Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 86886 dokumen yang sesuai dengan query
cover
Nabila Prihandina Purwanto
"Potensi hidrokarbon di Lapangan 'OZ', Cekungan Bonaparte belum dimanfaatkan karena risiko pengeboran yang tinggi yang disebabkan oleh heterogenitas reservoir. Karena sifat reservoir yang heterogen, maka dilakukan identifikasi dan karakterisasi untuk melihat sebaran litologi dan fluida reservoirnya. Metode Probabilistic Neural Network (PNN) adalah metode utama dalam analisis multi-atribut untuk menemukan hubungan nonlinier antara data seismik dan data sumur di Lapangan 'OZ' dan kemudian menghasilkan model untuk distribusi data sinar gamma, porositas, dan saturasi air dengan nilai koefisien korelasi masing-masing pelatihan sebesar 0,8871, 0,9778, 0,9719 dan koefisien korelasi validasi sebesar 0,7836, 0,8554, 0,8187. Integrasi antara model distribusi data sinar gamma, porositas, saturasi air, ditambah dengan hasil inversi impedansi akustik (AI), dapat menjadi sarana untuk mengklasifikasikan dan mengidentifikasi distribusi reservoir hidrokarbon. Lapangan 'OZ' memiliki karakteristik reservoir yang mengandung gas hidrokarbon dan memiliki litologi batupasir bersih dengan sesar normal sebagai traps serta batupasir rapat dan batuan serpih sebagai seal yang tersebar di bagian Selatan dan Tengah lapangan OZ.
The hydrocarbon potential in the 'OZ' Field, Bonaparte Basin has not been exploited due to the high drilling risk caused by reservoir heterogeneity. Due to the heterogeneous nature of the reservoir, identification and characterization were carried out to see the distribution of lithology and reservoir fluids. The Probabilistic Neural Network (PNN) method is the main method in multi-attribute analysis to find a nonlinear relationship between seismic data and well data in the 'OZ' Field and then generate a model for the distribution of gamma ray, porosity, and water saturation data with the respective correlation coefficient values. -each training is 0.8871, 0.9778, 0.9719 and the validation correlation coefficient is 0.7836, 0.8554, 0.8187. The integration between the distribution model of gamma ray data, porosity, water saturation, coupled with the results of acoustic impedance inversion (AI), can be a means to classify and identify the distribution of hydrocarbon reservoirs. The 'OZ' field has reservoir characteristics containing hydrocarbon gas and has a clean sandstone lithology with normal faults as traps as well as dense sandstone and shale rock as seals which are scattered in the Southern and Central parts of the OZ field."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Setianto Nugroho
"Lapangan “DEWI”, yang berlokasi di Cekungan Bonaparte Maluku Tenggara merupakan lapangan gas dengan reservoir utama yang terletak pada Formasi Plover, yang didominasi oleh batu pasir. Berdasarkan analisa struktur didapatkan bahwa lapangan ini memiliki satu sesar utama yang membagi blok utara dan blok selatan. Berdasarkan analisis petrofisika didapatkan bahwa zona prospek hidrokarbon dari lapangan ini terletak di formasi Plover dan Zona A. Penelitian ini bertujuan untuk menganalisis distribusi parameter petrofisika seperti porositas, volume shale, dan saturasi air yang penting dalam karakterisasi reservoir. Penelitian ini menggunakan analisis seismik multiatribut dan probabilistic neural network untuk memprediksi parameter petrofisika berdasarkan atribut dari data seismik. Hasil menunjukkan bahwa pada penelitian ini probabilistic neural network memiliki keunggulan dalam memprediksi parameter petrofisika untuk karakterisasi reservoir dibanding multiatribut konvensional. Berdasarkan hasil dari pemetaannya ditemukan variasi yang menarik dalam persebaran parameter petrofisika pada formasi Plover dan Zona A. Hasil dari penelitian ini dapat digunakan untuk menyediakan pemahaman baru dalam karakterisasi daerah berpotensi hidrokarbon di Lapangan “DEWI”.

The “DEWI” field, which is located in the Bonaparte Basin, Southeast Maluku, is a gas field with the main reservoir located in the Plover Formation, which is dominated by sandstone. Based on structural analysis, it was found that this field has one main fault that divides the northern block and the southern block. Based on petrophysical analysis, it was found that the hydrocarbon prospect zone of this field is located in The Plover Formation and Zone A. This research aims to analyze the distribution of petrophysical parameters such as porosity, shale volume, and water saturation which are important in reservoir characterization. This research uses multi-attribute seismic analysis and probabilistic neural networks to predict petrophysical parameters based on attributes from seismic data. The results show that in this study the probabilistic neural network has advantages in predicting petrophysical parameters for reservoir characterization compared to conventional multi-attributes. Based on the results of the mapping, enticing variations were found in the distribution of petrophysical parameters in The Plover Formation and Zone A. The results of this research can be used to provide new insights into the characterization of potential hydrocarbon areas in the "DEWI" Field."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Destya Andriyana
"Lapangan ‘B’ merupakan lapangan prospek hidrokarbon yang berlokasi di offshore
cekungan Kutai, Kalimantan Timur. Untuk mengetahui karakterisasi reservoir lapangan
‘B’, dilakukan pemodelan porositas dan saturasi air menggunakan inversi AI, multiatribut
seismik dan probabilistic neural network. Penelitian ini menggunakan data seismik 3D
PSTM dan data sumur (AND-1, AND-2, AND-3 dan AND-4). Pada data seismik dan data
sumur dilakukan inversi AI untuk mengetahui sifat litologi area penelitian. Kemudian,
hasil AI ditransformasikan untuk mendapatkan model porositas. Metode multiatribut
seismik menggunakan beberapa atribut untuk memprediksi model porositas dan saturasi
air. Setelah itu, diaplikasikan sifat non-linear dari probabilistic neural network sehingga
menghasilkan model porositas dan saturasi air hasil probabilistic neural network (PNN).
Model porositas dan saturasi air transformasi AI, multiatribut seismik dan PNN divalidasi
dengan nilai porositas dan saturasi air data sumur untuk mengetahui apakah model
porositas dan saturasi air tersebut merepresentatifkan nilai data sumur. Validasi dilakukan
pada sumur AND-1 dan AND-2. Nilai porositas dan saturasi air data sumur untuk AND-
1 adalah 25.3 – 35.9% dan 45 – 60%, dan nilai porositas dan saturasi air AND-2 adalah
11 – 35% dan 15 – 82%. Nilai porositas AND-1 hasil transformasi AI sekitar 16 – 67%,
multiatribut seismik sekitar 11.5 – 27% dan PNN sekitar 11.5 – 27%. Nilai saturasi air
AND-1 hasil multiatribut seismik sekitar 4 – 63% dan PNN sekitar 18 – 63%. Nilai
porositas AND-2 hasil transformasi AI sekitar 52 – 72%, multiatribut seismik sekitar 11
– 21.5% dan PNN sekitar 11 – 21.5%. Nilai saturasi air AND-2 hasil multiatribut seismik
sekitar 63 – 85% dan PNN sekitar 63 – 85%. Kemudian, metode multiatribut seismik dan
PNN didapatkan nilai korelasi antara parameter target dengan parameter prediksi. Model
porositas multiatribut seismik memiliki korelasi 0.840836 dan PNN memiliki korelasi
0.936868. Model saturasi air multiatribut seismik memiliki korelasi 0.915254 dan PNN
memiliki korelasi 0.994566. Model porositas transformasi AI memiliki rentang yang
lebih tinggi dibandingkan dengan data sumur. Model porositas dan saturasi air metode
PNN memiliki rentang nilai yang cukup dekat dengan data sumur dan memiliki korelasi
yang lebih tinggi dibandingkan dengan metode multiatribut seismik. Oleh sebab itu,
model porositas dan saturasi air metode PNN merupakan model prediksi terbaik.
Berdasarkan model PNN, reservoir zona target lapangan ‘B’ memiliki nilai impedansi
akustik 25384 – 26133 ((ft/s)*(g/cc)), porositas sekitar 15 – 27% dan nilai saturasi air
sekitar 11 – 63%.

The 'B' field is a hydrocarbon prospect field located in the offshore Kutai Basin, East
Kalimantan. To determine the characterization of the ‘B’ field reservoir, porosity and
water saturation modeling was carried out using AI inversion, seismic multiattribute and
probabilistic neural network. This study uses 3D PSTM seismic data and wells data
(AND-1, AND-2, AND-3 and AND-4). In seismic data and wells data, AI inversion was
carried out to determine the lithological characteristics of the research area. Then, the AI
results were transformed to obtain a porosity model. The seismic multiattribute method
uses several attributes to predict the porosity and water saturation model. After that, the
non-linear properties of the probabilistic neural network were applied to produce the
porosity and water saturation model of the probabilistic neural network (PNN). The
porosity and water saturation model of AI transformation, seismic multiattribute and PNN
were validated with the porosity and water saturation values of the wells data to determine
whether the porosity and water saturation models represent the wells data values.
Validation was carried out on AND-1 and AND-2 wells. The porosity and water
saturation value of the well data for AND-1 around 25.3 - 35.9% and 45 - 60%, and the
porosity and water saturation value of AND-2 around 11 - 35% and 15 - 82%. The
porosity value of AND-1 as a result of AI transformation is around 16 - 67%, the seismic
multiattribute about 11.5 - 27% and the PNN about 11.5 - 27%. The water saturation value
of AND-1 resulted from seismic multiattribute around 4 - 63% and PNN around 18 - 63%.
The porosity value of AND-2 transformed by AI around 52 - 72%, the seismic
multiattribute around 11 - 21.5% and the PNN around 11 - 21.5%. The water saturation
value of AND-2 result from the seismic multiattribute around 63 - 85% and PNN around
63 - 85%. Then, the multiattribute seismic and PNN methods obtained the correlation
value between the target parameter and the predicted parameter. The seismic
multiattribute porosity model has a correlation of 0.840836 and PNN has a correlation of
0.936868. The multiattribute seismic water saturation model has a correlation of 0.915254
and PNN has a correlation of 0.994566. The AI transformation porosity model has a
higher range than the wells data. The PNN method of porosity and water saturation model
has a fairly close range of values to wells data and has a higher correlation than the
multiattribute seismic method. Therefore, the porosity and water saturation model of the
PNN method is the best prediction model. Based on the PNN model, the field target zone
reservoir 'B' has an acoustic impedance value about 25384 – 26133 ((ft/s) * (g/cc)), a
porosity of 15 - 27% and a water saturation of 11 - 63%.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sinaga, Taufik Mawardi
"Reservoir karbonat diperkirakan mengandung hampir 60% dari total cadangan hidrokarbon dunia dan diperkirakan memiliki 50% dari total produksi hidrokarbon. Hidrokarbon umumnya terdapat pada batuan berpori. Porositas batuan karbonat umumnya memiliki heterogenitas yang tinggi, kompleksitas, dan random. Salah satu metode yang efektif untuk mengatasi heterogenitas adalah metode neural network. Sehingga penelitian ini bertujuan untuk menetukan distribusi porositas dengan neural network pada batuan karbonat dengan menggunakan 2 data sumur dan data seismik 2D post stack time migration (PSTM) pada lapangan T. Seismik atribut yang digunakan sebagai input proses probabilistic neural network berupa data seismik dan hasil inversi serta log yang akan diprediksi penyebarannya. Digunakan step wise regression dan validation error untuk menentukan atribut terbaik yang akan digunakan.
Hasil prediksi nilai porositas menggunkan probabilistic neural network dengan input atribut terbaik yang telah terpilih menghasilkan korelasi yang lebih baik 0.81 dengan error 0.03 dibanding dengan metode multiatribut yang menggunakan persamaan linier yaitu 0.66 dengan error 0.04 dan hasil model log prediksi mendekati log aktual. Hasil distribusi porositas dapat dianilisis bahwa nilai porositas pada sumur C1 memiliki nilai porositas efektif yang rendah dibandingkan dengan sumur C4.

Reservoir carbonate mostly contains 60% of total hydrocarbon preserves in the world, and it is predicted about 50% which is produced hydrocarbon. Commonly, hydrocarbon is found in the rock pores. The porosity of carbonate, generally, has high heterogeneity, complexity, and random. One of effective methods to solve the problem is neural network. The aim of this study is to determine the distribution of porosity using neural network for carbonate in T field. Seismic attribute is used as input in neural network process which is seismic data, inversion result, and well log. Step wise regression and validation error are used to determine the best attributes that will be used to.
The prediction result of porosity using probabilistic neural network with the best attribute has better correlation than using multi attributes for linier method. The correlation and error value using neural network are 0.08% and 0.03%, while the value of correlation and error using multi attribute for linier method are 0.06% and 0.04%, respectively. The predicted log model is approaching the actual log. The result of porosity distribution shows that the porosity value of well C1 has lower effective porosity than well C4.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T53081
UI - Tesis Membership  Universitas Indonesia Library
cover
Fadlan Ardinda
"Cadangan migas semakin sulit ditemukan, hal ini dikarenakan kondisi geologi yang lebih kompleks. Kondisi yang kompleks ini menyebabkan kesulitan dalam menentukan persebaran reservoir. Maka dari itu diperlukan metode yang lebih bagus untuk mengatasi kondisi geologi yang kompleks tersebut. Penelitian ini menggunakan metode multiatribut dan Probabilistic Neural Network (PNN) yang dapat mencari hubungan antara atribut seismik dengan data yang dicari, untuk prediksi nilai properti dari batuan sekitarnya. Dari metode ini dihasilkan persebaran pada data porositas dengan nilai korelasi 0,52, saturasi air dengan nilai korelasi 0,73, dan shale content dengan nilai korelasi 0,58. Dimana gabungan dari data porositas, saturasi air, shale content, dan data impedansi akustik (AI) hasil inversi dapat menjadi petunjuk untuk identifikasi persebaran reservoir. Dari nilai porositas dan saturasi dapat dibuat persebaran hidrokarbon, dimana pada penelitian ini didapatkan nilai antara 0,01 – 0,03. Lapangan FA ini memiliki reservoir yang berada di antara sumur F-06, FA-05, FA-15, dan FA-18 dan menyebar ke arah barat dari sumur FA-05, FA-15 & FA-18.

Oil and gas reserves are increasingly difficult to find due to more complex geological conditions. This complex condition causes difficulties in determining reservoir distribution. Therefore a better method is needed to overcome these complex geological conditions. This study uses a multi-attribute method and Probabilistic Neural Network (PNN) that can search for correlation between seismic attributes and the data sought, for the prediction of property values ​​from surrounding rocks. From this method the distribution of porosity data with a correlation value of 0.52 was generated, water saturation with a correlation value of 0.73, and shale content with a correlation value of 0.58. Where the combination of porosity data, water saturation, shale content, and acoustic impedance (AI) data of inversion results can be a clue to identify reservoir distribution. From the porosity and saturation values, hydrocarbon dispersion can be made, where in this study values ​​were obtained between 0.01 - 0.03. This FA field has a reservoir between wells F-06, FA-05, FA-15, and FA-18 and spreads westward from wells FA-05, FA-15 & FA-18."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agung Kurniawan
"[ABSTRAK
Lapangan-X merupakan lapangan gas di Cekungan Kutai yang dikembangkan sejak tahun 1986. Reservoar lapangan-X merupakan endapan delta Miosen akhir yang berlapis, dimana dikarakterisasikan oleh formasi yang didominasi oleh lempung. Perselingan antara batupasir dan batuserpih menghasilkan heterogenitas porositas yang cukup tinggi. Salah satu metode yang efektif dalam mengatasi tingkat heterogenitas yang tinggi adalah dengan metode Artificial Neural Network (ANN). ANN menggunakan algoritma Probabilistic Neural Network (PNN) mampu mendiskriminasikan daerah yang memiliki sebaran porositas yang tinggi dan rendah dengan baik pada zona Fresh Water Sand (FWS) lapangan-X dibanding dengan metode Multiatribut linier yang cenderung merupakan nilai sebaran porositas rata-rata. Nilai korelasi hasil prediksi terhadap target menggunakan metode PNN mencapai 0.8610 dengan rata-rata kesalahan (average error) sebesar 0.0283, sementara nilai korelasi hasil metode Multiatribut linier hanya sebesar 0.7098 dengan rata-rata kesalahan (average error) sebesar 0.0398. Hasil PNN pada sayatan waktu +10 ms dari horizon FS33 berhasil mengkarakterisasikan sebaran porositas batupasir yang bersih dari lempung di bagian selatan daerah penelitian, dimana fasies pengendapan batupasir tersebut diinterpretasikan berasal dari dataran delta. Sementara sayatan waktu -10 ms dari horizon FS42, menunjukan sebaran porositas batugamping dengan fasies pengendapannya diinterpretasikan berasal dari lingkungan neritik (shelf). Dari penelitian ini, dapat disimpulkan bahwa metode PNN berhasil menggambarkan sebaran porositas batuan di zona Fresh Water Sand (FWS) lapangan-X dengan baik sehingga hasil prediksi penyebaran yang dilakukan mampu mendekati data- data sumuran.

ABSTRACT
X-field is a gas field in Kutai Basin and it has been developed since 1986. Reservoir of X-field is a multi layered upper Miocene deltaic deposits and characterized by a shaly formation. A highly intercalation between sand & shale unit in X-field has been contributed to the heterogeneity of porosity in the area. One of the effective methods to spatially quantify such heterogeneity of porosity is by using Artificial Neural Networks (ANN). ANN with Probability Neural Network (PNN) algorithm has been successfully retained more dynamic range, high and low frequency porosity content, compare to the Multiattributes linear which is tend to show a smoothed, or more averaged prediction. The correlation value from PNN methods can be up to 0.8610 with average error is 0.0283, while correlation value from Multiattribute linear only up to 0.7098 with average error is 0.0398. The time slice of PNN result at +10ms from horizon FS33 has been clearly figured out an accumulation of high porosity in the southern area of the interval target which is indicated as a clean sand lithology based on sensitivity analysis. And such accumulation has formed a distributaries channel trend which is interpreted as delta plain deposits. Meanwhile, the time slice of PNN result at - 10 ms from horizon FS42 has indicated a carbonate lithology which is interpreted as shelf deposits. From this study, it?s concluded that PNN algorithm as a nonlinear function has been successfully showed a better porosity distribution in the Fresh Water Sand (FWS) zone of X-field.;X-field is a gas field in Kutai Basin and it has been developed since 1986. Reservoir of X-field is a multi layered upper Miocene deltaic deposits and characterized by a shaly formation. A highly intercalation between sand & shale unit in X-field has been contributed to the heterogeneity of porosity in the area. One of the effective methods to spatially quantify such heterogeneity of porosity is by using Artificial Neural Networks (ANN). ANN with Probability Neural Network (PNN) algorithm has been successfully retained more dynamic range, high and low frequency porosity content, compare to the Multiattributes linear which is tend to show a smoothed, or more averaged prediction. The correlation value from PNN methods can be up to 0.8610 with average error is 0.0283, while correlation value from Multiattribute linear only up to 0.7098 with average error is 0.0398. The time slice of PNN result at +10ms from horizon FS33 has been clearly figured out an accumulation of high porosity in the southern area of the interval target which is indicated as a clean sand lithology based on sensitivity analysis. And such accumulation has formed a distributaries channel trend which is interpreted as delta plain deposits. Meanwhile, the time slice of PNN result at - 10 ms from horizon FS42 has indicated a carbonate lithology which is interpreted as shelf deposits. From this study, it?s concluded that PNN algorithm as a nonlinear function has been successfully showed a better porosity distribution in the Fresh Water Sand (FWS) zone of X-field.;X-field is a gas field in Kutai Basin and it has been developed since 1986. Reservoir of X-field is a multi layered upper Miocene deltaic deposits and characterized by a shaly formation. A highly intercalation between sand & shale unit in X-field has been contributed to the heterogeneity of porosity in the area. One of the effective methods to spatially quantify such heterogeneity of porosity is by using Artificial Neural Networks (ANN). ANN with Probability Neural Network (PNN) algorithm has been successfully retained more dynamic range, high and low frequency porosity content, compare to the Multiattributes linear which is tend to show a smoothed, or more averaged prediction. The correlation value from PNN methods can be up to 0.8610 with average error is 0.0283, while correlation value from Multiattribute linear only up to 0.7098 with average error is 0.0398. The time slice of PNN result at +10ms from horizon FS33 has been clearly figured out an accumulation of high porosity in the southern area of the interval target which is indicated as a clean sand lithology based on sensitivity analysis. And such accumulation has formed a distributaries channel trend which is interpreted as delta plain deposits. Meanwhile, the time slice of PNN result at - 10 ms from horizon FS42 has indicated a carbonate lithology which is interpreted as shelf deposits. From this study, it’s concluded that PNN algorithm as a nonlinear function has been successfully showed a better porosity distribution in the Fresh Water Sand (FWS) zone of X-field., X-field is a gas field in Kutai Basin and it has been developed since 1986. Reservoir of X-field is a multi layered upper Miocene deltaic deposits and characterized by a shaly formation. A highly intercalation between sand & shale unit in X-field has been contributed to the heterogeneity of porosity in the area. One of the effective methods to spatially quantify such heterogeneity of porosity is by using Artificial Neural Networks (ANN). ANN with Probability Neural Network (PNN) algorithm has been successfully retained more dynamic range, high and low frequency porosity content, compare to the Multiattributes linear which is tend to show a smoothed, or more averaged prediction. The correlation value from PNN methods can be up to 0.8610 with average error is 0.0283, while correlation value from Multiattribute linear only up to 0.7098 with average error is 0.0398. The time slice of PNN result at +10ms from horizon FS33 has been clearly figured out an accumulation of high porosity in the southern area of the interval target which is indicated as a clean sand lithology based on sensitivity analysis. And such accumulation has formed a distributaries channel trend which is interpreted as delta plain deposits. Meanwhile, the time slice of PNN result at - 10 ms from horizon FS42 has indicated a carbonate lithology which is interpreted as shelf deposits. From this study, it’s concluded that PNN algorithm as a nonlinear function has been successfully showed a better porosity distribution in the Fresh Water Sand (FWS) zone of X-field.]"
Jakarta: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T44753
UI - Tesis Membership  Universitas Indonesia Library
cover
Dewi Tirtasari
"Penelitian ini menggunakan data seismik 3 dimensi dan 5 data sumur dari lapangan w. Target penelitian yaitu batuan karbonat pada formasi Tuban di cekungan Jawa Timur Utara. Penelitian bertujuan menentukan distribusi porositas karbonat, dengan menggunakan neural network berdasarkan inversi dan atribut seismik. Inversi seismik model based dan linier programming sparse spike, menghasilkan impedansi akustik pada lapisan di bawah horizon Top Carbonate hingga horizon Base Carbonate, mengalami peningkatan signifikan pada rentang 38076 - 46857 ((ft/s)*(g/cc)). Atribut seismik sweetness, rms amplitude, dan reflection intensity, digunakan sebagai atribut eksternal, untuk tahap multiatribut linier regresi dan neural network. Multiatribut linier regresi dan neural network dilakukan untuk memprediksi porositas bedasarkan atribut-atribut internal maupun eksternal.
Hasil analisis multiatribut yang diaplikasikan pada data raw seismik dan 5 volum atribut eksternal, yaitu log porositas prediksi, memiliki nilai korelasi sebesar 0.712 terhadap log porositas. Dan, nilai validasinya sebesar 0.573. Sedangkan, Probabilistic Neural Network menghasilkan porositas prediksi dengan nilai korelasi sebesar 0.661 dan nilai validasinya sebesar 0.485. Berdasarkan multiatribut linier regresi maupun probabilistic neural network, porositas rata-rata pada lapisan reservoar karbonat sebesar 10-15% di bagian utara. Sedangkan, di bagian selatan, porositas rata-rata hanya di bawah 6%.

This study uses three-dimensional seismic data and 5 well data from w field. The research target is carbonate rocks of the Tuban formation in North East Java basin. The study aims to determine the distribution of porosity carbonate, by using neural network algorithm, based on acoustic impedance inversion and seismic attributes. Models based inversion and linear programming sparse spike inversion result in acoustic impedance, in the layers below the horizon Top Carbonate to horizon Base Carbonate, experienced a significant increase impedance in the range 38076-46857 ((ft/s)*(g/cc)). Some seismic attribute; sweetness, rms amplitude, and reflection intensity, are used as external attributes for multi attribute linear regression and neural network. Multi attribute linear regression and neural network is done to predict porosity based on attributes of both internal and external.
The results of the analysis that is applied to the data multi attribute raw seismic and 5 volumes of external attributes, is called log porosity prediction, have a correlation value of 0.712 to log porosity original. And the value of its validation is 0.573. Meanwhile, Probabilistic Neural Network is producing log porosity prediction with correlation value of 0.661 and the value of its validation by 0485. Multi attribute based linear regression and probabilistic neural network, average porosity of the reservoir layer of carbonate of 10-15% in the north. Meanwhile, in the southern part, average porosity of just under 6%.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T43850
UI - Tesis Membership  Universitas Indonesia Library
cover
Marlina Harahap
"ABSTRAK Radiasi sinar gamma dapat digunakan untuk pengawetan makanan, sterilisasi peralatan kesehatan, pemuliaan tanaman, dan hidrologi. Penggunaan sinar gamma memiliki risiko tinggi, sehingga diperlukan dosimeter. Indikator sinar gamma yang dibuat dari ekstrak Brassica oleraceae (B.o) mengandung antosianin yang sensitif terhadap pH, suhu, enzim, cahaya, dan sinar ultraviolet. Energi sinar gamma membuat degradasi warna ekstrak B. setelah divariasikan menjadi pH 2, pH 7, dan pH 9. Polivinil alkohol (PVA) digunakan sebagai matriks untuk meningkatkan sensitivitas indikator. Kertas Whatman dibuat menjadi matriks selain PVA. Indikator telah dibuat dari ekstrak B.o., campuran ekstrak B.o. dan PVA, plastik dari campuran ekstrak B., dan PVA, serta film kertas dari ekstrak B., dan kertas. Hasil karakterisasi menunjukkan sensitivitas yang berbeda ketika terkena sinar gamma hingga 40 kGy. Warna indikator memudar setelah disinari oleh sinar gamma. Pengaruh pH dan PVA pada ekstrak B. membuat respons yang berbeda dari masing-masing indikator. B. Respons indikator ekstrak pH 2-PVA memudar pertama setelah terkena dosis 25 kGy. Stabilitas warna semua indikator dalam kondisi penyimpanan yang berbeda dengan suhu, kelembaban dan pencahayaan menghasilkan indikator yang stabil dalam kondisi kritis dan suhu 5 ° C sementara indikator film berada dalam kondisi normal dan suhu kamar.
ABSTRACT Gamma ray radiation can be used for food preservation, sterilization of health equipment, plant breeding, and hydrology. The use of gamma rays has a high risk, so a radosimeter is needed. The gamma ray indicator made from Brassica oleraceae (B.o) extract contains anthocyanin which is sensitive to pH, temperature, enzymes, light, and ultraviolet light. Gamma ray energy makes the color degradation of extract B. after being varied to pH 2, pH 7, and pH 9. Polyvinyl alcohol (PVA) is used as a matrix to increase the sensitivity of the indicator. Whatman paper is made into a matrix other than PVA. Indicator has been made from extract B.o., mixture of extract B.o. and PVA, plastic from a mixture of B. extract, and PVA, as well as paper films from extract B., and paper. The characterization results show different sensitivity when exposed to gamma rays of up to 40 kGy. The indicator color fades after being illuminated by gamma rays. The effect of pH and PVA on extract B. makes a different response from each indicator. B. Response indicator extract 2-PVA pH fades first after being exposed to a dose of 25 kGy. The color stability of all indicators in different storage conditions with temperature, humidity and lighting produces a stable indicator in critical conditions and a temperature of 5 ° C while the film indicator is in normal condition and room temperature

 

Keywords: Indicator; gamma-ray; Brassica oleraceae; PVA

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T52286
UI - Tesis Membership  Universitas Indonesia Library
cover
Maria Sasi Febriaty
"Telah dilakukan penelit'ian kemungkinan penggunaan
teknjk sterilisasj radiasi untuk vitamin A palmitat,minyak
zaitun dan campuran keduanya dengan cara mempela -
jar pengaruhiradiasi sinar gamma pada karakteristika
kimia dan fisika vitamin A palmitat, rninyak zaitun, dan
campuran keduanya dengan dosis radiasi 0, 10, 20,30 kGy
dan penyimpanan 0, 1, 2, 3 bulan. Parameter yang diuji
untuk minyak zaitun ialah kelarutan , bilangan asam,bilangan
penyabunan, bilangan iod, bobot jenis, indeka bi
as dan kestabilan 'metil asam lemak bebas dengan kroma -
tografi cairan-gas . Untuk vitamin A palmitat dilaku -
kan uji kestabilan kadar dengan kromatografi cairan
cairan
Hasil pengujian menunjukkan bahwa kadar vitamin
A palmitat , bilangan asam , bilangan penyabunan,bh1an
an lad dipengaruhi oleh dosis radiasi 10, 20, 30 kGy
Penyimpanan selama 1, 2, 3 bulan mempengaru.hi kadar vitamin
A palmitat, bilangan asam, bilangan penyabunan
bilangan iod dan indeks bias minyak zaitun ( p)o,05 )

The posibility of using radiosteri]4zation technic
for vitamine A palmitate, olive oil and mixture of both
by studying the effect of Gamma rays in chemical and
physical characteristics of vitamine A palmitate, olive
oil and their mixture with radiation dose ( 0, 10 , 20
30 ky ) 'and storage ( 0 9 1, 2, 3 months ). The parameter
tested for olive oil were solubility , acid - saponifica
tion - iod values , density, refraction index and stabi
lity of free fatty acid metil ester with Gas Liquid Chro
matography . Vitamine A palmitate assays was determined
using High Pressure Liquid Chromatography.
The results obtained suôh that the concentration
of vitamine palmitate , acid - saponification-jod values
weie affected by iradiation dose . (. 10, 20 , 30 kGy ).
Storage for. 1, 2 and 3 months influence the concentration
of vitamine A palmitate , acid-saponificatinn-iod values
and refraction index of olive oil. ( p )0.05 )
"
Depok: Universitas Indonesia, 1985
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ajib Akmah
"Skripsi ini dilakukan sebagai penelitian untuk menganalisa proses identifikasi retina mata menggunakan metode neural network berbasis perangkat pemrograman komputasi numerik, yakni suatu sistem sederhana yang dapat menangani serangkaian proses pengolahan dan pelatihan menggunakan sumber informasi awal dari citra biometrik khususnya retina mata untuk bisa dijadikan sebagai identitas pribadi yang unik. Pada pengolahan citra retina mata manusia ini meliputi dua tahap yaitu tahap pra-pengolahan dan tahap identifikasi menggunakan neural network.
Pada tahap pra pengolahan, proses yang pertama kali dilakukan adalah pengubahan ukuran citra, hal ini dilakukan untuk mempermudah proses pengolahan berikutnya dalam mencari pola unik pada citra tersebut. Proses kedua adalah memusatkan perhatian pada daerah citra yang dianggap unik dengan mencuplik citra pada suatu area yang dianggap unik tersebut yaitu bagian syaraf optik. Kemudian dilakukan beberapa pengolahan lanjutan untuk memperoleh citra syaraf optik yang lebih spesifik yang digunakan sebagai masukan data pelatihan pada neural network. Pada tahap ini diharapkan sistem dapat bekerja dengan baik dalam mengidentifikasi retina mata manusia.

Method base on the peripheral numeric computation program, a simple system that able to handle connecting structure of processing and training use the information source of image biometric especially retina to be able as unique personal identity. At processing of human retina image cover two phases that is pre-process and identify by neural network.
At pre-processing phase, the first process is image resize this matter is conducted to alleviate the next process in searching unique pattern of the image. The second process is give all mind at image area that assumed unique by crop image at one particular area that is optic nerve. Then conduct some processing to obtain more specific optic nerve image which is used as input of neural network training data. At this phase this system is expected work well in identifying retina of human eye.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52161
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>