Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 27131 dokumen yang sesuai dengan query
cover
Durrabida Zahras
"Untuk memenuhi tantangan dalam hal meningkatnya jenis penyakit di era modern ini, teknologi memainkan peran yang sangat penting dalam penelitian kesehatan. Kesehatan wanita telah menjadi perhatian utama karena meningkatnya angka kanker serviks yang  dapat menjadi penyakit mematikan. Dalam studi ini, kami akan menggunakan Deep Convolutional Neural Network untuk menemukan akurasi dalam mengklasifikasikan data kanker serviks pada empat jenis metode. Data kanker serviks diwakili oleh 32 faktor risiko dan empat variabel target: Hinselmann, Schiller, Cytology, dan Biopsy. Presentase akurasi metode Deep Convolutional Neural Network cukup baik jika dibandingkan dengan Neural Network dalam hal pengklasifikasian data faktor risiko kanker serviks, kita dapat melihat bahwa setiap data diklasifikasikan dengan benar dengan total akurasi mencapai hampir 90% untuk setiap target.

To meet the challenge of the increasing types of disease in this modern era, technology plays a very important role in health research. Womens health has become a major concern because of the increasing rates of cervical cancer because it can be a deadly disease. In this study, we will use deep Convolutional Neural Networks to find the accuracy in classifying cervical cancer data on four different types of methods. The cervical cancer data are represented by 32 risk factors and four target variables: Hinselmann, Schiller, Cytology, and Biopsy. The result with deep learning method is quite encouraging compare to the original neural network in classyfying cervical risk dataset, we can see that each data were correctly classified with the total accuracy reach almost 90% for each target."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abitya Bagaskara
"Demensia adalah suatu istilah umum yang menggambarkan penurunan kemampuan mengingat yang cukup parah. Demensia paling umum disebabkan oleh alzheimer yang mana diagnosisnya seringkali sulit dan telat dilakukan. Padahal, pada tahap demensia sangat ringan merupakan tahap yang paling efektif dilakukan. Oleh karena itu, akan menjadi suatu keuntungan yang sangat besar apabila berhasil mendiagnosis pada tahap awal. Pendekatan paling populer untuk melakukan diagnosis pada demensia adalah dengan machine learning yang kemudian diperdalam kembali dengan deep learning. Sudah banyak arsitektur pada deep learning, di mana yang paling terkenal digunakan untuk klasifikasi berbentuk gambar adalah Convolutional Neural Network (CNN). Salah satu contoh turunan dari CNN adalah VGG di mana pertama kali diusulkan oleh tim dari Universitas Oxford. Pendekatan dengan arsitektur VGG dilakukan dalam skripsi ini, di mana menggunakan VGG-16 dan VGG-19. Hasil dari skripsi ini berhasil mendeteksi 4 kelas (sangat ringan, ringan, cukup, dan orang normal) dengan capaian akurasi di atas 89% untuk seluruh skenario, bahkan beberapa sampai 99%. Nilai akurasi tertinggi tercatat mencapai 99.68% untuk training dan 99.36% untuk validasi. Tidak hanya akurasi, pada skripsi ini juga akan menganalisis berdasar confusion matrix, presisi, recall, dan F1 Score sehingga bisa lebih mendalam analisis pendeteksiannya untuk tiap kelasnya.

Dementia is a general term that describes a severe impairment of memory. Dementia is most commonly caused by Alzheimer's and diagnosis is often difficult and late. In fact, the very mild stage of dementia is the most effective stage to do. Therefore, it will be a huge advantage if the diagnosis is successful at an early stage. The most popular approach to diagnosing dementia is machine learning which is then deepened by deep learning. There have been many architectures in deep learning, where the most well-known being used for image classification is the Convolutional Neural Network (CNN). One example of a derivative from CNN is VGG which was first proposed by a team from the University of Oxford. Approach to the VGG architecture is carried out in this thesis, which uses VGG-16 and VGG-19. The results of this thesis have successfully detected 4 classes (very light, light, moderate, and normal people) with accuracy above 89% for all scenarios, even some up to 99%. The highest accuracy value was recorded at 99.68% for training and 99.36% for validation. Not only accuracy, but this thesis will also analyze based on confusion matrix, precision, recall, and F1 Score so that the detection analysis can be more in-depth for each class."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ilsya Wirasati
"Hati adalah salah satu organ yang paling aktif secara metabolik di dalam tubuh dan berfungsi dalam proses homeostatis dan sintetik yang penting untuk kelangsungan hidup manusia. Kanker hati diperkirakan menjadi kanker keenam yang paling sering didiagnosis dan penyebab utama kematian keempat akibat kanker di seluruh dunia pada tahun 2018. Dalam mendeteksi kanker hati, terdapat metode magnetic resonance imaging (MRI) atau computed tomography (CT) yang digunakan. Namun, kurang dari 40% pasien didiagnosis pada tahap awal dan pada kanker hati lanjut hanya pilihan pengobatan paliatif yang tersedia dengan kelangsungan hidup yang buruk. Oleh karena itu, diperlukannya riset-riset terkait metode yang tepat untuk mengklasifikasi kanker hati. Salah satu metode yang dapat digunakan adalah machine learning yang menemukan pola melalui pembelajaran historis dan tren pelatihan data untuk memprediksi karakteristik data baru. Pada tugas akhir ini, dua metode machine learning yang digunakan adalah Convolutional Neural Network (CNN) dan Gated Recurrent Unit (GRU). Keutamaan dari CNN adalah adanya konvolusi yang bertugas untuk mengubah input menjadi sekumpulan fitur melalui filter atau kernel. Sedangkan keutamaan metode GRU adalah adanya update gate dan reset gate yang dapat mengingat informasi penting sebelumnya. Pada tugas akhir ini, CNN digunakan dalam mengekstraksi data citra dan GRU digunakan untuk klasifikasi data citra. Penggabungan metode CNN dan GRU menjadi CNN-GRU bertujuan untuk meningkatkan performa dari CNN dalam mengklasifikasi data citra kanker hati. CNN-GRU menghasilkan nilai akurasi terbesar 81,25% sedangkan CNN menghasilkan nilai akurasi terbesar 77,78% dari lima kali percobaan.

The liver is one of the most metabolically active organs in the body and functions in the homeostatic and synthetic processes essential for human survival. Liver cancer is estimated to be the sixth most frequently diagnosed cancer and the fourth leading cause of cancer death worldwide in 2018. In detecting liver cancer, magnetic resonance imaging (MRI) or computed tomography (CT) methods are used. However, less than 40% of patients are diagnosed at an early stage, and in advanced liver cancer, only palliative treatment options are available with poor survival. Therefore, research is needed regarding the right method to classify liver cancer. One method that can be used is machine learning which finds patterns through historical learning and data training trends to predict the characteristics of new data. In this final project, the two machine learning methods used are Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU). The advantage of CNN is a convolution whose task is to convert the input into a set of features through a filter or kernel. Meanwhile, the advantage of GRU method is that can remember important previous information because GRU has reset and update gate. In this final project, CNN is used in extracting image data and GRU is used for image data classification. The combination of the CNN and GRU methods into CNN-GRU aims to improve the performance of CNN in classifying liver cancer image data. CNN-GRU produced the greatest accuracy value of 81.25% while CNN produced the greatest accuracy value of 77.78% from five experiments."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elyaser Ben Guno
"Automatic Modulation Classification (AMC) secara otomatis mengidentifikasi jenis modulasi apa yang digunakan pada pemancar berdasarkan pengamatan terhadap sinyal yang diterima. Seiring dengan perkembangan pada topik ini, Deep Learning (DL) dapat diterapkan pada AMC dan memiliki kinerja yang menjanjikan. Namun, sebagian besar model DL yang dibuat hanya berfokus pada akurasi, mengabaikan ukuran model dan kompleksitas komputasi yang dapat menjadi masalah bagi perangkat dengan ukuran memori dan daya komputasi yang terbatas. Dalam penelitian ini, model Convolutional Long short-term memory Deep Neural Network (CLDNN) ringan diusulkan untuk mengklasifikasi modulasi. Model yang diusulkan dilatih dan diuji dengan dataset RML2016.10b. Model yang diusulkan memiliki ukuran model dan jumlah parameter yang lebih kecil, serta waktu pelatihan dan klasifikasi yang lebih cepat, relatif terhadap model pembanding, dengan tetap menjaga kualitas akurasinya.

Automatic Modulation Classification (AMC) automatically identifies what type of modulation is used on the transmitter based on observations of the received signal. Along with the development on this topic, Deep Learning (DL) can be applied to AMC and has promising performance. However, most of the DL models created only focus on accuracy, ignoring the model size and computational complexity which can be a problem for devices with limited memory size and computing power. In this study, a lightweight Convolutional Long short-term memory Deep Neural Network (CLDNN) model was proposed to classify modulation. The proposed model was trained and tested with the RML2016.10b dataset. The proposed model has a small model size and parameters, as well as fast training and classification time, relative to the comparison models, while maintaining the quality of its accuracy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hasbullah
"Survei Kesehatan Indonesia (SKI) tahun 2023 yang dilakukan oleh Kementerian Kesehatan (Kemenkes) ada sekitar 70 juta perokok aktif di Indonesia. Apabila dihitung dari populasi penduduk Indonesia ada 28,62% penduduk yang merokok di tahun 2023 dan persentase ini meningkat dari tahun sebelumnya sebanyak 0,36%. Perilaku merokok ini menyebabkan berbagai penyakit seperti penyakit paru-paru kronis, kerusakan gigi, penyakit mulut, stroke, serangan jantung, kanker rahim, gangguan mata, dan kerusakan pada rambut. Untuk menekan jumlah perokok di Indonesia, diperlukan sistem untuk deteksi perokok. Deteksi perokok saat ini memakan biaya yang mahal, bantuan ahli, dan sistem yang kompleks. Oleh karena itu, deep learning dengan algoritma Convolutional Neural Network hadir sebagai solusi untuk mengatasi masalah tersebut. Skripsi ini membahas bagaimana merancang sistem deep learning dengan Convolutional Neural Network (CNN) untuk keperluan deteksi wajah perokok. Skripsi ini juga membahas bagaimana pengaruh berbagai skenario jumlah data pelatihan dan data pengujian serta penambahan ekstraksi fitur wajah terhadap metrik evaluasi . Hasil dari rancangan dievaluasi dengan metrik evaluasi kalkulasi loss function, akurasi, dan F1 score. Hasil simulasi menunjukan skenario data pelatihan 70% dan data pengujian 30% adalah skenario terbaik dengan nilai metrik evaluasi pengujian pada skenario ini sebesar 2.236 untuk loss, 54.5% untuk akurasi, dan 34.9% untuk F1 score. Skenario ini diimprovisasi dengan adanya penambahan ekstraksi fitur perokok pada awal preprocessing yang ditandai dari penurunan loss sebesar 65.65%, peningkatan akurasi sebesar 19%, dan peningkatan F1 score sebesar 24.08%.

The 2023 Indonesian Health Survey (SKI) conducted by the Ministry of Health (Kemenkes) reported that there are approximately 70 million active smokers in Indonesia. This accounts for 28.62% of the Indonesian population in 2023, representing a 0.36% increase from the previous year. Smoking behavior leads to various diseases such as chronic lung disease, tooth damage, oral diseases, stroke, heart attacks, uterine cancer, eye disorders, and hair damage. To reduce the number of smokers in Indonesia, a smoker detection system is necessary. Current smoker detection methods are expensive, require expert assistance, and involve complex systems. Therefore, deep learning with Convolutional Neural Network (CNN) algorithms presents a solution to address these issues. This thesis discusses how to design a deep learning system using Convolutional Neural Networks (CNN) for smoker face detection. It also examines the impact of different training and testing data scenarios and the addition of facial feature extraction on evaluation metrics. The designed system is evaluated using metrics such as loss function calculation, accuracy, and F1 score. The simulation results show that a scenario with 70% training data and 30% testing data is the best scenario, yielding evaluation metric values of 2.236 for loss, 54.5% for accuracy, and 34.9% for F1 score. This scenario was improved with the addition of smoker feature extraction in the preprocessing stage, resulting in a 65.65% reduction in loss, a 19% increase in accuracy, and a 24.08% increase in F1 score."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ricad Ragapati Prihandini
"Kemajuan di bidang teknologi dan kecerdasan buatan memungkinkan inspeksi otomatis dapat dilakukan. Sebuah drone dilengkapi kamera yang dapat mengidentifikasi permasalahan struktur kapal seperti korosi akan membuat proses inspeksi kapal menjadi lebih efisien dari segi waktu dan biaya yang dibutuhkan sekarang. Pada studi ini dibuat model yang dilatih untuk dapat mengidentifikasi korosi secara otomatis dengan algoritma Convolutional Neural Network memanfaatkan metode transfer learning. MobileNetV2 dipilih sebagai artsitektur model klasifikasi yang memanfaatkan transfer learning dari ImageNet ke dalam dataset yang digunakan. Berdasarkan model yang telah dibuat model mencapai nilai akurasi training sebesar 92,86% dengan loss sebesar 0.0578 dan akurasi validasi sebesar 90,66% dengan loss sebesar 0.0091. Secara keseluruhan, model mempunyai performa yang baik dalam proses training maupun validasi dataset. Tidak ada indikasi overfitting berdasarkan kurva akurasi dan loss.

Advancements in technology and artificial intelligence make automated inspections become possible to do. A drone which is mounted with a camera identifying ship structural issues such as corrosion will make ship inspections become more efficient for a fraction of time and cost that is currently needed. In this study, a trained model is made in order to automatically identify corrosion using Convolutional Neural Network employing transfer learning method. MobileNetV2 is chosen as a classification model architecture which leverages transfer learning from ImageNet to the dataset. According to the data, the model achieved a training accuracy of 92,86% with loss 0.0578 and a validation accuracy of 90,66 with loss 0.0091. Overall, the model performs well on both the training and validation datasets. There is not any indication of overfitting based on their accuracy and loss curves."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Brahmana, Jane Eva Aurelia Sembiring
"Di dunia kesehatan, tenaga medis dituntut untuk mengatasi berbagai jenis penyakit dengan gejala yang beragam. Oleh karena itu, diperlukan suatu teknologi untuk membantu mereka menyelesaikannya dengan baik. Penelitian ini mendukung mereka dengan menggunakan machine learning sebagai pemecah masalah. Penelitian ini membahas kanker payudara yang merupakan salah satu penyakit dengan angka kematian tertinggi di dunia, khususnya bagi wanita. Berdasarkan patologisnya, ada beberapa jenis kanker payudara yang dikelompokkan menjadi dua kategori utama, yaitu invasif dan non-invasif. Penelitian ini menggunakan dataset MRI payudara penderita kanker payudara dari Rumah Sakit Cipto Mangunkusumo, Jakarta, Indonesia. Dataset berupa citra MRI akan diimplementasikan pada algoritma yang telah dikonstruksikan. Pada tahap awal, metode Convolutional Neural Network akan digunakan untuk bagian konvolusi. Berikutnya, pada bagian klasifikasi, metode yang akan diterapkan sebagai metode klasifikasi adalah Support Vector Machine. Dengan mengevaluasi hasil kinerja metode pembaharuan yang digunakan (Convolutional Neural Network–Support Vector Machine) dari dataset yang dimiliki, kita akan mengetahui apakah metode Convolutional Neural Network–Support Vector Machine lebih akurat dibandingkan dengan metode Convolutional Neural Network dalam membantu klasifikasi dataset MRI penderita kanker payudara yang dimiliki. 

In the world of health, medical personnel are required to deal with various types of diseases with various symptoms. Therefore, a technology is needed to help them solve it well. This research supports them by using machine learning as a problem solver. This research discusses breast cancer, which is one of the diseases with the highest mortality rate in the world, especially for women. Based on the pathology, there are several types of breast cancer which are grouped into two main categories, namely invasive and non-invasive. This study used the breast MRI dataset of breast cancer patients from Cipto Mangunkusumo Hospital, Jakarta, Indonesia. The dataset in the form of an MRI image will be implemented in the algorithm that has been constructed. In the early stages, the Convolutional Neural Network method will be used for the convolution section. Next, in the classification section, the method that will be applied as a classification method is the Support Vector Machine. By evaluating the performance results of the renewal method used (Convolutional Neural Network–Support Vector Machine) from our dataset, we will find out whether the Convolutional Neural Network–Support Vector Machine method is more accurate than the Convolutional Neural Network method in helping to classify the MRI dataset for breast cancer patients which are owned."
Jakarta: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mahesa Oktareza
"Kanker kolorektal adalah kanker yang berkembang pada usus besar dan/atau rektum. Berdasarkan survei GLOBOCAN 2012, insidens kanker kolorektal di seluruh dunia menempati urutan ketiga dan menduduki peringkat keempat sebagai penyebab kematian. Dalam proses diagnosis kanker kolorektal, telah diterapkan pendekatan medis dengan digital rectal examination menggunakan colonoscopy untuk menilai keadaan tumor dan mobilitas tumor. Namun, seiring berkembangnya teknologi, para ilmuwan mencoba pendekatan lain untuk pendeteksian kanker kolorektal salah satunya menggunakan penggunaan artificial intelligence khususnya machine learning. Terdapat beberapa penelitian yang lalu mengenai pengaplikasian machine learning dalam kasus klasifikasi kanker kolorektal dengan berbagai model dan tingkat akurasi. Pada penelitian ini, penulis menggunakan pendekatan Convolutional Neural Network (CNN) dengan arsitektur You Only Look Once (YOLO) untuk mengklasifikasi kanker kolorektal tipe ganas dan jinak. Data yang digunakan pada penelitian ini adalah Lung and Colon Cancer Histopathological Image Dataset oleh Borkowski AA, dkk. dengan mengambil dataset kanker kolorektal yaitu 5000 kanker ganas dan 5000 kanker jinak. Model akan dibangun melalui data tersebut, yang dilatih menggunakan metode CNN dengan arsitektur YOLO. Data di split dengan perbandingan data latih dan data uji 70:30 dan 80:20. Kinerja model dievaluasi dengan nilai accuracy, recall, loss dan running time. Accuracy dan Recall yang didapatkan pada masing-masing split data sebesar 100% dengan running time 3 jam 7 menit 43 detik pada split data 70:30 dan 3 jam 30 menit 6 detik pada split data 80:20.

Colorectal cancer is cancer that develops in the colon and/or rectum. Based on the 2012 GLOBOCAN survey, the incidence of colorectal cancer worldwide ranks third and ranks fourth as a cause of death. In the process of diagnosing colorectal cancer, a medical approach has been applied with digital rectal examination using colonoscopy to assess the state and mobility of the tumor. However, as technology develops, scientists try other approaches to detect colorectal cancer, one of which is using artificial intelligence, especially machine learning. There have been several past studies regarding the application of machine learning in the case of colorectal cancer classification with various models and levels of accuracy. In this study, the authors used a Convolutional Neural Network (CNN) approach with You Only Look Once (YOLO) architecture to classify malignant and benign types of colorectal cancer. The data used in this study was the Lung and Colon Cancer Histopathological Image Dataset by Borkowski AA, et al. by taking the colorectal cancer dataset, namely 5000 malignant cancers and 5000 benign cancers. The model will be built using the data, which is trained using the CNN method with the YOLO architecture. The data is split with a comparison of training data and test data of 70:30 and 80:20. The performance of the model is evaluated with the values of accuracy, recall, loss and running time. Accuracy and Recall obtained in each data split is 100% with a running time of 3 hours 7 minutes 43 seconds on a 70:30 data split and 3 hours 30 minutes 6 seconds on an 80:20 data split."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Hafizh
"AMC, Automatic Modulation Classification, adalah suatu teknologi yang dapat mengklasifikasi jenis modulasi pada suatu sinyal. Dalam perkembangan AMC model Deep Learning yang digunakan biasanya mengejar akurasi dari model tanpa memperhatikan ukuran dari model itu sendiri. Pada penelitian ini, dirancang sebuah model Convolutional Long short-term memory Deep Neural Network (CLDNN) yang ringan dengan metode optimasi model tambahan yang dinamakan Pruning. Pruning sendiri adalah metode optimasi model yang dapat memutus hubungan antar neuron dalam suatu Neural Network guna memperkecil ukuran model dan mempercepat waktu komputasi dengan tetap menjaga akurasi dari model tersebut. Penelitian ini mampu membuktikan bahwa metode optimasi pruning dapat mengurangi ukuran model CLDNN-Y3 hingga 76,92% pada sparsity 0,95. Akurasi model CLDNN-Y3 yang telah dioptimasi sebesar 64,07% pada sparsity 0,5, 64,04% pada sparsity 0,8, 63,74% pada sparsity 0,9, dan 62,86% pada sparsity 0,95.

AMC, Automatic Modulation Classification, is a technology that can classify the type of modulation on a signal. In the development of AMC, Automatic Modulation Classification, Deep Learning models used usually pursue the accuracy of the model regardless of the size of the model itself. In this study, a lightweight Convolutional Long short-term memory Deep Neural Network (CLDNN) model was designed with an additional model optimization method called Pruning. Pruning itself is a model optimization method that can remove connections between neurons in a Neural Network to reduce the size of the model and speed up computational time while maintaining the accuracy of the model. This research has proven that the pruning optimization method is capable of reducing the size of the CLDNN-Y3 model by up to 76.92% at a sparsity level of 0.95. The optimized CLDNN-Y3 model achieves an accuracy of 64.07% at a sparsity of 0.5, 64.04% at a sparsity of 0.8, 63.74% at a sparsity of 0.9, and 62.86% at a sparsity of 0.95."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Chelvian Aroef
"ABSTRAK
Pada era modern ini, semakin banyak jenis penyakit yang baru dengan gejala yang berbeda beda juga. Teknologi dituntut bisa memainkan peran untuk membantu penelitian pada bidang kesehatan. Stroke merupakan salah satu penyakit yang memiliki angka kematian tertinggi di dunia. Stroke terjadi karena terganggunya pasokan darah menuju otak sehingga otak mengalami kekurangan oksigen dan nutrisi. Stroke bisa dibagi menjadi berdasarkan bagaimana stroke terjadi, stroke hemoragik dan stroke iskemik. Stroke hemoragik terjadi karena pecahnya pembuluh darah yang menuju otak, sedangkan stroke iskemik terjadi karena terjadinya penyumbatan yang mengganggu pasokan darah ke otak. Jika penyumbatan terjadi pada daerah otak, maka disebut infark serebri. Dalam studi ini digunakan metode Convolutional Neural Network untuk mengklasifikasikan data gambar infark serebri yang nantinya akan dibandingkan dengan metode Neural Network. Didapatkan dari hasil performa metode Convolutional Neural Network lebih baik jika dibandingkan dengan metode Neural Network untuk pengklasifikasian data gambar infark serebri."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>