Kanker merupakan salah satu penyakit dengan angka kematian tertinggi di dunia. Kanker adalah penyakit ketika sel-sel abnormal tumbuh tidak terkendali yang dapat menyerang organ tubuh yang berdampingan atau menyebar ke organ lain. Untuk mendiagnosis kanker paru-paru dapat dilakukan dengan pengambilan gambar rontgen, CT scan, dan biopsi jaringan paru. Tujuan dari penelitian ini adalah untuk memprediksi apakah pasien menderita kanker paru-paru atau tidak, dengan menggunakan data gambar CT scan mereka. Oleh sebab itu, dalam penelitian ini digunakan ekstraksi fitur dari gambar CT scan sebagai data untuk mengklasifikasi kanker paru-paru. Data yang digunakan merupakan data gambar CT scan yang didapat dari SPIE-AAPM Lung CT Challenge 2015. Gambar CT scan paru-paru dengan ukuran 512x512 sebelumnya dilakukan pre-processing 2D crop dan filtering. Dengan mengekstraksi fitur dari data gambar seperti ukuran nodul, Gray Level Co-occurrence Matriks (GLCM), dan Local Binary Pattern (LBP) dapat mengubah data gambar menjadi numerik. K-Fold Cross Validation digunakan untuk memisahkan data menjadi data training dan data testing. Fuzzy C-Means (FCM) dan Fuzzy Kernel C-Means (FKCM) diterapkan untuk pengklasifikasian. Didapatkan performa FKCM lebih baik dibandingkan FCM, dengan rata-rata akurasi 75.60%, precision 83.05%, dan specificity 87.80%. Oleh karena itu, penambahan kernel pada metode Fuzzy C-Means dapat meningkatkan performa dari metode tersebut
Cancer is one of the diseases with the highest mortality rate in the world. Cancer is a disease when abnormal cells grow out of control that can attack the body's organs side by side or spread to other organs. To diagnose lung cancer can be done by taking x-ray images, CT scans, and lung tissue biopsy. The purpose of this study is to classify whether patients have lung cancer or not using their CT scan image data. Therefore, in this study feature extraction from CT images was used as data to classify lung cancer. The data used in the form of CT scan image obtained from SPIE-AAPM Lung CT Challenge 2015. Previously, a CT scan of the lung with a size of 512x512 was pre-processed 2D crop and filtering. By extracting features from image data such as nodule size, Gray Level Co-occurrence Matrix (GLCM), and Local Binary Pattern (LBP) can convert image data to numeric. K-Fold Cross Validation is used to separate data into training data and testing data. Fuzzy C-Means (FCM) and Fuzzy C-Means (FKCM) are applied for classification. FKCM performed better than FCM, with 75.60% average accuracy, 83.05% average precision, and 87.80% average specificity. Therefore, adding a kernel to the Fuzzy C-Means method can improve the performance of the method.
"Saat ini tidak ada keraguan bagi siswa-siswi sekolah menengah untuk melanjutkan pendidikannya ke jenjang universitas. Namun, transisi dari sekolah menengah ke pendidikan tinggi adalah tantangan besar bagi mahasiswa tahun pertama. Kinerja mahasiswa pada tahun pertama cenderung menentukan kinerja mahasiswa tersebut di tahun-tahun akademik berikutnya. Penting untuk mencari karakteristik-karakteristik mahasiswa berdasarkan kinerjanya pada awal tahun semester akademik, sehingga dapat dilakukan pendeteksian awal untuk mencegah penurunan kinerja dan meningkatkan prestasi akademik mahasiswa. Penelitian ini bertujuan untuk mengelompokkan 140 mahasiswa semester pertama. Fitur-fitur diseleksi menggunakan Chi-Square lalu digunakan Fuzzy C-Means clustering untuk mengelompokkan mahasiswa. Dari hasil simulasi, mahasiswa dikelompokkan ke dalam dua cluster dengan kinerja cluster kedua lebih baik dibanding kinerja cluster pertama.
Currently there is no doubt for high school students to continue their education at the university level. However, the transition from high school to university is a major challenge for the first-year students. Moreover, student performance during the first year tends to determine their performance in the following academic years. It is important to find student's characteristics based on their performance at the beginning of the academic semester so that early detection can be done to prevent performance degradation and increase student academic achievement. This study aims to cluster 140 first year students. Features are selected using the Chi-Square feature selection method and then using Fuzzy C-Means clustering to group the students. From simulation result, students are grouped into two clusters with the second cluster's performance is better than the first cluster's performance.
"