Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 205537 dokumen yang sesuai dengan query
cover
Adinda Putri Hariani
"Terjadinya fenomena perubahan iklim didorong oleh peningkatan konsentrasi gas rumah kaca (GRK) di atmosfer. Peningkatan tersebut disebabkan oleh meningkatnya emisi GRK oleh kegiatan manusia. Salah satu kegiatan manusia yang mengemisikan GRK adalah kegiatan pengolahan air. Di Kota Bogor terdapat beberapa instalasi pengolahan air (IPA) diantaranya IPA Dekeng dan IPA Cipaku. Tujuan dari studi ini yaitu menghitung emisi GRK dari IPA Dekeng dan IPA Cipaku berdasarkan unit pengolahan, mengidentifikasi unit pengolahan dengan emisi tertinggi, membandingkan emisi dari IPA Dekeng dan IPA Cipaku dengan IPA lain berdasarkan kapasitas IPA, dan mengusulkan upaya reduksi emisi GRK untuk kedua IPA tersebut. Emisi GRK dari pengolahan air dapat dikuantifikasi berdasarkan komponen produksi bahan kimia, transportasi bahan kimia, reaksi bahan kimia, dan penggunaan listrik. Sementara untuk menghitung emisi GRK dapat menggunakan metode faktor emisi. Dari studi ini diperoleh hasil IPA Dekeng rata-rata mengemisikan 195.577 kg CO2eq/bulan dengan emisi spesifik 0,062 kg CO2eq/m3 air yang diproduksi dan IPA Cipaku rata-rata mengemisikan 52.897 kg CO2eq/bulan dengan emisi spesifik 0,079 kg CO2eq/m3 air yang diproduksi. Dari kedua IPA, emisi terbesar berasal dari unit koagulasi dengan persentase terhadap total emisi dari IPA mencapai 84% di IPA Dekeng dan 91% di IPA Cipaku. Kapasitas IPA tidak memiliki pengaruh terhadap emisi spesifik IPA. Yang mempengaruhi emisi spesifik IPA yaitu kualitas air baku, desain IPA, dan lokasi IPA. Apabila dibandingkan dengan IPA lain emisi dari IPA Dekeng dan IPA Cipaku termasuk paling kecil. Untuk mereduksi emisi di IPA Dekeng dan Cipaku, PDAM Tirta Pakuan dapat menerapkan Streaming Current Monitors (SCM) dan pemulihan koagulan yang masing-masing dapat mengontribusikan penurunan emisi sebesar 30% dan 24%
The phenomenon of climate change is driven by an increase in the concentration of greenhouse gases (GHGs) in the atmosphere. The increase was caused by increased GHG emissions by human activities. One of the human activities that emit GHG is water treatment. In the City of Bogor, there are several water treatment plants (WTP) including the Dekeng WTP and Cipaku WTP. The purpose of this study is to calculate GHG emissions from the Dekeng WTP and Cipaku WTP based on the treatment units, identify the treatment unit with highest emission, compare the emissions from the Dekeng WTP and Cipaku WTP with other WTPs based on the capacity of the WTPs, and propose efforts to reduce GHG emissions for the two WTPs . GHG emissions from water treatment can be quantified based on components of chemical production, chemical transportation, chemical reactions, and electricity usage. Meanwhile, to calculate GHG emissions, the emission factor method can be used. From this study it was obtained that the average Dekeng WTP emits 195,577 kg CO2eq/month with specific emissions of 0.062 kg CO2eq/m3 of water produced and Cipaku WTP emits 52,897 kg CO2eq/month with specific emissions of 0.079 kg CO2eq/m3 of water produced . Of the two WTPs, the largest emissions came from the coagulation unit with a percentage of the total emissions from WTP reaching 84% in the Dekeng WTP and 91% in the Cipaku WTP. The capacity of the WTPs has no influence on the specific emissions from the WTPs. Those that affect the specific emissions of the WTPs are the quality of raw water, design of the WTPs and location of the WTPs. When compared with other WTPs the emissions from the Dekeng WTP and Cipaku WTP are among the smallest. To reduce emissions in the Dekeng and Cipaku WTP, PDAM Tirta Pakuan can apply Streaming Current Monitors (SCM) and coagulant recovery, each of which can contribute to a reduction in GHG emissions of 30% and 24%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Septania Putri Widyawardhani
"Potensi emisi GRK yang dihasilkan dari pengolahan air limbah domestik meliputi gas metana (CH4), dinitrogen oksida (N2O), dan karbon dioksida (CO2). Potensi pemanasan global gas CH4 dan N2O bernilai 28 dan 265 kali lebih besar dibandingkan satu ton CO2 dengan waktu tinggal rata-rata 100 tahun. Penelitian ini berfokus pada pengukuran emisi GRK langsung (scope 1) dari unit IPAL X di Jakarta. Pengukuran gas CH4 dan CO2 yang dilakukan melalui metode headspace dan uji gas chromatography thermal conductivity detector (GC-TCD) pada 7 titik, meliputi unit inlet, unit ekualisasi, 4 tangki MBBR, dan unit outlet mendapatkan laju emisi CO2 sebesar 2,1 x 105 TgCO2e/tahun. Namun, penelitian ini tidak mendapatkan gas CH4 yang dihasilkan dari metode headspace dan uji GC-TCD. Hal tersebut dipengaruhi oleh tingginya kadar DO pada air limbah yang menghambat pembentukan CH4. Pengukuran emisi N2O yang dilakukan dengan sensor gas Unisense pada tangki MBBR 1 selama 6 hari berturut-turut mendapatkan laju emisi N2O sebesar 4,16 x 102 TgCO2e/tahun. Peningkatan suhu air limbah dari 30,55—30,98°C pada tangki MBBR dapat menurunkan konsentrasi N2O pada rentang 0,076—0,006 mg N2O-N/L. Faktor emisi CO2 dan N2O dari unit pengolahan biologis MBBR sebesar 2,61% ± 1,47 dan 0,04% ± 0,27 (rata-rata ± SD) secara berturut-turut. Unit MBBR tersebut beroperasi dengan kadar sCOD dan TN sebesar ± 152 mg/L dan 145 mg/L. Penurunan kadar DO dan sistem aerasi secara intermittent pada tangki aerasi merupakan aksi mitigasi utama yang potensial untuk diimplementasikan pada IPAL X di Jakarta dalam menurunkan emisi GRK langsung dari IPAL Domestik.

Potential GHG emissions resulting from domestic wastewater treatment include methane gas (CH4), nitrous oxide (N2O), and carbon dioxide (CO2). The global warming potential of CH4 and N2O gases is 28 and 265 times greater than one ton of CO2 with an average residence time of 100 years. This study focuses on measuring direct GHG emissions (scope 1) from WWTP units X in Jakarta. CH4 and CO2 gas measurements were carried out through the headspace method and gas chromatography thermal conductivity detector (GC-TCD) tests at 7 points, including inlet unit, equalization unit, 4 MBBR tanks, and outlet unit obtained a CO2 emission rate of 2,1 x 105 TgCO2e/year. However, this study did not obtain CH4 gas produced from the headspace method and GC-TCD test. This is influenced by the high level of DO in wastewater which inhibits the formation of CH4. N2O emission measurements carried out with Unisense gas sensors in MBBR 1 tanks for 6 consecutive days obtained an N2O emission rate of 4,16 x 102 TgCO2e/year. An increase in wastewater temperature from 30,55—30,98°C in MBBR tanks can reduce N2O concentrations in the range of 0,076—0,006 mg N2O-N/L. CO2 and N2O emission factors from MBBR biological treatment units are 2,61% ± 1,47 and 0,04% ± 0,27 (average ± SD) respectively. The MBBR unit operated with sCOD and TN levels of ± 152 mg/L and 145 mg/L. Reducing DO levels and intermittent aeration systems in aeration tanks is a potential main mitigation action to be implemented at WWTP X in Jakarta in reducing GHG emissions directly from domestic WWTP."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Evita Sari
"Sektor industri merupakan salah satu sektor yang beperan penting dalam penurunan Gas Rumah Kaca (GRK), salah satunya yang sedang berkembang yaitu industri air bersih dan air limbah. Hingga saat ini, sudah banyak perlakuan pemerintah dalam menurunkan emisi di sektor air limbah, namun tidak pada sektor air bersih. Di sisi lain, Indonesia sedang mengejar pembangunan infrastruktur air bersih hingga 60% terlayani oleh PDAM. Sehingga, sektor air bersih menjadi sektor yang harus diperhatikan termasuk dalam GRK yang dihasilkan.
Penelitian ini bertujuan untuk mengestimasi emisi CO2 sebagai emisi GRK dari pengolahan air bersih, yaitu Instalasi Pengolahan Air (IPA) Legong dan IPA Citayam yang mewakili Kota Depok, dan melakukan pengembangan skenario guna menurunkan emisi CO2. Estimasi emisi CO<2 menggunakan metode IPCC, model matematika, dan stokiometri. Total emisi CO2 yang dihasilkan dari pengolahan air bersih pada tahun 2018 yaitu 0,458 kg CO2/m3 dengan kapasitas produksi 2.313 m3/jam, dengan sumber emisi terbesar yaitu kegiatan konsumsi listrik untuk operasional IPA, transportasi bahan kimia, konsumsi koagulan, dan yang paling rendah yaitu penggunaan genset.
Dari hasil analisis dan pengembangan skenario, direkomendasikan perencanaan reservoir untuk mengurangi operasional pompa intake dan membuat emisi CO2 yang dihasilkan berkurang 1,6%. Rekomendasi lainnya yaitu dengan asumsi pembangkit listrik utama berasal dari tenaga surya, sehingga emisi CO2 yang dihasilkan berkurang 15,3%. Karena itu, pemanfaatan energi alternatif merupakan startegi utama dalam menurunkan emisi CO2 dari pengolahan air bersih.

The industrial sector is one of the important sectors in reducing GHGs, one of them is the water and wastewater industries. Until now, there has been a lot of government treatment in reducing emissions in the wastewater sector, but not in the clean water sector. On the other hand, Indonesia is pursuing the development of clean water infrastructure, up to 60% is served by PDAM. Thus, the clean water sector becomes a sector that must be considered including the GHG emission.
This study aims to estimate CO2 emissions as GHG emissions from water treatment, namely the Legong Water Treatment Plant (WTP) and Citayam WTP which represent Depok City, and develop scenarios to reduce CO2 emissions. CO2 emissions is calculated using the IPCC method, mathematical models, and stochiometry. The total CO2 emissions generated from the treatment of clean water in 2018 were 0.458 kg CO2/ m3< with a production capacity of 2,313 m3/hour, with the largest source of emissions are electricity consumption activities for IPA operations, chemical transportation, coagulant consumption, and the lowest, that is use of generator set.
From the results of scenario analysis and development, reservoir planning is recommended to reduce the intake pump operation and make the CO2 emissions produced reduced by 1.6%. Other recommendations are assuming that the main power plant comes from solar power, so the CO2 emissions produced are reduced by 15.3%. Therefore, alternative energy utilization is the main strategy in reducing CO2 emissions from processing clean water.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rudi Chandra Adinugraha
"Dalam beberapa dekade terakhir, perhatian utama telah diberikan pada masalah lingkungan global yang semakin meruncing, khususnya perubahan iklim. Permasalahan ini juga menjadi isu di Indonesia khususnya di Kota Semarang yang menghasilkan sekitar 1.276 ton sampah per hari pada tahun 2019. Emisi GRK dari sektor pengelolaan limbah di Kota Semarang menyumbang 16,67% dari total emisi GRK yang dihasilkan kota Semarang di tahun 2018. Emisi GRK dari pengelolaan sampah dapat berasal dari beberapa tahapan, seperti pengumpulan, transportasi, pengolahan, dan pemrosesan akhir sampah. Penelitian ini bertujuan untuk menganalisis emisi GRK dan tahapan pengelolaan sampah yang bersifat hotspot dari keseluruhan sistem pengelolaan sampah Kota Semarang di tahun 2023, sehingga dapat diberikan rekomendasi untuk mengurangi emisi GRK. Perhitungan emisi GRK dilakukan dengan menggunakan Metode IPCC 2006 Tier 1 dan software Emission Quantification Tool (EQT) versi 2018 yang dikembangkan Institute for Global Environmental Strategies (IGES). Berdasarkan penelitian yang telah dilakukan, emisi GRK masing-masing dari tahapan transportasi sampah, komposting, daur ulang sampah, black soldier fly (BSF), sampah tidak terkelola, kebakaran landfill, dan landfilling adalah 13.836,729 ton CO2-eq, 3.650,054 ton CO2-eq, -74.080,228 ton CO2-eq, 31,473 ton CO2-eq, 18,123 ton CO2-eq, 8.482,856 ton CO2-eq dan 357.939,942 ton CO2-eq. Keseluruhan emisi GRK dari sistem pengelolaan sampah Kota Semarang di tahun 2023 adalah 309.878,948 ton CO2-eq, dengan hotspot emisi adalah tahap landfilling. Rekomendasi yang diberikan adalah mengurangi timbulan sampah yang masuk ke TPA Jatibarang dan mengaktifkan kembali fasilitas komposting yang tengah berhenti beroperasi di TPA Jatibarang.

In the last few decades, major attention has been given to increasingly increasing global environmental problems, especially climate change. This problem is also a concern in Indonesia, especially in the city of Semarang, which produces around 1,276 tons of waste per day in 2019. GHG emissions from the waste management sector in Semarang City contributed 16.67% of the total GHG emissions produced by Semarang City in 2018. GHG emissions from waste management can come from several stages, such as collection, transportation, processing, and final disposal of waste. This research aims to analyse GHG emissions and hotspot waste management stages of the entire Semarang City waste management system in 2023, so that recommendations can be provided to reduce GHG emissions. GHG emissions calculations were carried out using the IPCC 2006 Tier 1 Method and the 2018 version of the Emission Quantification Tool (EQT) software developed by the Institute for Global Environmental Strategies (IGES). Based on research that has been carried out, the respective GHG emissions from waste transportation, composting, waste recycling, black Soldier fly (BSF), unmanaged waste, landfill fire, and landfilling are 13,836.729 tons CO2-eq, 3,650.054 tons CO2-eq, -74,080.228 tons CO2-eq, 31.473 tons CO2-eq, 18.123 tons CO2-eq, 8,482.856 tons CO2-eq and 309.878,948 tons CO2-eq. Overall GHG emissions from the Semarang City waste management system in 2023 are 309,878.948tons CO2-eq, with the emission hotspot being the landfill stage. The recommendation given is to reduce the amount of waste entering the Jatibarang landfill and reactivate the composting facility which is currently no longer operating at the Jatibarang landfill."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rohana Carolyne Putri
"Emisi Gas Rumah Kaca (GRK) merupakan permasalahan global yang menyebabkan perubahan iklim. Salah satu sumber emisi GRK adalah praktik pengolahan sampah organik yang merupakan sumber emisi GRK non-CO2 terbesar ketiga secara global. Di Indonesia, permasalahan sampah terutama sampah organik yang terakumulasi di Tempat Pemrosesan Akhir (TPA) masih belum teratasi. Oleh karena itu, diperlukan upaya mitigasi untuk mencegah dampak yang semakin buruk. Penelitian ini bertujuan untuk mengembangkan konsep mitigasi emisi GRK dari pengolahan sampah organik tingkat kawasan. Metode yang digunakan meliputi analisis skenario dengan dukungan Analytical Hierarchy Process (AHP), analisis investasi-operasi-pemeliharaan, analisis matematis berdasarkan faktor emisi, dan analisis Theory Planned Behavior (TPB). Temuan penelitian mencakup data emisi GRK dan biaya dari teknologi pengolahan sampah organik, intensi perilaku pemilahan, serta skenario alternatif untuk konsep mitigasi. Analisis skenario dengan membandingkan teknologi budidaya Black Soldier Fly (BSF), pengomposan windrow, dan Anaerobic Digestion (AD) menunjukkan bahwa konsep mitigasi emisi GRK yang dipilih adalah skenario dengan 84% sampah organik diolah menggunakan teknologi budidaya BSF dan pengomposan windrow, serta fokus pada intensi perilaku pemilahan sampah.
Greenhouse Gas (GHG) emissions are a global problem that causes climate change. One source of GHG emissions is the practice of processing organic waste, which is the third largest source of non-CO2 GHG emissions globally. In Indonesia, the problem of waste, especially organic waste, which accumulates at final processing sites (TPA), is still not resolved. Therefore, mitigation efforts are needed to prevent the impact from getting worse. This research aims to develop a concept for mitigating GHG emissions from processing organic waste at the regional level. The methods used include scenario analysis with the support of the Analytical Hierarchy Process (AHP), investment-operation-maintenance analysis, mathematical analysis based on emission factors, and Theory Planned Behavior (TPB) analysis. Research findings include data on GHG emissions and costs of organic waste processing technology, sorting behavior intentions, as well as alternative scenarios for mitigation concepts. Scenario analysis by comparing Black Soldier Fly (BSF) cultivation technology, windrow composting, and Anaerobic Digestion (AD) shows that the GHG emission mitigation concept chosen is a scenario with 84% of organic waste processed using BSF cultivation technology and windrow composting and focuses on intention. waste sorting behavior."
Depok: Sekolah Ilmu Lingkungan Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mahahera Bastinov Putri Almagistra
"Gas alam adalah salah satu bahan bakar fosil yang banyak digunakan dalam kehidupan sehari-hari, yang diperoleh dari sumur gas yang kemudian diproses dan ditransportasikan, salah satunya lewat pipa transmisi. Dalam transportasinya, gas alam sering terlepas ke atmosfer, baik disengaja dalam proses penurunan tekanan emisi venting atau tidak disengaja emisi fugitive, yang berdampak buruk bagi lingkungan. Untuk itu, perlu dilakukan perhitungan tingkat emisi yang diharapkan dapat menjadi acuan dan rekomendasi strategi untuk mengurangi emisi gas rumah kaca GRK. Dalam perhitungan tingkat emisi, dikenal dengan istilah faktor emisi, yaitu nilai faktor pengali untuk menghitung tingkat emisi. Nilai faktor emisi ini dihasilkan oleh agensi lingkungan, diantaranya INGAA dan IPCC. Untuk mengurangi ketidakpastian nilai faktor emisi, IPCC merekomendasikan untuk melakukan simulasi Monte Carlo, yang dilakukan oleh Lechtenbohmer, et al. 2007 di sistem pipa transmisi milik Rusia. Penelitian ini melakukan perhitungan tingkat emisi menggunakan nilai faktor emisi berdasarkan INGAA, IPCC, dan Lechtenbohmer, et al. 2007 , dengan variasi laju alir. Variasi laju alir berpengaruh pada perhitungan dengan INGAA Tier 2 dan 3 serta IPCC. Perhitungan dengan nilai faktor emisi berdasarkan Lechtenbohmer et al. 2007 memiliki nilai emisi yang paling tinggi. Metode terbaik yang dapat diaplikasikan adalah IPCC karena faktor emisi IPCC merupakan fungsi geografis dan teknologi.

Natural gas is one of the fossil fuel which is used in daily basis and can be extracted from gas wells then being produced and transported, one of which is using transmission pipeline. When being transported, natural gas is often emitted to the atmosphere, either for depressurization venting emission or leak through the pipeline fugitive emission . Therefore, emission level estimation must be performed as reference and strategy recommendation to reduce the greenhouse gas GHG emission that would damage the environment. Emission factor is a well known multiplier factor to calculate GHG emission from every emission source. Emission factor value is assessed by environment agency, such as INGAA and IPCC. To reduce the uncertainty of emission factor, IPCC suggests to conduct Monte Carlo simulation that had already been done by Lechtenbohmer, et al. 2007 in Russia rsquo s gas transmission system. This research estimates emission level using emission factor based on INGAA, IPCC, and Lechtenbohmer, et al. 2007 with flowrate variation. This flowrate variation has influence on Tier 2 and 3 INGAA also on IPCC methodologies. Emission factor based on Lechtenbohmer, et al. 2007 estimates the highest emission level. IPCC is the most suitable basis for emission factor because it has already considered geographic and technology of a country."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67058
UI - Skripsi Membership  Universitas Indonesia Library
cover
Simanjuntak, Junifer Saut Pangidoan
"Pertumbuhan konsumsi tenaga listrik di Indonesia mencapai 8,6 per tahun berimplikasi terhadap peningkatan produksi energi listrik. Pemerintah telah mengantisipasinya melalui Program Pembangunan 35.000 MW yang didominasi PLTU batubara yang dapat meningkatkan emisi Gas Rumah Kaca secara signifikan. Penelitian ini bertujuan untuk untuk menentukan jenis teknologi batubara bersih yang diimplementasikan dalam unit PLTU Program Pembangunan 35.000 MW. Metodologi yang digunakan dalam penelitian ini adalah pemodelan skenario penggunaan teknologi batubara bersih yang disesuaikan dengan kelas kapasitas PLTU dan penentuan skenario terbaik didasarkan potensi emisi GRK terendah di sektor pembangkitan tenaga listrik dan module cost balance tertinggi, melalui simulasi LEAP. Berdasarkan hasil simulasi, seluruh unit PLTU Program Pembangunan 35.000 MW di regional Jawa-Bali harus menggunakan teknologi ultra super-critical untuk kelas kapasitas diatas 1.000 MW, super-critical untuk kelas kapasitas diatas 500 MW dan PFBC untuk kelas kapasitas dibawah 500 MW. Pada regional Sumatera, teknologi yang digunakan adalah super-critical dan PFBC untuk masing-masing kelas kapasitas diatas 500 MW dan dibawah 500 MW. Pada regional Kalimantan dan Sulawesi, penggunaan teknologi PFBC merupakan skenario terbaik untuk kelas kapasitas dibawah 500 MW, sedangkan teknologi CFBC digunakan pada unit kelas kapasitas pembangkit yang sama di regional Nusa Tenggara Barat. Potensi penurunan emisi GRK sektor pembangkitan tenaga listrik akibat implementasi teknologi batubara bersih dalam seluruh unit PLTU Program Pembangunan 35.000 MW sampai dengan 2020 mencapai 41,91 juta ton CO2e yang melampaui target penurunan emisi nasional dalam Rencana Aksi Nasional Gas Rumah Kaca RAN-GRK dalam skema nasional atau berkontribusi 74,84 dalam skema unilateral. Pada 2025, penurunan emisi diperkirakan akan mencapai 57,87 juta ton CO2e atau berkontribusi 30,46 dari rencana target penurunan emisi nasional pasca 2020 dalam skema optimistik. Oleh karena itu, implementasi teknologi batubara bersih dalam unit PLTU batubara dapat direkomendasikan sebagai salah satu kegiatan utama penurunan emisi GRK sektor energi dalam draft kebijakan RAN-GRK pasca 2020 yang sedang disusun Pemerintah saat ini.

The growth of electricity consumption in Indonesia 8.6 per year has implications toward increasing of the electricity generation. The Government of Indonesia had anticipated through 35,000 MW Electricity Development Program predominantly coal fired power plants CFPP that increase Greenhouse Gas GHG emissions significantly. The study aims to determine the type of clean coal technology implemented in the CFPPs of 35,000 MW Electricity Development Program. The methodology on the study is modeling the scenario for the use of clean coal technology in the CFPPs in accordance to their capacity size, while the selection of best scenario based on the lowest GHG emission potential in power generation sector and the highest module cost balance by using LEAP. Based on the simulation results, all of them in Java Bali region should use ultra super critical for capacity size above 1,000 MW, super critical for above 500 MW and PFBC for below 500 MW. In the region of Sumatra, the technology should be used is super critical and PFBC for the capacity size above 500 MW and below 500 MW respectively. In the region of Kalimantan and Sulawesi, the use of PFBC is the best scenario for capacity size below 500 MW, while CFBC is used in the their same size located in the West Nusa Tenggara region. The potential for GHG emission reduction in the power generation sector due to the implementation of clean coal technology in the 2020 in all of them is expected to reach 41.91 million tonnes CO2e that exceed the national scheme emission reduction target in GHG National Action Plan RAN GRK or have contribution 74.84 in its unilateral scheme. By 2025, emissions reduction is expected to reach 57.87 million tonnes CO2e or have contribution 30.46 of post 2020 national emissions reduction target plan in the optimistic scheme. Therefore, the implementation of clean coal technology in the CFPPs is recommended as one of the main activities of GHG emission reduction in the energy sector of the post 2020 RAN GRK policy currently being drafted by the Government of Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2017
T48052
UI - Tesis Open  Universitas Indonesia Library
cover
Valentinus Alvin Wijaya
"Tuntutan isu perubahan iklim global membuat Indonesia perlu meningkatkan proporsi energi terbarukan pada bauran energi nasional sebesar 23%. Dengan Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) yang dibuat PT PLN, pembangunan pembangkit listrik energi terbarukan sudah ditargetkan kapasitas terpasangnya hingga tahun 2028. PV sebagai salah satu sumber energi listrik terbarukan tenaga surya masih memiliki hambatan untuk mengembangkan kapasitas terpasangnya. Studi ini bertujuan untuk merancang model kebijakan feed-in tariff yang mendukung investasi proyek energi terbarukan, sehingga dampak ketersediaan anggaran oleh pemerintah dan dampak lingkungan dapat diantisipasi oleh pemerintah. Dengan menggunakan metodologi sistem dinamis dan data historis kapasitas PV terpasang, studi ini dapat menjelaskan efek kebijakan feed-in tariff terhadap perkembangan pembangunan kapasitas PV terpasang dan kontribusi PV terhadap pengurangan emisi gas CO2 dan juga faktor penentu terjadinya efek tersebut. Penelitian ini mengungkapkan bahwa kebijakan feed-in tariff berdampak pada meningkatnya pertumbuhan investasi proyek PV dan tercapainya target RUPTL kapasitas PV terpasang di tahun 2028. Dua kebijakan, PLTS atap dan subsidi modal diuji pada model untuk mendemonstrasikan sensitivitas kapasitas PV terpasang dan kontribusi penurunan emisi gas CO2 akibat tendensi berinvestasi pada PV.

The demands of the global climate change issue make Indonesia need to increase the proportion of renewable energy in the national energy mix by 23%. With the Electricity Supply Business Plan (RUPTL) made by PT PLN, the construction of renewable energy power plants has been targeted to have installed capacity until 2028. PV as a source of renewable electricity from solar power still has obstacles to developing its installed capacity. This study aims to design a feed-in tariff policy model that supports investment in renewable energy projects, so that the impact of budget availability by the government and environmental impacts can be anticipated by the government. By using a dynamic system methodology and historical data on installed PV capacity, this study can explain the effect of the feed-in tariff policy on the development of installed PV capacity development and the contribution of PV to reducing CO2 gas emissions and also the determinants of this effect. This study reveals that the feed-in tariff policy will have an impact on increasing the growth of PV project investment and the achievement of the RUPTL target for installed PV capacity by 2028. Two policies, rooftop solar PV and capital subsidies are tested on a model to demonstrate the sensitivity of installed PV capacity and the contribution of reducing CO2r gas emissions due to the tendency to invest in PV."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Isky Ainul Azmii
"Permasalahan lingkungan hidup semakin menjadi perhatian secara global, salah satunya emisi GRK. Berdasarkan Perjanjian Paris, Indonesia menjadi negara yang berkomitmen untuk menurunkan emisi gas rumah kacanya. Universitas Indonesia merupakan perguruan tinggi yang dapat menghasilkan emisi gas rumah kaca dalam aktivitasnya. Penelitian bertujuan untuk mengetahui bagaimana kondisi emisi gas rumah kaca Universitas Indonesia pada tahun 2023 serta potensi yang dimilikinya dalam penyerapan karbon dan perdagangan karbon. Penghitungan emisi dibagi ke dalam tiga kategori. Kategori 1 mencakup transportasi, penggunaan LPG, dan penggunaan AC. Kategori 2 mencakup penggunaan listrik. Kategori 3 mencakup pengelolaan sampah, penggunaan kertas, dan penggunaan semen. Hasil penelitian menunjukkan bahwa pada tahun 2023 Universitas Indonesia menghasilkan total emisi gas rumah kaca sebesar 34.363,29 tCO2eq dengan penggunaan listrik yang menjadi penghasil emisi terbesar, yakni 24.338,46 tCO2eq. Sementara, sumber penghasil emisi terendah berasal dari penggunaan kertas, yakni 62,15 tCO2eq. Penelitian merencanakan beberapa proyek mitigasi penurunan emisi GRK UI, seperti floating solar panel, bis kuning elektrik, penggunaan DME untuk menggantikan LPG, kegiatan car free day, dan penggunaan direct air capture. Proyek mitigasi penurunan emisi GRK UI diestimasikan mampu menurunkan emisi sebesar 8.864,27 tCO2eq. Melalui proyek tersebut, Universitas Indonesia dapat mencapai target penurunan emisi GRK sebesar 31,89% pada tahun 2030.

Environmental issues have become a matter of global concern, with GHG emissions being a prominent example. In accordance with Paris Agreement, Indonesia has a commitment to reduce its GHG emissions. UI is a prominent institution that conducts various activities that result in emission of GHG. The objective of this study is to determine the condition of the UI’s greenhouse gas emissions in 2023, its potential in carbon sequestration and carbon trading. Emissions are divided into three categories. Category 1 includes transportation, LPG use, and AC use. Category 2 covers electricity. Category 3 includes waste management, paper use, and cement use. The results showed that in 2023 the UI’s total greenhouse gas emissions amounted to 34,363.29 tCO2eq, with electricity being the largest emitter, at 24,338.46 tCO2eq. The lowest emission source comes from paper use, which is 62.15 tCO2eq. Mitigation projects designed to reduce UI GHG emissions, including the implementation of floating solar panels, electric yellow buses, the use of DME to replace LPG, car free day, and direct air capture. The UI GHG emission reduction mitigation project is estimated to reduce emissions by 8,864.27 tCO2eq, enabling UI to achieve its target of a 31.89% reduction in GHG emissions by 2030. "
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sinaga, Apul Robyatno
"Masalah sampah merupakan masalah yang terjadi hampir di setiap belahan dunia. Pertumbuhan penduduk yang cenderung terus bertambah, pola konsumsi dan budaya masyarakat menjadi faktor penyebab produksi sampah terus meningkat. Masalah yang muncul dari masalah sampah adalah gas rumah kaca (GRK). Sampah menghasilkan GRK seperti karbon dioksida (CO2), metana (CH4), dan nitrous oxide (N2O) yang dapat memicu pemanasan global. Berdasarkan dokumen Indonesia Nationally Determined Contribution (NDC), emisi GRK Indonesia pada tahun 2010 sebesar 1.334 MTon CO2eq dengan sektor sampah atau waste berada pada posisi keempat dengan 88 MTon CO2eq (6,59%) dari total emisi GRK di Indonesia. Kota Bogor yang belum memiliki data emisi GRK dari sektor persampahan, membutuhkan data tersebut sebagai acuan dalam menentukan pengelolaan sampah yang baik di Kota Bogor. Penelitian ini akan fokus pada perhitungan emisi GRK dan pembuatan skenario yang mengacu pada rencana pembangunan wilayah dengan memperhatikan kondisi dan karakteristik kota Bogor. Skenario pertama menggunakan teknologi digester anaerobik di TPA sebagai unit pengolahan utama dan skenario kedua berfokus pada pengurangan sampah dari sumber dengan kegiatan pengomposan mandiri dan penggunaan teknologi pengomposan dan kegiatan 3R di TPA. Dari fokus penelitian ini, emisi GRK Kota Bogor tahun 2019 sebesar 0,1308 ton CO2/kapita/tahun untuk skenario eksisting, -0,0028 ton CO2/kapita/tahun untuk skenario pertama, dan -0,0060 ton CO2/kapita/tahun untuk skenario skenario kedua. Dengan demikian, skenario kedua direkomendasikan untuk menjadi sistem pengelolaan sampah terpadu di Kota Bogor dengan kegiatan penanganan sampah pada sumbernya yang dapat mengurangi jumlah sampah secara signifikan.

The waste problem is a problem that occurs in almost every part of the world. Population growth that tends to continue to grow, consumption patterns and community culture are factors that cause waste production to continue to increase. The problem that arises from the waste problem is greenhouse gases (GHG). Garbage produces GHGs such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) which can trigger global warming. Based on the Indonesia Nationally Determined Contribution (NDC), Indonesia's GHG emissions in 2010 were 1,334 MTon CO2eq with the waste sector being in fourth position with 88 MTon CO2eq (6.59%) of the total GHG emissions in Indonesia. Bogor City, which does not yet have data on GHG emissions from the waste sector, needs this data as a reference in determining good waste management in Bogor City. This research will focus on calculating GHG emissions and making scenarios that refer to regional development plans by taking into account the conditions and characteristics of the city of Bogor. The first scenario uses anaerobic digester technology in the landfill as the main treatment unit and the second scenario focuses on reducing waste from the source with independent composting activities and the use of composting technology and 3R activities at the landfill. From the focus of this study, Bogor City's GHG emissions in 2019 were 0.1308 tons CO2/capita/year for the existing scenario, -0.0028 tons CO2/capita/year for the first scenario, and -0.0060 tons CO2/capita/year. for the second scenario. Thus, the second scenario is recommended to become an integrated waste management system in Bogor City with waste management activities at the source that can significantly reduce the amount of waste."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>