Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 147241 dokumen yang sesuai dengan query
cover
Atha Hamzah
"ABSTRAK
Gasifikasi kayu menggunakan reaktor unggun terfluidisasi merupakan salah satu contoh yang bagus dalam pengolahan biomassa untuk produksi syngas. Ketersediaan kayu yang cukup banyak membuat kayu merupakan salah satu jenis biomassa yang sering digunakan sebagai bahan baku gasifikasi. Reaktor unggun terfluidisasi memiliki pencampuran dan keseragaman suhu yang baik, dimana hal tersebut dapat mengurangi tingkat sensitivitas dari fluktuasi variabel seperti laju medium gasifikasi, laju biomassa, maupun komposisi biomassa. Tujuan dari penelitian ini adalah mengembangkan model dua dimensi untuk proses gasifikasi kayu dalam reaktor unggun terfluidisasi dan mengetahui pengaruh dari perubahan variabel menggunakan pemodelan dengan komputasi pendekatan numeris. Model matematis mencakup persamaan neraca massa, neraca energi, neraca momentum untuk fasa padat maupun gas. Pendekatan euler-euler digunakan dalam persamaan neraca momentum dengan turbulensi dua fasa RANS k-ɛ. Gas hidrogen dan karbon monoksida merupakan produk utama dari proses ini. Konversi char didapatkan sebesar 35 persen dengan komposisi gas produk 12,65 vol persen persen CO, 4,35 vol persen CO2, 20,4 vol persen H2, 2,2 vol persen CH4, dan 60,4 vol persen N2 menggunakan udara sebagai media gasifikasi pada suhu 723 K. Suhu media gasifikasi berbanding terbalik dengan gas hidrogen yang terbentuk, hal tersebut disebabkan karena adanya reaksi hidrogen dengan char. Sedangkan produksi gas karbon monoksida berbanding terbalik dengan kuantitas oksigen di dalam reaktor. Oksigen berlebih akan mengakibatkan reaksi berubah dari reaksi pembakaran tidak sempurna yang menghasilkan karbon monoksida, menjadi reaksi pembakaran sempurna yang menghasilkan karbon dioksida.

ABSTRACT
Wood gasification in bubbling fluidized bed is one of the most reliable biomass utilization to produce syngas. Wood is commonly used as a gasification feedstock due to its availability. Bubbling fluidized bed reactors have excellent mixing and temperature uniformity which contribute to reduce sensitivity from variable fluctuation such as gasifying medium flow rate, feedstock flow rate, and biomass composition. The purpose of this research is to develop two-dimensional model of wood gasification in bubbling fluidized bed and to investigate the effect of variable to its producer gas composition using modelling with numerical approach. Mathematical model covers mass balance equation, energy balance equation, and momentum balance equation for solid phase and gas phase. Euler-euler approach with RANS k-ɛ two-phase turbulence is used to determine momentum balance equation. The main products from this process are hydrogen and carbon monoxide. 35 persen char conversion obtained with 12,65 vol persen CO, 4,35 vol persen CO2, 20,4 vol persen H2, 2,2 vol persen CH4, and 60,4 vol persen N2 producer gas composition using air at 723 K as a gasyfying agent. Due to reaction between char and hydrogen, gasifying temperature inversely proportional with hydrogen produced. While carbon monoxide produced is inversely proportional with quantity of oxygen in reactor. Excess oxygen will turn the reaction from incomplete combustion that produce carbon monoxide to complete combustion that produce carbon dioxide."
2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adam Sina Putra
"Gas Gas burner merupakan salah satu proses akhir dari tahapan gasifikasi yang berfungsi untuk mencampur bahan bakar dengan udara atau oksidator yang digunakan untuk membentuk nyala api pembakaran. Belum banyak yang meneiliti mengenai karaktersitik api yang dihasilkan. Selain itu, api yang dihasilkan dari burner yang ada belum merata ke seluruh ruang bakar. Salah satu cara untuk membantu penyebaran api adalah dengan menambahkan konis yang terletak ditengah selubung inlet dari syngas.
Pada skripsi ini akan dilakukan simulasi gas burner dengan konis yang menggunakan bahan bakar dari gasifikasi biomassa untuk mengetahui pengaruh dari konis tersebut terhadap penyebaran api yang dihasilkan. Ada beberapa parameter yang perlu diasumsikan agar simulasi berjalan lancer, antara lain adalah fraksi massa dari syngas tetap, yaitu N2 51,5%. CO 25%, H2 12%, dan CH4 1,5%. Dengan kecepatan syngas dan udara 1 m/s dan variasi 3 m/s, 6m/s, 9m/s. Temperatur syngas dan udara adalah 473K dan 303K. Sudut konis adalah sebesar 90o. Dari hasil simulasi didapatkan bahwa dengan adanya konis, belum tentu menghasilkan api yang lebih merata pada ruang bakar.

Gas burner is the end of process of gasification that works for mixing fuel with air combined to form the flame burning. There is no many research about flame characteristic that produced. One method that can help flame spread evenly is using cone in the middle of inlet of syngas.
In this thesis will be simulate gas burner with cone that using fuel from biomass gasification. To make simulation done, we need to make some assumption, including composition of the gas mass faction in the syngas remain, namely, N2 51,5%. CO 25%, H2 12%, and CH4 1,5%. and speed syngas is remain constant at 1 m/s while the speed of air injection varies from 3m/s, 6 m/s, dan 9 m/s. Temperature syngas is 473K and temperature air tangential is 303K. That was obtained by using cone, is not certain that the flame is spread evenly in combustion chamber.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S50785
UI - Skripsi Open  Universitas Indonesia Library
cover
Reda Pahlevi
"Proses gasifikasi merupakan salah satu bentuk pemanfaatan bahan bakar limbah (biomassa) untuk mendapatkan energi yang terbarukan sebagai pengganti bahan bakar fosil. Dalam proses gasifikasi tersebut selalu menghasilkan zat yang dinamai gas produser. Dalam pemanfaatanya untuk mengganti bahan bakar fosil, gas produser tersebut harus memenuhi beberapa syarat, salah satunya adalah temperatur gas produser tersebut harus sesuai dengan temperatur yang diijinkan untuk pengaplikasian ke motor pembakaran dalam. Berdasarkan literatur, temperatur gas produser yang diijinkan untuk pengaplikasian kedalam motor pembakaran dalam berada pada rentang temperatur +/- 40°C. Pengujian ini dilakukan bertujuan untuk mengetahui distribusi temperatur gas produser terhadap variasi laju aliran udara primer dengan variasi laju aliran air.
Setelah pengujian diperoleh bahwa temperatur gas produser sebelum gas cleaning mengalami kenaikan seiring dengan semakin bertambahnya laju aliran udara primer. Temperatur gas produser rata-rata setelah gas cleaning yang diperoleh sebesar 37,3°C. Pengaruh laju aliran udara primer dan laju aliran air yang optimal terhadap pembentukan flame terjadi pada saat laju aliran udara primer 189,6 lpm dengan laju aliran air 10 lpm dan 20 lpm, saat laju aliran udara primer 131,4 lpm dengan laju aliran air 10 lpm dan 20 lpm dan pada saat laju aliran udara primer 89,4 lpm dengan laju aliran air 10 lpm. Durasi pembentukan flame optimal terjadi ketika lajua liran air 20 lpm untuk setiap laju aliran udara primer.

Gasification process is a one form of utilization of waste fuels (biomass) for renewable energy instead of fosil fuels. On that gasification process is always produce a name of gas producer. In the utilization to replace fosil fuels, gas producer's must meet several requirements, one of which is the temperature af the gas producer's must comply with the allowable temperature for aplication to internal combustion engine. Based on the literature, the allowable temperature of gas producer for the application into internal combustion engine, is located in the temperature range +/- 40°C. This testing was conducted to detrmine the temperature distribution of the producer gas instead of flow rate primary air variations and water flow rate variations.
After the testing the temperature average of gas producer after gas cleaning is earns by 37,3°C. The optimum effects of primary air flow rate and water flow rate to the formation of flame was occured when the primary air flow rate of 189,6 lpm with a water flow rate 10 lpm and 20 lpm, at the primary air flow rate of 131,4 lpm with a water flow rate of 20 lpm and when at the primary air flow rate of 89,4 lpm with water flow rate of 10 lpm. Optimal duration of flame formation occurred when the water flow rate 20 lpm for each primary air flow rate.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1357
UI - Skripsi Open  Universitas Indonesia Library
cover
Kuswanto
"Gasifikasi biomassa adalah salah satu sumber energi baru yang dapat dikembangkan dengan baik di Indonesia yang kaya akan sampah organik yang selama ini tidak dimanfaatkan. Namun gasifikasi biomassa memiliki kendala sebelum dapat digunakan dalam mesin-mesin ataupun industri, kendala tersebut adalah tingginya kadar debu yang dimiliki yang dapat merusak mesin turbin maupun mesin pembakaran dalam yang ada. Karena kendala inilah harus dilakukan studi penggunaan alat pembersih yang sesuai. Sebelumnya penulis akan melakukan studi literatur mengenai perilaku partikulat dan jenis-jenis alat pembersih yang sering digunakan. Di antara banyaknya alat pembersih debu yang ada, dalam skripsi ini akan dibahas 4 alat pembersih debu, yaitu ventury scrubber, electronic precipitator, cyclone separator, dan bag house filter. Studi yang dilakukan akan dibantu dengan sebuah program simulasi Chemcad 5.2. Dari simulasi Chemcad akan ditunjukkan system pembersih mana yang sesuai untuk digunakan dalam proses gasifikasi.

Indonesia's unused organic -waste is abundant, this makes biomass gasification one of the new energy source that would be very suitable to be developed. However, biomasss gasification have a minor problem before it can be used in any machinery or industrial. The problem is the high content of ash from the gasification, a significant amount of ash can damage any turbine engine and internal combustion engine. Therefore a study to determine an apropriate cleaning device have to be conducted. A literature study about the behavior of particle and types of cleaning device that often used will be conducted. The 4 most often used cleaning device are venturi scrubber, electrostatic precipitator, cyclone separator, and bag house filter. Simulation software, Chemcad 5.2 is chosen to assist in determining the most apropriate cleaning system for gasification process."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S37903
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farah Inayati
"Mekanisme pembakaran pada kompor biomassa yang menyertakan pembakaran fasa padat dengan 1 blower pemasok udara masih menghasilkan CO di atas ambang batasnya, 25 ppm. Peneliti merancang kompor gas-biomassa dengan mekanisme pembakaran fasa gas saja menggunakan 2 blower pemasok udara primer dan sekunder, mengakomodasi preheating udara sekunder dan efek turbulensi. Penelitian bertujuan mendapatkan rancangan kompor biomassa dengan rasio udara terbaik sehingga dihasilkan emisi CO rendah dan warna api biru. Penelitian diawali dengan perancangan kompor lalu membakar gas pirolisis yang dihasilkan dari devolatilisasi biomassa. Kondisi terbaik kompor berdiameter dalam ruang pembakaran 15 cm dengan tinggi ruang pembakaran 58 cm adalah pada rasio aliran udara sekunder terhadap udara primer 6,29 dengan emisi CO rata-rata 14 ppm dan efisiensi termal 52,8 %.

Existing biomass stoves using combustion in solid phase with 1 blower as an air supplier produce CO well above the minimum allowable CO emission (25 ppm). In this research, combustion mechanism occurs only in gas phase, the stove uses 2 blower as primary and secondary air supplier, accommodates preheating secondary air and turbulency effect. The objective of this research was to get biomass-gas stove design with the best air ratio that produces low CO emission and blue flame. First step of this research is to design he stove and then to burn pyrolysis gas produced of biomass devolatilization. The best condition of the biomass gas stove, which has dimension 15 cm inner diameter for combustion chamber and 58 cm height of combustion chamber is that the flow ratio of secondary air to primary air is 6,29 which has average CO emission at 14 ppm and thermal efficiency at 52,8%."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42561
UI - Skripsi Open  Universitas Indonesia Library
cover
Adi Surjosatyo
"Dengan menipisnya cadangan minyak dunia dan masalah lingkungan yang diakibatkan oleh pembakaran bahan bakar fossil, maka diperlukan energi alternatif dalam mengatasi hal tersebut. Bahan bakar gas dari proses gasifikasi biomassa (producer gas) adalah salah satu energi alternatif yang dapat menggantikan bahan bakar fosil. Pemanfaatan producer gas untuk aplikasi pengeringan dan pemanasan boiler memerlukan suatu sistem gas burner yang dapat menghasilkan panas tinggi dan polusi rendah. Pada penelitian ini sebuah model gas burner berbahan bakar producer gas dilakukan pemodelan simulasi secara 3D menggunakan CFD. Simulasi dilakukan dengan menggunakan swirl gas burner dengan menggunakan conical flame stabilizer dan tanpa menggunakan conical flame stabilizer pada variasi kecepatan udara masuk tangensial 3 m/s, 6 m/s dan 9 m/s. Hasil simulasi menunjukkan penambahan conical flame stabilizer menghasilkan api yang lebih pendek dan stabil. Penambahan kecepatan udara memendekkan panjang api dan menurunkan temperatur api. Validasi eksperimental dilakukan pada gas swirl burner yang menggunakan conical flame stabilizer. Simulasi dan eksperiment menunjukkan hasil yang tidak jauh berbeda.

The depletion of worlwide energy reservation and environmental issue caused by fossil fuel pollution urge mankind to find a suitable alternative energy to overcome this problem. Producer gas from biomass gasification is an example of an alternative energy that could substitute fossil fuel in a certain combustion operation. Using producer gas to generate heat needs gas burner system that can produce an effective gas flame with low emission gas. This study is using modeling and simulation of gas flame using 3D-CFD method. The gas burner model has two condition, namely, using conical flame stabilizer and without conical flame stabilizer, and the velocity tangential air supply is varied into three speed of 3 m/s, 6 m/s and 9 m/s, respectively. The result of this simulation shows the additional of conical flame stabilizer produces a shorter flame, increases flames stability and reduces CO emission. The experimental result shows a similar pattern compared with that of the simulation result.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Azmi Muntaqo
"Potensi energi biomassa cukup besar di Indonesia karena sebagian besar wilayahnya terdiri dari hutan dan pesisir pantai. Salah satu pemanfaatan energi biomassa saat ini yang cukup popular yaitu Fluidized Bed Combustor, Alat pengkonversi energi biomassa menjadi energi panas yang dapat dimanfaatkan lagi. Biomassa yang digunakan berupa tempurung kelapa dengan ukuran 1x1 cm dan 1.5 x1.5 cm. Fluidized Bed Combustor bekerja memanfaatkan hamparan pasir yang difluidisasikan menggunakan udara bertekanan. Temperatur kerja rata- rata. Fluidized Bed Combustor berada pada 600-900°C. Hamparan pasir yang digunakan ialah pasir silika dengan ukuran mesh 20-40 􀟤m. Pasir memiliki peranan penting dalam pengoperasian Fluidized Bed Combustor. Maka dilakukan pengujian terhadap hamparan pasir mesh 20-40 􀟤m. Dengan pembanding menggunakan hamparan pasir mesh 20-30 􀟤m, hasilnya hamparan pasir mesh 20-40 􀟤m lebih baik dari mesh 20-30 􀟤m karena, hasil fluidaisasinya lebih stabil dengan rata-rata temperatur T2 738 ℃ - 863 ℃ . dan temperature pada free board area T4 mencapai 823.3709℃"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43621
UI - Skripsi Open  Universitas Indonesia Library
cover
Rizali Nurcahya Nararya
"Kebutuhan energi di dunia semakin meningkat. Hal ini mendorong terbentuknya penelitian berbasisi Energi Baru dan Terbarukan (EBT) salah seperti biomassa dan salah satunya adalah biohidrogen. Unit penting dalam proses pembuatan biohidrogen adalah gasifier dan char combustor. Gasifier adalah unit reaksi pembentukan biohidrogen. Untuk mengoptimasi kinerja unit proses awal pabrik bioidrogen dari biomassa ini maka akan dipasangkan sistem pengendalian dengan metode MPC. Pengendali MPC bergantung pada model empirik FOPDT yang diperoleh dengan melakukan identifikasi sistem.
Pemodelan empirik melalui PRC menghasilkan pengendali MPC yang tidak lebih baik dari pengendali PI. Setelah dilakukan MPC tuning dan reidentifikasi, kinerja MPC menjadi lebih baik dibandingkan PI. Hal tersebut ditunjukkan dengan nilai IAE yang kecil. Untuk IAE pada pengendalia suhu gasifier nilaie IAE nya 184,47 dengan kenaikan performa pengendalia 100% disbanding PI, untuk char combustor IAEnya sebesar 61,12 dengan kenaikan performa pengendali sebesar 78,9% dan pada unit cooler IAEnya menjadi 12,76 dengan kenaikan kinerja pengendali 81,11%. Hal tersebut menjadikan kinerja pengendali meningkat 70% hingga 80% dan ketigaya dapat bekerja dengan baik pada proses menyeluruh.

Need of energy source increasing each year. It lead researcher to find another source of newable and renewabale energy such biomass energy based as an example biohydrogen. The important proses unit in biohydrogen plant is gasifier and char combustor. Gasifer is reactor that produce biohydrogen from biomethane. To optimize plant performance, plant will utilize with proses control equipment with MPC method. MPC controller depend on empirical model from system identification.
Result of empirical modeling with PRC method is MPC model that has not better performance than PI method controller. But, after MPC tuning and reidentification of empirical model, the MPC controller have better performance than PI method. It proven by smaller IAE number. In gasifier IAe humber is 184.47%, it has 100% increases of performances char combustor temperature control the IAE number is 61,12%, it performance is increase in 78%. IAE number in cooler is 12,67 it performance is increase 81,18% . It make proses control performance increase for 70% up to 80%. Proses Control work very well in overall process.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59246
UI - Skripsi Membership  Universitas Indonesia Library
cover
A. Nurlatif
"Indonesia memiliki potensi energi biomassa yang besar. Akan tetapi, potensi tersebut belum dimanfaatkan secara optimal. Dari 49,81 GW hanya 0,3 GW saja yang sudah dimanfaatkan atau sekitar 0.6% dari seluruh potensi yang ada. Fluidized bed combustor merupakan salah satu alat pengkonversi energi biomassa menjadi energi panas. Teknologi ini dapat membakar limbah partikel atau padatan dalam jumlah yang relatif besar secara cepat. Emisi yang dihasilkan pembakaran juga relatif kecil sehingga menekan polusi udara yang mungkin timbul akibat pembakaran yang kurang sempurna. Fluidized bed combustor (FBC) di Universitas Indonesia merupakan unit pemanfaatan limbah yang masih dalam pengembangan. Tinjauan ulang setiap perubahan yang terjadi dari perkembangan dan modifikasi pada alat FBC UI menjadi aspek yang harus diperhatikan sehingga dapat mengetahui masalah yang terjadi pada beberapa sistem dan mengetahui kekurangan dari beberapa perkembangan dan modifikasi hingga sekarang .Pada pengujian terakhir dengan perkembangan modifikasi yang ada sekarang pada FBC UI, membutuhkan waktu 93 menit untuk pemanasan awal dengan suhu 466°C dan untuk mencapai kondisi kerja dan terjadi fluidisasi dibutuhkan 8,5 kg cangkang kelapa dalam waktu 149 menit dan pada suhu 590°C.

Indonesia have great potential of biomass energy. However, this potential has not been optimally used. From 49,81 GW only 0.3 GW are already used or about 0.6% of all the potential that exists. Fluidized bed combustor is one of the energy converter tools that converts biomass into heat energy. This technology can combust waste or solid particles in relatively large quantities in quick time. The resulting combustion emissions are also relatively small so the use of this technology willdecrease the air pollution that may arise due to imperfect combustion. Fluidized bed combustor (FBC) in University of Indonesia is waste utilization unit still devepment. Review at each happened changing of FBC UI development and modification must be attention, with result that can knows happened problems for many system and know lacking of many development and modificatin until now. The present experiment of FBC UI Development and modification is know to need 93 minute for preheating process at temperature 466°C and attain to working condition and good fluidization is nedded 8,5 kg coconut shell with 149 minute at temperature 590°C."
Depok: Universitas Indonesia, 2011
S1031
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Ismail Bagus Setyawan
"Gasifikasi merupakan salah satu thermal-treatment yang dapat dilakukan untuk mengolah biomassa menjadi energi. Syngas merupakan produk utama dari proses gasifikasi, tetapi gasifikasi juga menghasilkan tar yang dapat mengganggu kesehatan manusia, lingkungan maupun peralatan berbahan bakar syngas. Untuk mengurangi kandungan tar, dilakukan modifikasi dalam gasifier dengan menambahkan inlet udara tambahan. Pendekatan model numerik yang digunakan di penelitian ini adalah pemodelan representatif partikel. Dalam penelitian ini, terdapat 2 model yang diusulkan untuk mengkarakterisasi gasifier: gasifier dibagi menjadi 2 kuasi-reaktor (model 1), dan inlet udara primer dan sekunder diasumsikan menjadi satu inlet udara (model 2). Variabel bebas yang digunakan adalah kondisi awal region konveksi campur dan equivalence ratio (ER). Dari hasil penelitian ini, fenomena yang dapat ditangkap di model 1 adalah persebaran temperatur, komposisi partikel, perubahan komposisi syngas terhadap ER dan komposisi tar dalam syngas, sedangkan fenomena yang dapat ditangkap di model 2 adalah komposisi syngas dengan standar deviasi 8,51. Penambahan densitas inlet udara yang berubah terhadap temperatur di kondisi awal region konveksi campur cocok digunakan untuk permodelan gasifier. Kandungan CO dan H2 mengalami peningkatan sedangkan kandungan CO2, CH4 dan H2O mengalami penurunan saat ER dinaikkan. Hasil penelitian menunjukkan model 1 perlu dievaluasi lebih lanjut agar dapat menghasilkan komposisi syngas yang lebih akurat.

Gasification is one of thermal treatments that could convert biomass into energy. Syngas is the main product of gasification, but gasification also produces tar that could harm human health, environment, and syngas-fuelled equipment. To decrease tar content in syngas composition, modification is done to gasifier by adding secondary air inlet. The numerical approach used in this research was representative particle model (RPM). There were 2 proposed models to characterize gasifier: gasifier was divided into 2 quasi-reactors (model 1), and air inlets were assumed as just one air inlet (model 2). The independent variables were initial conditions of mixed convection region, and equivalence ratios (ER). The results showed model 1 could simulate gasification phenomena, as in temperature distribution, particle composition, change in syngas composition to ER and tar content, while model 2 could simulate the phenomenon as in syngas composition with standard deviation of 8.51. The addition of temperature-dependent air inlet density in gas species mass balance was found suitable for modelling gasifier. The research found CO and H2 contents were increasing, while CO2, CH4 and H2O contents were decreasing as the increase of ER. The research concludes model 1 needs to be further evaluated to approach syngas composition more accurately."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>