Ditemukan 32512 dokumen yang sesuai dengan query
Hubbard, John R.
Birmingham: Packt , 2017
005.133 HUB j
Buku Teks Universitas Indonesia Library
Miller, James D.
Birmingham: Packt Publishing, 2017
005.7 MIL b
Buku Teks Universitas Indonesia Library
"This book presents the concepts of big data, explores its analytics and technologies and their applications and develops an understanding of issues pertaining to the use of big data in multidisciplinary fields. It explores big data through the historical and technical background, architecture, open-source and commercial programming systems, analytics, state of practice in industry, and other topics"
Hershey, PA, USA: IGI Global, Engineering Science Reference (an imprint of IGI Global), 2018
005.7 HAN
Buku Teks Universitas Indonesia Library
Jo, Taeho
"This book discusses text mining and different ways this type of data mining can be used to find implicit knowledge from text collections. The author provides the guidelines for implementing text mining systems in Java, as well as concepts and approaches. The book starts by providing detailed text preprocessing techniques and then goes on to provide concepts, the techniques, the implementation, and the evaluation of text categorization. It then goes into more advanced topics including text summarization, text segmentation, topic mapping, and automatic text management."
Switzerland: Springer Cham, 2019
e20501288
eBooks Universitas Indonesia Library
Loshin, David, 1963-
"
ABSTRACTBig Data Analytics" will assist managers in providing an overview of the drivers for introducing big data technology into the organization and for understanding the types of business problems best suited to big data analytics solutions, understanding the value drivers and benefits, strategic planning, developing a pilot, and eventually planning to integrate back into production within the enterprise.
"
Amsterdam: Morgan Kaufmann, 2013
658.472 LOS b
Buku Teks Universitas Indonesia Library
"Big data analytics will assist managers in providing an overview of the drivers for introducing big data technology into the organization and for understanding the types of business problems best suited to big data analytics solutions, understanding the value drivers and benefits, strategic planning, developing a pilot, and eventually planning to integrate back into production within the enterprise."
Waltham, MA: Elsevier, 2013
e20426807
eBooks Universitas Indonesia Library
Hutomo Sugianto
"Teknologi Informasi pada masa kini sangat bergantung pada data yang berasal dari aktivitas manusia dan lingkungan secara fisik. Entitas things yang dimaksud adalah people dan machine. Salah satu dampak signifikan dari peningkatan entitas things dan terhubungnya mereka ke Internet of Things adalah membengkaknya jumlah dan ukuran data. Teknologi database SQL telah digunakan cukup lama dan terpercaya untuk diterapkan pada seluruh jenis aplikasi. Akan tetapi, teknologi SQL tidak dirancang untuk mengelola big data. NoSQL menjadi alternatif dari SQL yang paling memungkinkan karena adanya peningkatan kebutuhan skalabilitas, serta dukungan terhadap data model schema-free. Beragam jenis data (terstruktur, semi-terstruktur atau tidak terstruktur) dan tipe data mampu dikelola oleh NoSQL. Penelitian pada skripsi ini bertujuan untuk merancang dan mengimplementasikan data model pada tiga buah database engine untuk mengelola data yang diperoleh dari Internet of Things. Operasi yang diuji adalah read dan write, dengan jumlah data dan jumlah client yang bervariasi. Hasil pengujian menunjukkan bahwa NoSQL memiliki kinerja yang lebih baik untuk mengelola data dalam jumlah besar. Untuk pemasukan data dalam jumlah besar (1.000 baris) yang dilakukan oleh 1.000 client, Redis memiliki kinerja tercepat (1,38 detik), diikuti mongoDB (2,43 detik), dan PostgreSQL (21,97 detik). Terdapat hubungan antara kinerja dengan data model dan arsitektur yang digunakan pada setiap database engine.
Today’s Information Technology is so dependent on data originated by people and physical environment. Things are people and machine. One of the most significant result of the growth things and their connectivity to the Internet of Things is the increasing number and size of data. SQL databases have been used for a long time and have proven to be the reliable tools for any type of applications. But, SQL was not designed to manage the big data. NoSQL is the most possible alternative to SQL due to the increasing need of scalability and its support to schema-free data model. Structured, semi-structured, and unstructured data, and variety of data types could be managed by the NoSQL. Experiments in this final project are done to design and implement the data model into three database engine to manage the data collected from Internet of Things. We compare read and write operations vary considerably in the amount of data and the number of clients. Our results show that NoSQL databases have better performance to manage large amounts of data. To insert a large amount of data (1.000 rows) done by 1.000 clients, Redis has the fastest performance (1,38 seconds), followed by MongoDB (2,43 seconds), and PostgreSQL (21,97 seconds). There is a corellation between performance and the data model and the architecture each database uses."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56256
UI - Skripsi Membership Universitas Indonesia Library
Krishnan, Krish
Burlington: Elsevier Science, 2013
005.745 KRI d
Buku Teks Universitas Indonesia Library
"Summary:
"Big Data Analysis for Bioinformatics and Biomedical Discoveries provides a practical guide to the nuts and bolts of Big Data, enabling you to quickly and effectively harness the power of Big Data to make groundbreaking biological discoveries, carry out translational medical research, and implement personalized genomic medicine. Contributing to the NIH Big Data to Knowledge (BD2K) initiative, the book enhances your computational and quantitative skills so that you can exploit the Big Data being generated in the current omics era. The book explores many significant topics of Big Data analyses in an easily understandable format. It describes popular tools and software for Big Data analyses and explains next-generation DNA sequencing data analyses. It also discusses comprehensive Big Data analyses of several major areas, including the integration of omics data, pharmacogenomics, electronic health record data, and drug discovery. Accessible to biologists, biomedical scientists, bioinformaticians, and computer data analysts, the book keeps complex mathematical deductions and jargon to a minimum. Each chapter includes a theoretical introduction, example applications, data analysis principles, step-by-step tutorials, and authoritative references"--Page 4 de la couverture"
Boca Raton: CRC Press, Taylor & Francis Group, 2016
572.8 BIG
Buku Teks Universitas Indonesia Library
Knaflic, Cole Nussbaumer
Hoboken: John Wiley & Sons, 2015
001.422 6 KNA s
Buku Teks Universitas Indonesia Library