Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 93176 dokumen yang sesuai dengan query
cover
Rakha Aditama Anjani
"Lithium Ferro Phosphate (LiFePO4) adalah kandidat yang menjanjikan sebagai bahan sumber energi elektrik yang ramah lingkungan. Penambahan Ni komposit dalam baterai berbasis Li-ion dapat meningkatan performa dari baterai LiFePO4. Dalam penelitian ini, LiFePO4 akan disintesis dengan menggunakan Fe2O3, H3PO4, dan LiOH melalui cara solid-state dan dilakukan perlakuan panas yaitu sintering. Setelah itu, prekursor dikompositkan dengan tiga variasi penambahan konten Nikel dalam % berat, yaitu 5, 7 dan 10% melalui metode solid-state dengan ball mill diberi label LFP/5-Ni, LFP/7.5-Ni dan LFP/10-Ni. Karakterisasi dilakukan menggunakan XRD dan SEM untuk mengamati efek penambahan Nikel pada struktur dan morfologi sampel yang dihasilkan.

Lithium Ferro Phosphate (LiFePO4) is a promising candidate as an environmental friendly electric energy sources. The addition of Nickel composite in Lithium-ion battery based can enhance the performance of LiFePO4 batteries. In this experiment, LiFePO4 was synthesized using Fe2O3, H3PO4, and LiOH by solid-state method and heat treated with sintering process. After that, the precursor were composited with the various Nickel composition, in % wt, 5, 7.5 and 10% with solid-state method by using ball mill and labeled as LFP/5-Ni, LFP/7.5-Ni and LFP/10-Ni respectively. The characterizations were made using XRD and SEM testing. These were performed to observe the effect of Nickel addition on structure and morphology of the resulting samples."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Christian Joshua Bagaskoro
"Litium-Ferrous-Fosfat, LiFePO4 (LFP) adalah kandidat yang menjanjikan sebagai bahan katoda baterai lithium ion. Dalam penelitian ini, LFP akan disintesis dengan menggunakan Fe2O3 melalui cara solid-state dengan bantuan H3PO4 and LiOH•H2O. Setelah itu, nikel akan ditambahkan ke LFP secara komposit. Penambahan konten glukosa sebagai sumber karbon akan dilakukan dengan tiga variasi, 6%, 8% dan 10%. Karakterisasi dilakukan menggunakan XRD dan SEM untuk mengamati efek variasi konten karbon pada struktur dan morfologi sampel yang dihasilkan.

Lithium-iron-phosphate, LiFePO4 (LFP) is one of promising candidate in development of battery cathode. In this experiment, the LFP will be synthesize using Fe2O3, H3PO4 and LiOH•H2O as precursors through solid-state process. Nickel will be added to the LFP/C to improve the properties of LFP/C. The addition of varies glucose content as a carbon source will be done, 6%, 8% and 10%. Material characterization of the samples will be done by using Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) to observe the effect of glucose content on the material structure and morphology."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Hafidzan Aziz Sahab
"Litium Ferro Phosphate, LiFePO4 (LFP) adalah kandidat yang menjanjikan sebagai bahan katoda baterai lithium ion. Dalam penelitian ini, LFNP/C disintesis dengan metode solid-state dari precursor LFP, Nikel menjadi variasi penambahan konten LFP dalam bentuk doping, yaitu, 6, 7,5 dan 9%, diberi label sampel LFNP/C-Ni6%, LFNP/C-Ni7.5% dan LFNP/C-Ni9%. Karakterisasi dilakukan menggunakan XRD, SEM, EDX, dan MAPPING. Ini dilakukan untuk mengamati efek penambahan Nikel pada struktur, morfologi, dan komposisi sampel. Hasil penelitian menunjukkan bahwa persentase optimum doping Nikel adalah 7.5% karena telah menunjukan hasil yang memuaskan di performa CV,CD, dan EIS dengan ukuran kristal 76.93 nm. Dalam pengujian cyclic voltametry, konduktivitas dan kapasitas sampel meningkat dan disebabkan oleh penambahan Nikel pada LFP.

Lithium Ferro Phosphate, LiFePO4 (LFP) is a promising candidate as a cathode material for lithium ion batteries. In this study, LFNP / C was synthesized by the solid-state method of the LFP precursors, Nickel became a variation of LFP content addition in the form of doping, namely, 6, 7.5 and 9%, labeled LFNP / C-Ni6% sample, LFNP / C-Ni7.5% and LFNP / C-Ni9%. Characterization was done using XRD, SEM, EDX, and MAPPING. This was done to observe the effect of adding Nickel to the structure, morphology, and composition of the sample. The results showed that the optimum percentage of Nickel doping was 7.5% because it had shown satisfactory results in the performance of CV, CD, and EIS with a crystal size of 76.93 nm. In cyclic voltametry testing, the conductivity and capacity of the sample increases and is caused by the addition of Nickel to LFP."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Hafidzan Aziz Sahab
"Litium Ferro Phosphate, LiFePO4 (LFP) adalah kandidat yang menjanjikan sebagai bahan katoda baterai lithium ion. Dalam penelitian ini, LFNP/C disintesis dengan metode solid-state dari precursor LFP, Nikel menjadi variasi penambahan konten LFP dalam bentuk doping, yaitu, 6, 7,5 dan 9%, diberi label sampel LFNP/C-Ni6%, LFNP/C-Ni7.5% dan LFNP/C-Ni9%. Karakterisasi dilakukan menggunakan XRD, SEM, EDX, dan MAPPING. Ini dilakukan untuk mengamati efek penambahan Nikel pada struktur, morfologi, dan komposisi sampel. Hasil penelitian menunjukkan bahwa persentase optimum doping Nikel adalah 7.5% karena telah menunjukan hasil yang memuaskan di performa CV,CD, dan EIS dengan ukuran kristal 76.93 nm. Dalam pengujian cyclic voltametry, konduktivitas dan kapasitas sampel meningkat dan disebabkan oleh penambahan Nikel pada LFP.

Lithium Ferro Phosphate, LiFePO4 (LFP) is a promising candidate as a cathode material for lithium ion batteries. In this study, LFNP / C was synthesized by the solid-state method of the LFP precursors, Nickel became a variation of LFP content addition in the form of doping, namely, 6, 7.5 and 9%, labeled LFNP / C-Ni6% sample, LFNP / C-Ni7.5% and LFNP / C-Ni9%. Characterization was done using XRD, SEM, EDX, and MAPPING. This was done to observe the effect of adding Nickel to the structure, morphology, and composition of the sample. The results showed that the optimum percentage of Nickel doping was 7.5% because it had shown satisfactory results in the performance of CV, CD, and EIS with a crystal size of 76.93 nm. In cyclic voltametry testing, the conductivity and capacity of the sample increases and is caused by the addition of Nickel to LFP."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohamad Farhan
"Lithium Ferro Phosphate (LFP - LiFePO4) adalah salah satu jenis katoda dalam baterai lithium-ion. LFP memiliki struktur olivine yang membuat katoda ini bersifat stabil. Bahan pembentuk LFP tergolong murah dan LFP dapat digunakan untuk jangka panjang berkat cycle rate yang tinggi. Namun, dalam aplikasinya katoda ini memiliki konduktifitas dan kapasitas yang rendah. Dalam penelitian ini, sintesis LFP akan menggunakan metode ball-milling yang dibantu dengan ultrasonic treatment yang akan mengurangi ukuran partikel dan mempercepat penguraian precursor Fe2O3, mengakibatkan peningkatan kapasitas pada siklus tinggi. Penambahan bubuk nikel dengan jumlah 7.5%wt merupakan salah satu cara untuk meningkatkan konduktifitas dan kapasitas LFP yang rendah. Selain itu, penggunaan bubuk nikel juga merupakan opsi yang lebih murah dibandingkan dengan menggunakan bahan aditif lainnya. Penelitian ini akan membandingkan LFP/C, LFP/Ni, dan dua sampel yang sama dengan penambahan metode ultrasonic. Pengamatan SEM dan XRD membuktikan bahwa dengan ultrasonic treatment partikel menjadi lebih halus dan nikel berhasil masuk ke LFP sebagai reinforcing composite.

Lithium Ferro Phosphate (LFP - LiFePO4) is one type of cathode in a lithium-ion battery. LFP has an olivine structure which makes this a stable cathode. LFP precursors are relatively cheap and LFP can be used for the long term thanks to its high cycle rate due to the olivine structure. However, in its application this cathode has low conductivity and capacity. In this research, LFP synthesis will use a ball-milling method which is assisted by ultrasonic treatment which will reduce particle size and accelerate the dissolution of Fe2O3 precursors, resulting in increased capacity at higher cycles. The addition of 7.5%wt of nickel powder is one way to increase conductivity and low LFP capacity. In addition, the use of nickel powder is also a cheaper alternative compared to using other additives. This study will compare LFP/C, LFP/Ni, and the same two samples with the addition of the ultrasonic method. SEM and XRD observations has proven that ultrasonic treatment has made the particle size become smoother and nickel successfully enters the LFP as a reinforcing composite."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Baghaskara Surendra
"Litium Titanat, Li4Ti5O12 (LTO) adalah kandidat yang menjanjikan sebagai bahan anoda baterai lithium ion. Dalam penelitian ini, Li4Ti5O12 akan disintesis dengan menggunakan metode solid-state dengan menggunakan komersial TiO2 dan komersial litium hidroksida (LiOH). Setelah itu, komersial bubuk nikel dipanaskan pada suhu 600oC selama 4 jam untuk mendapatkan NiO sebagai logam oksida transisi. Penambahan NiO ke LTO kepada semua sampel sebesar 3%. Tiga variasi penambahan lama waktu proses sintering sebesar 4 jam, 8 jam, 10 jam, diberi label sampel LTO/NiO 3% (4 jam), LTO/NiO 3% (8 jam) and LTO/NiO 3% (10 jam). Karakterisasi dilakukan menggunakan XRD dan SEM untuk mengamati efek penambahan NiO pada struktur dan morfologi sampel yang dibuat. Hasil karakterisasi sampel menunjukkan bahwa penambahan NiO 3% memiliki konduktivitas lebih baik. Hasil dari tes Electrochemical Impedance Spectroscopy juga menunjukkan LTO/NiO 3% (4 jam) memiliki konduktivitas terbaik dengan nilai resistansi terkecil

Lithium titanate, Li4Ti5O12 (LTO) is a promising candidate as lithium ion battery anode material. In this investigation, Li4Ti5O12 was synthesized with solid-state method by using TiO2 with the help of lithium hydroxide (LiOH) and nickel powder as the precursor materials, resulting in LTO. Commercial nickel powder was heated at 600oC for 4 hours to obtain NiO as transition metal oxide. NiO addition to the LTO for all samples is 3% in weight%. Three variations of different sintering holding time for 4 hours, 8 hours and 10 hours labelled as LTO/NiO 3% (4 hours), LTO/NiO 3% (8 hours) and LTO/NiO 3% (10 hours), respectively. The characterizations were made using XRD and SEM testing. These were performed to observe the effect of NiO addition and different holding time on structure and morphology of the resulting samples. The result showed that the addition of NiO will make the samples have better conductivity. According to Electrochemical Impedance Spectroscopy, LTO/NiO 3% (4 hours) also has the best conductivity with the lowest resistivity."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdul Salaam
"Litium Titanat (Li4Ti5O12) memiliki beberapa kelebihan : sifat zero strain, charge-discharge yang panjang, tidak menimbulkan SEI (Solid Electrolyte Interphase). Namun Litium Titanat (LTO) memiliki kapasitas yang rendah (10-9 S cmn-1), dimana diatasi melalui pembuatan komposit dengan material lain. Grafit memiliki kapasitas spesifik yang besar, 372 mAh/g. Penambahan ZnO dapat meningkatkan kapasitas dan konduktivitas.
Penelitian ini berfokus mengetahui pengaruh penambahan ZnO variasi 3%, 5%, dan 7% dengan konsentrasi grafit tetap sebesar 5% sintesis solid state dengan sampel pembanding neat LTO dan LTO/Grafit disertai penambahan serbuk LiOH sebesar 6%. XRD menunjukkan adanya Li4Ti5O12 yang terbentuk, dengan ukuran kristalit terbesar pada LTO/Grafit-ZnO 3%. Hasil EIS menunjukkan LTO/Grafit-ZnO 5% memiliki konduktivitas terbaik.
Hasil CV menunjukkan Eo terbesar pada 3%, dan uji CV menghasilkan kapasitas spesifik yang lebih besar dari pengujian CD akibat C rate yang lebih besar, dengan kapasitas spesifik tertinggi CV pada LTO/Grafit-ZnO 3%, dan kapasitas terbesar CD pada LTO/Grafit-ZnO 5%, tidak terlalu jauh dengan kapasitas LTO/Grafit-ZnO 3%.
Perhitungan retensi menunjukkan LTO/Grafit-ZnO 3% memiliki rate capability baik sehingga tahan lama. Ketiga sampel memiliki efisiensi coulomb tinggi, sehingga tidak ada energi yang hilang selama charge-discharge. Meninjau hasil penelitian, dibutuhkan penelitian lebih lanjut untuk menghasilkan hasil yang optimal dalam meningkatkan konduktivitas serta kapasitas.

Lithium Titanate (L4Ti5O12) has several advantages, zero strain, good charge-discharge stability, and does not form SEI (Solid Electrolyte Interphase). However, LTO has low specific capacity (10-9 S cmn-1), and to improve that is to make a composite with another materials. Graphite has high specific capacity, 372 mAh/g, and the addition of ZnO would enhanced the capacity and conductivity.
This research focused on examined the effect of ZnO by various concentration 3%, 5% and 7% with a fixed concentration of graphite 5% by using solid state method and make a comparison between the neat LTO along with LTO/Graphite with the addition of excess LiOH 6% for LTO. XRD shows the presence of Li4Ti5O12 on each samples with the biggest crystallite size found in LTO/Graphite-ZnO 3%.
EIS shows LTO/Graphite-ZnO 5% has the best conductivity, and CV shows that LTO/Graphite-ZnO 3% has the biggest specific capacity. CD shows LTO/Graphite-ZnO 5% has the biggest capacity, with a little deviation form LTO/Graphite-ZnO 3%.
Retention indicate the LTO/Graphite-ZnO 3% has good rate capability, and all the samples have good coulumbic efficiency, indicates no energy lost during charge-discharge. Reveiweing the results, further research is need to obtained the best results.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Netta Claudia
"Salah satu anoda yang dewasa ini banyak dikembangkan untuk meningkatkan kapasitas dan performa baterai ion litium adalah anoda litium titanat (Li4Ti5O12). Anoda litium titanat memiliki kelebihan dalam aspek kestabilan termal dan karakteristik zero strain. Kekurangan dari material ini, yaitu konduktivitas listrik dan kapasitas yang rendah. Pada penelitian ini akan diobservasi perubahan karakteristik dari material anoda litium titanat yang dibuat menjadi komposit dengan grafit dan doping Fe dengan variasi konsentrasi 0,1, dan 5 mol%. Sintesis dilakukan dengan metode solid state dan hasil sintesis dikarakterisasi menggunakan XRD dan SEM, kemudian difabrikasi menjadi koin sel untuk dilakukan pengujian performa dengan EIS, CV, dan CD.

One of many anodes currently being developed to increase the capacity and performance of lithium ion batteries is lithium titanate anode (Li4Ti5O12). The lithium titanate anode has advantages in its thermal stability and zero strain characteristic. The main disadvantages of this material are the low electrical conductivity and capacity. This research will be observing the characteristic changes of the lithium titanate material made into composites with graphite (5 wt%) and iron (Fe) doping with concentrations of 0,1, and 5 mol%. The synthesis was carried out by solid state method and the synthesized material was characterized using XRD and SEM, then fabricated into cell coins for performance testing with EIS, CV, and CD."
Depok: Fakultas Teknik Universitas Indonesia , 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizki Ismoyojati
"Li4Ti5O12 merupakan salah satu material yang menjanjikan untuk bahan anoda baterai litium ion. Li4Ti5O12 adalah material yang bersifat zero strain, dimana material tidak mengalami ekspansi volum pada saat prose charge/discharge. Namun, Li4Ti5O12 memiliki kapasitas teoritis yang relatif rendah (175 mAh/g). Hal ini membuat perlu dilakukannya modifikasi terhadap material Li4Ti5O12 untuk meningkatkan performa elektrokimianya. Salah satu cara yang dapat dilakukan adalah dengan menggabungkan material Li4Ti5O12 dengan timah (Sn), yang mana memiliki kapastitas teoretis yang sangat tinggi (994 mAh/g). Namun, Sn memiliki permasalahan ekspansi volum yang sangat besar dan juga pulverization pada saat siklus charge/discharge. Oleh karena itu, digunakan grafit untuk mencegah terjadinya ekspansi volum yang berlebihan dari Sn. Grafit memiliki efek stress-relieving pada Sn, sehingga dapat menghambat ekspansi volumnya pada saat siklus charge/discharge.
Pada penelitian ini, dilakukan sintesis komposit LTO/Sn-grafit dengan metode solid state. Untuk mengetahui pengaruh kadar Sn pada komposit tersebut, dilakukan variasi kadar Sn sebesar 5% wt.; 10% wt.; dan 15% wt. Dari penelitian ini, didapatkan hasil bahwa sampel dengan kadar Sn 10% wt. memiliki kapasitas discharge dan nilai potensial kerja terbaik. Sampel dengan kadar Sn 5% wt. memiliki kemampuan retensi paling baik. Sampel dengan kadar Sn 15% wt. memiliki nilai hambatan terkecil.

Li4Ti5O12 is one of promising materials for lithium ion battery anode material. Li4Ti5O12 is a zero strain material, where the material does not undergo volume expansion during the charge/discharge process. However, Li4Ti5O12 has a relatively low theoretical capacity (175 mAh/g). Modifying Li4Ti5O12 material is necessary to improve its electrochemical performance. Method that can be done is by combining Li4Ti5O12 with tin (Sn), which has a very high theoretical capacity (994 mAh/g). However, Sn has very large volume expansion problems as well as pulverization phenomena during its charge/discharge cycle. Therefore, graphite is used to prevent the excessive volume expansion of Sn. Graphite has the effect of stress-relieving on Sn, so it can inhibit its volume expansion during the charge/discharge cycle.
In this study, composite synthesis of LTO/Sn-graphite was carried out by solid state method. To determine the effect of Sn content on these composites, Sn variations were carried out at 5% wt., 10% wt., and 15% wt. The results of this study shown that sample with 10% wt. Sn content has the best discharge capacity and working potential value. Sample with 5% wt. Sn content has the best retention capability. Sample with 10% wt. Sn content has the least resistance value.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dimas Yunianto Putro
"Telah dilakukan sintesis katoda LiFePO4 dengan penambahan variasi Vanadium sebagai bahan aditif. Dalam penelitian ini bubuk LiFePO4 dibuat dengan LiOH, NH4H2PO4, dan FeSO4.7H2O sesuai stoikiometri melalui proses hidrotermal. Pada tahapan berikutnya, dilakukan pencampuran pelarut dan bubuk H4NO3V sebagai variasi dari katoda aktif bahan dan karbon hitam sebanyak 4% wt. Selanjutnya dilakukan proses hidrotermal untuk membentuk LiFePO4 murni dengan warna abu-abu terang. Setelah proses sintering, didapatkan hasil berwarna abu-abu gelap sebagai karakteristik partikel LiFePO4. Bahan katoda LiFePO4 murni disintesis pada suhu 180 °C dalam autoclave dengan waktu penahanan selama 20 jam dan selanjutnya disintering 750 °C dengan penahanan selama 4 jam. Hasil sintesis dikarakterisasi menggunakan analisis termal (STA), difraksi sinar-X (XRD), mikroskop elektron (SEM), dan sifat listrik melalui spektroskopi impendansi (EIS). Hasilnya memperlihatkan bahwa temperatur pembentukan LiFePO4 dari uji STA adalah antara 653,8 – 750,0 °C. Hasil XRD menunjukkan LiFePO4 memiliki struktur olivin dengan grup ruang ortorombik, sementara hasil SEM menunjukkan bahwa LiFePO4 berbentuk bulat dan teraglomerasi. Hasil uji EIS menghasilkan nilai impedansi atau hambatan sebesar 158 Ω untuk LiFePO4 murni hasil sintesis dan 59 Ω untuk LiFePO4 dengan doping vanadium 5%.

Vanadium-doped LiFePO4 used as cathode for lithium ion battery has been suscessfully synthesized. In this work, LiFePO4 was synthesizwed from LiOH, NH4H2PO4, and FeSO4.7H2O at stoichiometric amount through a hydrothermal method. Vanadium was added in the forms of H4NO3V powder at concentration variations and 4% wt carbon black. The hydrothermal process has been successfully carried out to form a pure LiFePO4 with a light gray color. After the sintering process, a dark gray powder as the characteristics of LiFePO4 particles were obtain. Pure LiFePO4 was synthesized at 180 °C in an autoclave for 20 hours and was sintered at 750 °C for 4 hours. The craharacterization includes thermal analysis (STA), X-ray diffraction (XRD), electron microscope (SEM), and electrical impendance spectroscopy (EIS). The STA results showed that LiFePO4 formation temperature is at 653.8 – 750.0 °C. The XRD results showed LiFePO4 are having olivine structure with orthorhombic space group, whereas the SEM results showed that LiFePO4 has round shape with agglomerated microstructure. EIS test results showed impedance of 158 Ω for pure LiFePO4 and 59 Ω for LiFePO4 doped 5% vanadium."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63806
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>