukan pada suhu 1150℃ dengan waktu tahan 60 menit di muffle furnace. Selanjutnya dilakukan pemisahan magnetik dan karakterisasi dengan XRF, XRD, OM. Dilakukan pencampuran bahan baku dengan CaO berdasarkan basisitas ternary B 0,1-1,0. Metode dan karakterisasi yang diterapkan sama dengan uji stoikiometri reduktor. Hasil pengujian menunjukkan stoikiometri 0,1 merupakan stoikiometri optimal. Reduktor stoikiometri 0,1 menghasilkan nikel dengan kadar 5,88% dan recovery 88,71% sedangkan besi memiliki kadar 77,06% dan recovery 33,45%. Recovery besi yang rendah mengindikasikan selektifitas reduksi terhadap nikel. Seiring meningkatnya stoikiometri reduktor kadar nikel cenderung mengalami penurunan dan terbentuk senyawa fayalit. Basisitas 0,1 adalah basisitas optimal yang menghasilkan kadar nikel 6,082% dan recovery 88,83%, besi kadar 83,779% dan recovery 40,76%. Penambahan CaO yang berlebih mengakibatkan terbentuknya senyawa kalsium silikat.

Selective reduction is a chemical treatment that reduces nickel selectively and prevents transformation of confounding material. Many indicators affect the effectiveness of reduction, one of which is basicity. This study aims to decide the correct reducing agent dosage based on stoichiometry and the effect of basicity with the addition of CaO based on ternary basicity. Limonite nickel laterite ore, Na2SO4, and 0.71% S bituminous coal with stoichiometric variations of 0.1-0.5 are crushed and formed into 10-15mm pellets. The reduction process is carried out at a temperature of 1150 ℃ with a holding time of 60 minutes in the muffle furnace. Then the magnetic separation and characterization with XRF, XRD, OM were carried out. The raw material is mixed with CaO based on ternary basicity B 0.1-1.0. The method and characterization applied are the same as the reductor stoichiometry test. The results show that stoichiometry 0.1 is optimal stoichiometry and produces nickel with a grade of 5.88% and recovery of 88.71% while iron grade is 77.06% and recovery of 33.45% . Low iron recovery indicates nickel selective reduction, as stoichiometry increases the nickel grade tends to decrease and fayalite compounds are formed. Basicity 0.1 is the optimal basicity produces 6.082% nickel grade and 88.83% recovery, 83.777% iron grade and 40.76% recovery. Excessive addition of CaO results in the formation of calcium silicate compounds."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizky Ananda
"Tingginya temperatur dalam proses peleburan/smelting bijih nikel laterit menyebabkan tingginya biaya/konsumsi energi. Penggunaan sulfur/sulfat mampu mengoptimalkan proses reduksi pada temperatur rendah melalui pembentukan senyawa FeS. Limbah biomass, yaitu arang cangkang sawit (ACS) memiliki potensi sebagai reduktor dalam proses reduksi bijih nikel laterit dikarenakan memiliki nilai fixed carbon dan nilai kalor yang cukup tinggi di bandingkan biomass yang lain, selain itu limbah ACS semakin melimpah seiring dengan makin tumbuh berkembangnya industri perkebunan sawit Indonesia. Oleh karena itu, dalam penelitian ini akan dipelajari proses selektif reduksi bijih nikel laterit menjadi konsentrat logam ferronikel pada temperatur rendah menggunakan reduktor biomass ACS dengan aditif elemental sulfur dan sodium sulfate.
Bijih nikel laterit kadar rendah (laterit jenis limonit), reduktor ACS, dan aditif sulfur-sodium sulfate digerus hingga berukuran kurang dari 100 mesh, kemudian diaduk secara merata dan di-aglomerasi dalam bentuk pellet berukuran 10-15 mm. Variasi penambahan elemental sulfur dilakukan sebanyak 0-5%S. Variasi jumlah ACS dilakukan berdasarkan stoikiometri sebesar 0,5-1,5% dengan penambahan aditif 10% Na2SO4. Proses reduksi terhadap pellet bijih nikel laterit dilakukan dengan menggunakan muffle furnace pada temperatur 950, 1050, 1150ºC selama 60 menit. Selanjutnya dilakukan proses pemisahan magnet (500 gauss) terhadap pellet hasil reduksi untuk memisahkan konsentrat-ferronikel (magnetik) dengan tailing-pengotor (non-magnetik). Bahan baku, pellet hasil reduksi, produk konsentrat dan tailing akan dikarakterisasi/dilakukan pengujian menggunakan XRF, XRD dan SEM-EDS.
Hasil yang diperoleh yaitu semakin tinggi temperatur reduksi maka terjadi kenaikan kadar dan perolehan nikel dalam konsentrat. Pada penelitian kali ini didapatkan kondisi optimum pada proses reduksi yaitu dengan temperatur 1150 ºC serta penggunaan 0,5% stoikiometri reduktor arang cangkang sawit (ACS) dan aditif 10% Na2SO4 tanpa penambahan sulfur (0%S), dimana kadar nikel yang diperoleh didalam konsentrat yaitu 2,852% dengan perolehan 73,51%. Saat penambahan 2,68% sulfur, kadar nikel yang didapatkan lebih tinggi yaitu 3% namun perolehan yang didapat yaitu hanya 64,84%. Maka dari itu, penambahan arang cangkang sawit (ACS) dan sulfur harus dilakukan dalam jumlah yang optimum.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anis Sa`Adah
"Indonesia memiliki sejumlah besar deposit bijih laterit, salah satunya dalam bentuk bijih limonit. Namun, bijih limonit jarang digunakan sebagai bahan baku pembuatan feronikel karena konsentrasi Ni relatif rendah (<1,5%) sehingga dianggap tidak menguntungkan. Feronikel umumnya dihasilkan melalui jalur tanur tiup atau tungku putar-tugku busur listrik yang membutuhkan energi yang besar (temperatur 1300-1400°C). Dengan permasalahan tersebut, penelitian ini bertujuan untuk mengolah bijih nikel laterit menjadi feronikel menggunakan suatu metode proses selektif reduksi dengan biaya (energi) yang relatif lebih rendah. Proses reduksi selektif dilakukan menggunakan muffle furnace dengan temperatur rendah dan diikuti pemisahan magnetik basah untuk mendapatkan kembali nikel dalam bentuk logam paduan (feronikel). Untuk mengurangi temperatur reduksi, Na2SO4 sebagai aditif ditambahkan ke dalam proses. Proses ini diharapkan dapat membebaskan nikel dari mineral pengganggunya sehingga akan meningkatkan kadar nikel dalam konsentrat. Proses reduksi selektif dilakukan pada rentang temperatur 950-1150°C, waktu reduksi 60-120 menit, jumlah reduktor 5-15% berat, dan 10% aditif Na2SO4.
Karakterisasi bijih laterit hasil reduksi dilakukan menggunakan X-ray Diffraction (XRD), mikroskop optik dan Scanning Electron Microscope (SEM) yang dilengkapi Energy Dispersive X-ray Spectroscopy (EDS) serta konsentrat feronikel dan tailing diidentifikasi menggunakan X-ray Fluororescene (XRF). Hasil penelitian menunjukkan seiring meningkatnya temperatur dan waktu reduksi, kadar dan perolehan nikel dari bijih nikel yang telah direduksi dengan penambahan aditif Na2SO4 lebih tinggi jika dibandingkan dengan tanpa penambahan aditif. Sedangkan semakin banyak jumlah reduktor yang ditambahkan menyebabkan kadar dan perolehan nikel menurun. Kondisi proses yang ekonomis dan efisien diperoleh pada proses reduksi selektif bijih nikel laterit dengan 10% Na2SO4 pada temperatur 1150oC selama 60 menit dengan penambahan 5% berat reduktor dimana kadar dan perolehan nikelnya adalah 6,1% dan 70,3% dengan kadar dan perolehan besi yang rendah, yaitu 56,18% dan 17,98%. Kehadiran Na2SO4 akan meningkatkan laju reduksi kinetik dan memfasilitasi pembentukan FeS yang dapat menurunkan metalisasi besi dan meningkatkan selektifitas reduksi nikel dan besi sehingga perolehan nikel meningkat, sedangkan perolehan besi menurun.

Indonesia has large amounts of laterite ore deposits, one of them in the form of limonite ore. However, limonite ore is rarely used as raw materials for produce ferronickel, since the concentration of Ni is relatively low 1,5 so it is not considered beneficial. Ferronickel is generally produced through blast furnace or electric arc furnace which required a large amount of energy temperature 1300 ndash 1400 C . With the issues, this research aims to process limonite ore into ferronickel using a selective reduction method with low cost energy . The selective reduction process was carried out in a muffle furnace with lower temperature and followed by wet magnetic separation in order to recover nickel in the form of ferronickel. To reduce the reduction temperature, sodium sulfate as an additive was added to the process. This process is expected can liberate nickel from the impurities minerals so it will increase the nickel grade in the concentrate. The selective reduction process was carried out at temperature range of 950 ndash 1150 C for 60 120 minutes, 5 15 wt. reductant, and 10 wt. additive.
The characterization of reduced ore was performed by using by X ray Diffraction XRD, optical microscope and Scanning Electron Microscope SEM with Energy Dispersive X ray Spectroscopy EDS and ferronickel concentrate was identified by X ray Fluororescene XRF. The results showed that as the temperature and reduction time increases, the nickel grade and recovery of the reduced ore with the addition of Na2SO4 was higher than without the additive. While the more amount of reductant added causes the nickel grade and recovery decrease. The economical and efficient process conditions were obtained in a selective reduction of laterite ore with 10 wt. Na2SO4 at temperature of 1150 C for 60 minutes and 5 wt. reductant with the nickel grade of 6.1 and nickel recovery of 70.3 and low iron grade and recovery 56,18 and 17,98 . The presence of Na2SO4 increase the kinetic reduction rate and facilitate the formation of FeS that can decrease iron metallization and increase the selectivity of nickel and iron reduction thus increase the nickel recovery, while decrease the iron recovery.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rekso Adi Makayasa
"Pengolahan bijih nikel laterit kadar tinggi yang menghasilkan feronikel membutuhkan energi yang tinggi sehingga perlu adanya metode yang tepat untuk mengolah bijih tersebut agar lebih ekonomis. Reduksi selektif bijih nikel laterit merupakan metode pengolahan bijih nikel laterit yang melibatkan aditif, reduktor, dan pemisahan mangetik pada prosesnya dan berpotensi untuk dikembangkan. Tujuan dilakukannya penelitian ini adalah untuk mempelajari pengaruh penambahan aditif sodium sulfat, asam borat, dan campuran keduanya pada proses reduksi selektif bijih nikel laterit jenis saprolit. Reduktor yang digunakan adalah batu bara bituminous sebanyak 0,2 stoikiometri yang divariasikan dari 0,1 – 0,5 stoikiometri. Temperatur reduksi yang digunakan adalah 1.150°C, kemudian divariasikan dari 1.050°C - 1.250°C dengan waktu reduksi selama 60 menit. Setelah reduksi, dilakukan pemisahan magnetik basah dengan kekuatan magnet 500 Gauss agar konsentrat dan tailing dapat terpisah. Dilakukan metode karakterisasi yang terdiri atas X-ray Fluorescene (XRF), X-ray Diffraction (XRD), dan Scanning Electron Microscope yang dilengkapi dengan Energy Dispersive X-ray Spectroscopy (SEM-EDS) pada nikel hasil reduksi. Hasil pengujian menunjukkan penambahan aditif sodium sulfat optimum adalah sebanyak 10% berat dengan kadar dan recovery nikel yang dihasilkan 17,29% dan 12,74%. Aditif asam borat mencapai nilai optimum pada kadar 20% berat yang menghasilkan nikel dengan kadar optimum 20,65% dan recovery optimum nikel 64,32%. Penambahan aditif campuran sodium sulfat-asam borat optimum terdapat pada kadar 20% berat dengan rasio 25-75 yang menghasilkan nikel dengan kadar dan recovery sebanyak 30,59% dan 23,58%. Peningkatan jumlah reduktor dapat menyebabkan peningkatan kadar nikel dengan jumlah reduktor optimum 0,4 stoikiometri yang menghasilkan nikel dengan kadar optimum 31,35% dan recovery optimum 40,32%. Peningkatan temperatur reduksi hingga 1.250°C dapat meningkatkan peningkatan kadar dan recovery nikel hingga kadar dan recovery-nya mencapai 18,29% dan 74,87%. Terjadi peningkatan ukuran partikel feronikel seiring dengan peningkatan kadar aditif, reduktor, dan temperatur hingga ukuran partikel maksimalnya mencapai 74,69 µm.

The processing of high-grade nickel laterite ore to produce ferronickel requires significant energy, making it necessary to develop an appropriate method to make the ore processing more economical. Selective reduction of nickel laterite ore is a processing method involving additives, reductors, and magnetic separation in the process, with potential for further development. The objective of this research is to study the influence of adding sodium sulfate, boric acid, and their combination in the selective reduction process of saprolite-type nickel laterite ore. The reductor used is bituminous coal at a stoichiometry of 0.2, varied from 0.1 to 0.5 stoichiometry. The reduction temperature is set at 1,150°C, then varied from 1,050°C to 1,250°C with a reduction time of 60 minutes. After reduction, wet magnetic separation is performed with a magnetic strength of 500 Gauss to separate concentrate and tailings. Characterization methods, including X-ray Fluorescence (XRF), X-ray Diffraction (XRD), and Scanning Electron Microscope equipped with Energy Dispersive X-ray Spectroscopy (SEM-EDS), are conducted on the nickel resulting from the reduction. The test results show that the optimal addition of sodium sulfate is 10 wt%, resulting in a nickel grade and recovery of 17.29% and 12.74%, respectively. Boric acid additive reaches optimal values at a 20 wt% concentration, producing nickel with an optimal grade of 20.65% and an optimal nickel recovery of 64.32%. The optimal addition of a mixed additive of sodium sulfate and boric acid is at a 20 wt% concentration with a 25-75 ratio, resulting in nickel with a grade and recovery of 30.59% and 23.58%, respectively. Increasing the reductor content can lead to an increase in nickel grade, with an optimal reductor content of 0.4 stoichiometry producing nickel with an optimal grade of 31.35% and an optimal recovery of 40.32%. Increasing the reduction temperature to 1,250°C can enhance the increase in nickel grade and recovery until reaching values of 18.29% and 74.87%, respectively. An increase in particle size of ferronickel occurs with the increase in additive, reductor, and temperature until the maximum particle size reaches 74.69 µm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rekso Adi Makayasa
"Pengolahan bijih nikel laterit kadar tinggi yang menghasilkan feronikel membutuhkan energi yang tinggi sehingga perlu adanya metode yang tepat untuk mengolah bijih tersebut agar lebih ekonomis. Reduksi selektif bijih nikel laterit merupakan metode pengolahan bijih nikel laterit yang melibatkan aditif, reduktor, dan pemisahan mangetik pada prosesnya dan berpotensi untuk dikembangkan. Tujuan dilakukannya penelitian ini adalah untuk mempelajari pengaruh penambahan aditif sodium sulfat, asam borat, dan campuran keduanya pada proses reduksi selektif bijih nikel laterit jenis saprolit. Reduktor yang digunakan adalah batu bara bituminous sebanyak 0,2 stoikiometri yang divariasikan dari 0,1 – 0,5 stoikiometri. Temperatur reduksi yang digunakan adalah 1.150°C, kemudian divariasikan dari 1.050°C - 1.250°C dengan waktu reduksi selama 60 menit. Setelah reduksi, dilakukan pemisahan magnetik basah dengan kekuatan magnet 500 Gauss agar konsentrat dan tailing dapat terpisah. Dilakukan metode karakterisasi yang terdiri atas X-ray Fluorescene (XRF), X-ray Diffraction (XRD), dan Scanning Electron Microscope yang dilengkapi dengan Energy Dispersive X-ray Spectroscopy (SEM-EDS) pada nikel hasil reduksi. Hasil pengujian menunjukkan penambahan aditif sodium sulfat optimum adalah sebanyak 10% berat dengan kadar dan recovery nikel yang dihasilkan 17,29% dan 12,74%. Aditif asam borat mencapai nilai optimum pada kadar 20% berat yang menghasilkan nikel dengan kadar optimum 20,65% dan recovery optimum nikel 64,32%. Penambahan aditif campuran sodium sulfat-asam borat optimum terdapat pada kadar 20% berat dengan rasio 25-75 yang menghasilkan nikel dengan kadar dan recovery sebanyak 30,59% dan 23,58%. Peningkatan jumlah reduktor dapat menyebabkan peningkatan kadar nikel dengan jumlah reduktor optimum 0,4 stoikiometri yang menghasilkan nikel dengan kadar optimum 31,35% dan recovery optimum 40,32%. Peningkatan temperatur reduksi hingga 1.250°C dapat meningkatkan peningkatan kadar dan recovery nikel hingga kadar dan recovery-nya mencapai 18,29% dan 74,87%. Terjadi peningkatan ukuran partikel feronikel seiring dengan peningkatan kadar aditif, reduktor, dan temperatur hingga ukuran partikel maksimalnya mencapai 74,69 µm.

The processing of high-grade nickel laterite ore to produce ferronickel requires significant energy, making it necessary to develop an appropriate method to make the ore processing more economical. Selective reduction of nickel laterite ore is a processing method involving additives, reductors, and magnetic separation in the process, with potential for further development. The objective of this research is to study the influence of adding sodium sulfate, boric acid, and their combination in the selective reduction process of saprolite-type nickel laterite ore. The reductor used is bituminous coal at a stoichiometry of 0.2, varied from 0.1 to 0.5 stoichiometry. The reduction temperature is set at 1,150°C, then varied from 1,050°C to 1,250°C with a reduction time of 60 minutes. After reduction, wet magnetic separation is performed with a magnetic strength of 500 Gauss to separate concentrate and tailings. Characterization methods, including X-ray Fluorescence (XRF), X-ray Diffraction (XRD), and Scanning Electron Microscope equipped with Energy Dispersive X-ray Spectroscopy (SEM-EDS), are conducted on the nickel resulting from the reduction. The test results show that the optimal addition of sodium sulfate is 10 wt%, resulting in a nickel grade and recovery of 17.29% and 12.74%, respectively. Boric acid additive reaches optimal values at a 20 wt% concentration, producing nickel with an optimal grade of 20.65% and an optimal nickel recovery of 64.32%. The optimal addition of a mixed additive of sodium sulfate and boric acid is at a 20 wt% concentration with a 25-75 ratio, resulting in nickel with a grade and recovery of 30.59% and 23.58%, respectively. Increasing the reductor content can lead to an increase in nickel grade, with an optimal reductor content of 0.4 stoichiometry producing nickel with an optimal grade of 31.35% and an optimal recovery of 40.32%. Increasing the reduction temperature to 1,250°C can enhance the increase in nickel grade and recovery until reaching values of 18.29% and 74.87%, respectively. An increase in particle size of ferronickel occurs with the increase in additive, reductor, and temperature until the maximum particle size reaches 74.69 µm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nolzha Primadha Ilman
"Selama ini, produksi nikel selalu menggunakan bijih sulfida sebagai bahan-bakunya. Padahal Indonesia memiliki cadangan bijih laterit yang kaya, namun cadangan laterit di Indonesia belum diolah secara maksimal. Hal tersebut terjadi karena proses pemurnian laterit membutuhkan biaya yang besar, hal ini dipicu oleh banyaknya energi yang dibutuhkan serta kerumitan dalam proses pemisahan logam pengotor. Dibutuhkan tahap pra-reduksi atau peningkatan kadar nikel dalam konsentrat agar dapat memaksimalkan proses pemurnian nikel. Salah satu metodenya adalah dengan melakukan reduksi karbotermik serta penambahan aditif untuk mengoptimalkan proses reduksi.
Pada penelitian ini akan dilakukan studi pengaruh waktu reduksi, temperatur reduksi, dan kadar reduktor arang cangkang sawit dalam reduksi serta penambahan Na2SO4 sebagai aditif. Hasil reduksi kemudian dilakukan pengujian XRF dan XRD, serta pengamatan mikrostruktur dengan mikroskop optik dan SEM. Hasilnya pada kondisi yang optimal kadar dan perolehan nikel mampu ditingkatkan mencapai 4.601 dan 73.23 . Kondisi optimal untuk melakukan proses reduksi tersebut adalah pada temperatur 1150oC, kadar reduktor 5 wt. , dan waktu reduksi 60 menit.

During this time, nickel sulfide ore is the main choice for nickel production. Whereas Indonesia has rich laterite ore deposits, but the reserves in Indonesia have not been processed optimally. This happens because the laterite purification process requires a large cost, due to energy required and the complexity in the process of separation of impurity minerals. A pre reduction or nickel grade promoting process is needed to maximize the nickel purification process. One of the methods used is the selective carbothermic reduction process with the addition of an additive to optimize the process.
This research studied the effect of reduction time, reduction temperature, and grade of palm kernel shell charcoal as the reductor in the reduction process and addition of Na2SO4 as additive. The results of the reduction process are then tested XRF and XRD, as well as observations of microstructures with optical microscopy and SEM. The result on optimal condition of nickel content and recovery can be increased to reach 4,601 and 73.23 . The optimum conditions for the reduction process are at a temperature of 1150oC, 5 wt. reductors, and a reduction time of 60 min.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Miftahurrahman
"Pengolahan bijih nikel laterit dengan metode pirometalurgi memerlukan suhu dan energi tinggi yang menyebabkan biaya proses mahal. Salah satu metode pengoptimalan temperatur reduksi bijih nikel adalah reduksi selektif dengan penambahan aditif sulfur atau sulfat dan reduktor batu bara antrasit dengan kandungan sulfur alami untuk mendorong pembentukan besi sulfida yang dapat memperbaiki pemisahan nikel dari bijih. Antrasit dipilih sebagai reduktor karena punya nilai karbon tetap dan energi pembakaran tinggi sehingga proses reduksi dapat berlangsung lebih baik. Pada penelitian ini, pengaruh kandungan sulfur dan suhu reduksi terhadap kadar dan perolehan dari nikel akan dipelajari. Bahan baku pada penelitian ini berupa bijih nikel laterit jenis limonit dan batu bara dengan ukuran kurang dari 100 mesh setelah penggerusan. Semua bahan baku dan aditif Na2SO4 sebesar 10% berat dicampurkan dan dipeletisasi hingga 10–15 mm. Variasi kandungan sulfur pada batu bara sebesar 2,68% dan 5%. Variasi penambahan batu bara sebesar 0,0625, 0,125, dan 0,25 stoikiometri. Proses reduksi pelet dilakukan dengan muffle furnace dengan temperatur 950, 1050, 1150ºC selama 60 menit. Pelet yang telah tereduksi kemudian digerus. Kemudian, proses pemisahan dilakukan dengan metode separasi magnetik basah untuk memisahkan konsentrat feronikel dan pengotor. Karakterisasi dengan XRD, XRF, dan mikroskop optik dilakukan pada bahan baku, pelet tereduksi, konsentrat feronikel, dan pengotor. Hubungan antara suhu reduksi berbanding lurus dengan feronikel yang didapatkan. Secara umum, pertambahan kandungan sulfur dapat meningkatkan ukuran butir feronikel sehingga kadar dan perolehan nikel naik. Kondisi reduksi optimal pada penelitian ini berada pada 1150ºC dengan kadar sulfur 5% dan penambahan reduktor 0.25 stoikiometri. Persentase kadar dan perolehan nikel pada keadaan ini secara berturut-turut sebesar 3,564% dan 95,97%.

Processing of laterite nickel ore by pyometallurgical method requires high temperature and energy so that the processing costs are costive. One method of optimizing the reduction temperature of nickel ore is the selective reduction with addition of a sulfur or sulfate additive and anthracite coal reducing agent with natural sulfur content which promote the formation of iron sulfide which can improve the separation of nickel from the ore. Anthracite is selected as a reducing agent because it has high fixed carbon value and combustion energy so that the reduction process can take place better. In this research, the effect of sulfur content and reduction temperature on the content and recovery of nickel will be studied. The raw materials in this study are limonititc laterite ore and coal with a size smaller than 100 mesh after grinding. All raw materials and 10%wt of Na2SO4 additive are mixed and pelletized up to 10–15 mm. The variations in sulfur content in coal are 2.68% and 5%. The variations in the addition of coal are 0.0625, 0.125, and 0.25 stoichiometry. Pellet reduction processes are done by using a muffle furnace with temperature 950, 1050, 1150ºC for 60 minutes. The reduced pellets are crushed to make them finer. The separation process using the wet magnetic separation method is carried out to separate the ferronickel concentrates and tailings. Characterizations with XRD, XRF, and optical microsope are carried out on raw materials, reduced pellets, ferronickel concentrates, and tailings. The relationship between the reduction temperature is proportional to the ferronickel obtained. In general, the increase in sulfur content can increase the grain size of the ferronickel so that nickel content and recovery increase. The optimal reduction state in this study was at 1150ºC with a sulfur content of 5% and the addition of a stoichiometric 0.25 reducing agent. The percentage of nickel content and recovery was 3.564% and 95.97%, respectively."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwipuji Rahayu
"Bijih nikel laterit merupakan salah satu sumber mineral terbesar yang terdapat di Indonesia. Bijih ini memiliki potensial yang sangat besar untuk dilakukan proses pengolahan dan pemurnian, namun membutuhkan energi yang tinggi dalam pemisahan mineral ataupun mineral ikutan, sehingga biaya yang dikeluarkan menjadi tinggi pula. Untuk mengatasi hal tersebut, maka dilakukan tahap pra-reduksi yaitu proses reduksi karbotermik. Proses reduksi karbotermik banyak digunakan untuk bijih nikel tipe saprolit, dimana proses tersebut membutuhkan reduktor untuk mereduksi bijih nikel laterit menjadi logam nikel murni.
Reduktor yang umum digunakan adalah batu bara dan kokas. Namun, pada penelitian ini dilakukan pengembangan proses reduksi karbotermik bijih nikel laterit tipe saprolit menggunakan reduktor biomassa, yaitu cangkang kelapa sawit. Dalam penelitian, digunakan bijih nikel laterit dari Halmahera Timur dan cangkang kelapa sawit dari limbah perkebunan kelapa sawit di Palangkaraya, Kalimantan Tengah. Bijih nikel laterit direduksi ukurannya hingga menjadi partikel serbuk 270.
Tujuan dari penelitian ini adalah untuk mengetahui pengaruh variasi waktu reduksi terhadap hasil reduksi karbotermik bijih nikel laterit, dengan temperatur dan rasio massa dibuat konstan. Variasi waktu reduksi yang diuji dalam penelitian ini adalah 1 jam, 2 jam, 3 jam dan 4 jam. Seluruh sampel diuji pada temperatur 800oC dan rasio massa 1:4 bijih nikel laterit:cangkang kelapa sawit yang dimasukkan ke suatu krusibel dan reduksi karbotermik dilakukan di dalam melting furnace.
Hasil XRD menyatakan bahwa peak yang terbentuk sudah dapat mereduksi hematite atau magnetite menjadi wustite pada waktu reduksi 1 jam. Hasil XRF menunjukkan bahwa pada waktu reduksi selama 1 jam merupakan waktu optimum karena kandungan unsur Nikel dan Nikel Oksida NiO didapatkan paling tinggi diantara variasi waktu lainnya.

Lateritic nickel ore is one of the biggest mineral source in Indonesia. There is large potential to acquire high concentration of nickel by processing and refining the ore, but because there is high energy use for mineral separation or gangue minerals processing, the cost will be high. Therefore, to resolve that problems, the pre reduction stage called carbothermic reduction process is carried out. Carbothermic reduction process usually used for saprolite which needs a reductor for the reduction reaction of lateritic nickel ore to produce pure nickel.
Common reductor used are coal and cokes. In this study, development on carbothermic reduction of saprolite type of lateritic nickel ore using biomass reductor palm kernel shell is conducted. The lateritic nickel ore used are obtained from Halmahera Timur and the palm kernel shells are obtained from the waste of palm oil plantation at Palangkaraya, Kalimantan Tengah. Size of the ore are reduced to powder particle with 270 size.
The purpose of this study is to find out the effect of reduction time variation on carbothermic reduction result of lateritic nickel ore with constant temperature and mass ratio value. Reduction time variation used in this study are 1, 2, 3, and 4 hours. All samples are tested at 800oC with mass ratio of 1 4 lateritic nickel ore palm kernel shell which are put into a crucible and then the carbothermic reduction process done in an melting furnace.
Peak formed on XRD results show that the process can reduce hematite or magnetit to wustite within one hour. XRF results show that reduction time of one hour is the optimum time because nickel and nickel oxide NiO content are highest compared to other time variation.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67537
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>