Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 56747 dokumen yang sesuai dengan query
cover
Amanda Putri Tiyas Pratiwi
"Model Cox merupakan model yang sering digunakan untuk menganalisis time-tovent data, yaitu data yang pengamatannya bergantung pada waktu. Terkadang, Selain informasi tentang waktu, data time-to-event juga dilengkapi dengan informasi tambahan (variabel penjelas). Analisis data waktu ke acara seperti ini dengan menggunakan model Cox akan menghasilkan perkiraan bahaya. Model Cox memiliki dua komponen utama yaitu baseline hazard dan mengandung fungsi eksponensial koefisien regresi. Bahaya didefinisikan sebagai produk antara dua komponen ini. Untuk dapat memperoleh bahaya spesifik, bahaya baseline dan koefisien regresi di model Cox harus diperkirakan. Dalam tesis ini, asumsi konstanta akan didefinisikan sebagai bahaya dasar dari model Cox. Kemudian, konstanta dan koefisien regresi dimasukkan Model ini akan diestimasi dengan menggunakan metode Bayesian dimana sampel diambil Parameter distribusi posterior dilakukan dengan menggunakan metode Markov chain Monte Carlo dengan algoritma pengambilan sampel Gibbs. Untuk metode Bayesian, distribusi sebelumnya untuk Bahaya baseline diasumsikan mengikuti distribusi gamma dan untuk koefisien regresi diasumsikan mengikuti distribusi normal. Data EKG (echocardiogram) yang terdiri dari
106 observasi dan enam variabel penjelas digunakan dalam analisis. Mendapatkan hasil bahwa estimasi parameter yang diperoleh konvergen.

The Cox model is a model that is often used to analyze time-to-event data, namely data whose observations are time dependent. Sometimes, in addition to information about time, time-to-event data is also supplemented with additional information (explanatory variables). Analysis of time-to-event data like this using the Cox model will yield hazard estimates. The Cox model has two main components, namely the baseline hazard and contains an exponential regression coefficient function. Hazard is defined as a product between these two components. In order to obtain a specific hazard, the baseline hazard and regression coefficient in the Cox model must be estimated. In this thesis, the constant assumption will be defined as the basic hazard of the Cox model. Then, the constants and regression coefficients are entered. This model will be estimated using the Bayesian method where the sample is taken. Posterior distribution parameters are carried out using the Markov chain Monte Carlo method with the Gibbs sampling algorithm. For the Bayesian method, the previous distribution for baseline hazard is assumed to follow the gamma distribution and for the regression coefficient it is assumed to follow a normal distribution. EKG (echocardiogram) data which consists of
106 observations and six explanatory variables were used in the analysis. Obtain the result that the parameter estimates obtained are convergent.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bernadeta Nismawati
"Dalam model panel data dinamis terdapat lag dari variabel dependen yang menyebabkan variabel eksplanatori berkorelasi dengan error. Lag dari variabel dependen tersebut dinamakan variabel endogen eksplanatori. Dengan adanya variabel endogen eksplanatori, estimasi secara OLS menjadi bias dan inkonsisten. Oleh karena itu sebelum menaksir parameter pada model panel data dinamis harus dilakukan first-difference untuk menghilangkan efek individu dan selanjutnya dilakukan instrumental variabel pada variabel endogen eksplanatori. Kemudian untuk mendapatkan taksiran yang unbiased, konsisten, dan efisien, model ini ditaksir dengan metode Arellano dan Bond yang menggunakan prinsip GMM optimal."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwi Rani Puspa Artha
"Pada model regresi data panel spasial dinamis terdapat lag dari variabel dependen dan spatial lag dari variabel dependen yang berperan sebagai variabel eksplanatori. Hal ini menyebabkan variabel eksplanatori berkorelasi dengan error, variabel jenis ini disebut variabel endogen eksplanatori. Dengan adanya variabel ini, estimasi secara ordinary least squares menjadi bias dan tidak konsisten. Oleh karena itu sebelum menaksir parameter pada model regresi data panel spasial dinamis harus dilakukan first-difference untuk menghilangkan efek individu dan selanjutnya dilakukan instrumental variabel pada variabel endogen eksplanatori. Kemudian untuk mendapatkan unbiased and consistent estimator, model ini ditaksir dengan metode Arrelano dan Bond yang menggunakan prinsip generalized method of moments optimal."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Stevani Wijaya
"Dalam analisis data, saat data mempunyai outlier dan outlier yang ada bukan merupakan suatu kesalahan, taksiran parameter yang diperoleh dengan metode Ordinary Least Square (OLS) akan bias karena metode OLS tidak robust terhadap adanya outlier. Oleh karena itu, dicari metode lain yang robust terhadap adanya outlier, salah satunya ialah metode regresi robust dengan menggunakan fungsi Huber. Pada skripsi ini akan dibahas mengenai taksiran parameter pada model regresi robust sederhana dan berganda dengan menggunakan fungsi Huber. Selain itu, akan dibandingkan antara taksiran parameter model regresi robust dengan menggunakan fungsi Huber dan taksiran parameter yang didapat dengan metode OLS dilihat dari nilai effisiensi taksiran parameter. Hasil yang diperoleh dari contoh penerapan menunjukkan bahwa untuk data ada outlier taksiran parameter yang diperoleh dengan metode regresi robust dengan fungsi Huber lebih effisien dibandingkan metode OLS, sedangkan untuk data tanpa outlier taksiran parameter yang diperoleh dengan metode OLS lebih effisien dibandingkan metode regresi robust dengan fungsi Huber."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S27712
UI - Skripsi Open  Universitas Indonesia Library
cover
Simatupang, Eva Rida Meilyna
"Dalam skripsi ini membahas mengenai model regresi antara variabel penjelas dengan variabel dependent kontinu dimana variabel dependent yang diketahui merupakan variabel dependent ordinal yang dibentuk dari variabel kontinu tersebut, sedangkan nilai dari variabel kontinu tidak diketahui. Penaksiran parameter dalam model dilakukan dengan menggunakan metode maximum likelihood. Pengujian kegunaan model dilakukan dengan uji rasio likelihood. Pengujian terhadap masing-masing koefisien regresi dilakukan dengan uji z. Untuk mengukur kecocokan model digunakan koefisien determinasi R2. Metode tersebut diterapkan untuk melihat hubungan antara variabel kemampuan seseorang untuk mengalihkan stress (dinamakan Avoid) yang bersifat kontinu dengan variabel kemampuan seseorang untuk menikmati kegiatan (dinamakan Distract) dan variabel kemampuan seseorang untuk mendapatkan dukungan dari orang lain (dinamakan Social) dimana data variabel Avoid yang diketahui berupa data kategori ordinal yang dibentuk dari data variabel Avoid kontinu yang tidak diketahui nilainya."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iffatul Mardhiyah
"Data panel tidak lengkap merupakan kumpulan data dari beberapa individu yang terobservasi dari waktu ke waktu dimana pada setiap waktu banyaknya individu yang terobservasi berbeda-beda. Dalam tugas akhir ini akan dibahas mengenai penaksiran parameter model regresi data panel tidak lengkap dengan komponen error dua arah. Komponen error model data panel tidak lengkap diasumsikan NIID (Normal Independent Identically Distributed). Dalam penaksiran parameter model regresi data panel tidak lengkap diperlukan taksiran komponen variansi error. Oleh karena itu, sebelum menaksir parameter model akan ditaksir komponen variansi error terlebih dahulu. Penaksiran komponen variansi error dilakukan dengan menggunakan metode Minimum Variance Quadratic Unbiased Estimation (MIVQUE). Selanjutnya, parameter model ditaksir dengan metode Maximum Likelihood Estimation (MLE)"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S27713
UI - Skripsi Membership  Universitas Indonesia Library
cover
Azizah Awaliah
"Regresi Poisson sering digunakan untuk menganalisis data diskrit count data. Regresi ini memiliki asumsi equidispersi. Namun, dalam banyak kasus sering dijumpai asumsi tersebut tidak terpenuhi karena adanya overdispersi pada data. Salah satu penyebab overdispersi adalah excess zero. Model regresi yang dapat digunakan untuk mengatasi masalah tersebut adalah regresi Zero-Inflated Poisson ZIP . Regresi ZIP menyelesaikan masalah excess zero dengan mengidentifikasi structural zeros di tahap pertama dan model Poisson counts di tahap kedua. Pada penelitian ini, parameter regresi ditaksir menggunakan metode Bayesian. Pada metode Bayesian, unsur ketidakpastian parameter dipertimbangkan model dalam bentuk distribusi prior. Dengan mengombinasikan distribusi prior dan likelihood, diperoleh distribusi posterior dari parameter yang menjadi perhatian dalam penelitian. Teknik komputasional Markov Chain Monte Carlo-Gibbs Sampling MCMC-GS digunakan untuk melakukan sampling nilai-nilai parameter dari distribusi posterior tersebut. Metode ini kemudian diterapkan untuk memodelkan frekuensi komplikasi motorik pada 215 penderita penyakit Parkinson. Diperoleh hasil bahwa total skor MDS-UPDRS Part 2 dan 3 berasosiasi dengan konsumsi atau tidaknya obat-obatan pada pasien. Lebih lanjut, untuk mereka yang mengonsumsi obat, total skor MDS-UPDRS Part 1 berasosiasi dengan frekuensi komplikasi motorik.

Poisson regression is commonly used for analizing count data. This method requires equidispersion assumption. However, in the case of overdispersion, this assumption is not always fulfilled. Overdispersion may exist when there is excess zeros in the data. One of the regression models which might solve it is Zero Inflated Poisson ZIP regression. ZIP regression solves the excess zero problem by identifying the structural zeros at the first stage, then Poisson counts model at the second stage. In this research, the regression parameters are estimated using Bayesian method. Bayesian method acomodates the uncertainty parameters through prior distribution. Combining the prior distribution and likelihood from the data results in the posterior distribution of the parameters of interest. True parameters are then sampled using Markov Chain Monte Carlo Gibbs Sampling MCMC GS. Therefore, this method is applied to model the frequency of motor complications in 215 Parkinson 39 s disease patients. The result shows that total score of MDS UPDRS Part 2 and 3 associated with those taking the medicines or not. Furthermore, for those taking the medicines, total score of MDS UPDRS Part 1 associated with motor complications frequency."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Joan Bidadari Annandale
"Penyakit Alzheimer adalah penyakit progresif yang dimulai dengan hilangnya ingatan ringan dan berkembang hingga hilangnya kemampuan bicara dan respon terhadap lingkungan. Penyakit ini belum dapat disembuhkan, dan pengobatan saat ini hanya berfungsi mengurangi gejala sementara. Oleh karena itu, penting untuk mengidentifikasi risiko utama pengembangan Alzheimer dan memberikan diagnosis yang tepat guna mendukung penelitian lebih lanjut. Model regresi Cox-Proportional Hazard sering digunakan untuk menangani data survival tersensor, tetapi saat ini, machine learning menunjukkan potensi besar. Dua model machine learning, Random Survival Forest dan Gradient Boosting Survival Analysis, mampu menangani data survival dan data tersensor tanpa memerlukan asumsi parameter. Kedua model ini juga menghindari overfitting dan lebih mudah diinterpretasi dibandingkan model non-parametrik lainnya. Hasil pada data Alzheimer menunjukkan bahwa Gradient Boosting Survival Analysis memiliki performa terbaik dengan nilai C-index 0.8503, diikuti oleh Random Survival Forest dengan nilai 0.8286. Model regresi Cox-PH memiliki kinerja terendah dengan nilai C-index 0.8092, dan data Alzheimer yang digunakan tidak memenuhi asumsi proportional hazard. Model Gradient Boosting Survival Analysis dan Random Survival Forest mengidentifikasi CDRSB dan FDG sebagai risiko terpenting, sedangkan model Cox-PH mengidentifikasi AV45 dan FDG.

Alzheimer's disease is a progressive disease that begins with mild memory loss and progresses to loss of speech and response to the environment. There is no cure for the disease, and current treatments only temporarily reduce symptoms. Therefore, it is important to identify the main risk factors for developing Alzheimer's and provide an accurate diagnosis to support further research. The Cox-Proportional Hazard regression model is often used to handle censored survival data, but currently, machine learning shows potential. Two machine learning models, Random Survival Forest and Gradient Boosting Survival Analysis, are able to handle survival data and censored data without requiring parameter assumptions. Both models also avoid overfitting and are easier to interpret than other non-parametric models. The results on Alzheimer's data show that Gradient Boosting Survival Analysis has the best performance with a C-index value of 0.8503, followed by Random Survival Forest with a value of 0.8286. The Cox-PH regression model has the lowest performance with a C-index value of 0.8092, and the data used does not meet the proportional hazard assumption. The Gradient Boosting Survival Analysis and Random Survival Forest models identified CDRSB and FDG as the most important risks, while the Cox-PH model identified AV45 and FDG."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agus Harsono
"Dalam analisis yang berhubungan dengan waktu ketahanan sering timbul masalah data waktu ketahanan yang tersensor maka diperlukan metode analisis yang memperhatikan masalah sensoring. Waktu ketahanan individu sangat tergantung dari karakteristik-karakteristik individu yang bersangkutan. Dalam Statistik karakteristik-karakteristik ini dapat disebut Kovariat. Salah satu metode analisis yang dapat mengatasi masalah sensoring dengan memperhatikan kovariat individu (yang berupa variable kategorik) adalah Model Coxs Propotional Hazard. Tugas akhir ini membahas model Coxs Proporsional Hazard dengan focus pada Resiko Kegagalan Relatif (kerusakan/kematian) dan Ketahanan (ketahanan hidup/ketahanan pemakaian). Aplikasinya membahas ketahanan pasien penyakit jantung dengan transplantasi dan usia sebagai kovariatnya"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1991
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ivana Ratanaputri
"Data biner merupakan tipe data yang memiliki tepat dua kemungkinan nilai, seperti sukses dan gagal atau ya dan tidak, yang lebih lanjut direpresentasikan dalam respon 0 dan 1. Data biner kerap dijumpai dalam kehidupan sehari-hari. Namun, tidak jarang pula ditemukan data biner yang mengalami zero-inflation. Fenomena zero-inflation ini merujuk kepada data dengan dua sumber nilai nol yang berbeda, yang dikenal dengan istilah structural zeros dan sampling zeros. Oleh karena itu, dikembangkanlah suatu model alternatif, yakni model regresi Zero-Inflated Bernoulli untuk memodelkan data biner yang mengalami zero-inflation. Dalam inferensi statistika, terdapat dua jenis pendekatan yang umumnya digunakan, yaitu pendekatan frekuentis dan pendekatan Bayesian. Pada tugas akhir ini, dikonstruksi suatu model regresi Zero-Inflated Bernoulli menggunakan pendekatan Bayesian. Pendekatan Bayesian digunakan karena dianggap lebih unggul dibandingkan pendekatan frekuentis. Dalam data yang mengalami zero inflation, pendekatan frekuentis tidak mampu membedakan structural zeros dan sampling zeros. Hasil konstruksi model yang terbentuk diberi nama model regresi Bayesian Zero-Inflated Bernoulli. Salah satu hal penting dalam pendekatan Bayesian adalah mendapatkan distribusi posterior. Namun, sering kali nilai parameter dari distribusi posterior sulit ditemukan secara analitik karena distribusi posteriornya memiliki formula terbuka. Oleh karena itu, dalam tugas akhir ini estimasi parameter sekaligus pembangunan sampel posterior dicari melalui teknik komputasional dengan algoritma No-U-Turn Sampler (NUTS). Selanjutnya, model regresi Bayesian Zero-Inflated Bernoulli diimplementasikan untuk masalah klasifikasi pada data sickness presenteeism. Dalam tugas akhir ini, dibangun dua buah model regresi Bayesian Zero-Inflated Bernoulli, yakni model tanpa kovariat dan model dengan kovariat. Dari model tanpa kovariat, diperoleh estimasi parameter distribusi variabel respon adalah p1 = 0.38 dan p2 = 0.75. Lebih lanjut, hasil estimasi probabilitas yang diperoleh mendekati nilai empirisnya. Pada model dengan kovariat, digunakan dua kovariat untuk dua bagian yang berbeda, yakni evaluasi kondisi kesehatan (gh) pada seluruh sampel dan kovariat frekuensi merasakan perasaan takut tergantikan apabila tidak masuk kerja (remplz) pada sampel at-risk, hasil estimasi parameter regresi akan menghasilkan persamaan regresi yang dapat digunakan memberikan prediksi klasifikasi variabel respon kondisi pekerja yang masuk kerja pada saat sedang sakit. Diperoleh, berturut-turut tingkat akurasi dari model dengan kovariat gh dan kovariat remplz adalah sebesar 72.44% dan 69.58%, tingkat sensitivitas sebesar 14.65 % dan 100.00%, serta tingkat specificity sebesar 94.35% dan 0.00%.

Binary data is type of data that have exact two outcomes, for instance, success and failure or yes and no, that usually represent in 0 and 1. Binary data can be easily find on daily basis. However, there is binary data that experienced with zero-inflation. Zero-inflation phenomenon is caused by two different sources of zeros, which is called structural zeros and sampling zeros. Therefore, Zero-Inflated Bernoulli regression model is constructed for modeling binary data that experienced zero-inflation. There are two statistical inferences that is commonly used, that is frequentist and Bayesian inference. This thesis constructed Zero-Inflated Bernoulli regression model with Bayesian inference. Bayesian inference is selected because it is more superior than frequentist inference on modeling binary data with two different source of zeros. Frequentist inference unable to distinguish the difference between structural zeros and sampling zeros. Constructed model is called Bayesian Zero-Inflated Bernoulli regression model. In Bayesian inference, it is important to get the predicted posterior distribution. However, in some cases, the analytic estimation of the posterior distribution is difficult to calculate because it has open formula. Therefore, posterior estimator is searched using computational techniques name No-U-Turn Sampler algorithm (NUTS). Furthermore, this regression model is implemented on classification problem sickness presenteeism data. In this thesis, we constructed two models, that is model without covariates dan model with covariates. From model without covariates, the parameter from response variable distribution can be estimated and we got ‘p1 = 0.38 dan p2 = 0.75. This results is closed to the empirical value. Then, from model with covariates, two covariates is considered on implementation for different parts, i.e. general state of health (gh) covariate for all sample and feeling for being replaced (remplz) covariate for at-risk sample. From the estimated regression parameters, the regression equation is able give classification predictions for attend work while sick as response variable (sp recod). The results are the model give 72.44% and 69.58% accuracy rate."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>