Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 40946 dokumen yang sesuai dengan query
cover
Suprapto W.
"To product electric emergy for simply house the system can supply seven unit lamps that are 3W or 7 unit lamps 7W. In this research we use three unit solar panel each 50Wp, 12V, 1.5 A, solar panel in parallel connection, the output voltage solar panel 12V and the putput of current is 4,5A. The moment sun is bright, the current income to charge controller and the to the battery, charge controller must be to flow to the battery, so we chose the 15A charge controller. If the sun is bright in a day we take the data start at 09.00 until 15.00 WIB, about sic hours, so in the battery has 27Ah, so we need 12V 45Ah battery for three unit solar panel 12V. the meaning only for lighting only, the power is 300W. If loads in the output inverter 1,36A and the input current in inverter is 25A, energy in the battery for six hours is 27Ah, so energy in the battery can for 1,3 hours, for operating in 2,6 hours we must have six solar panels, with charge controller 15A, 500W. For loads seven lamps each 3W so all 21W, current per lamp 0,014A so the output inverter 0,09A, the output voltage inverter 220V, the input voltage inverter 12V, the input current 1,75A, electrical energy ini battery 27Ah, the capability system to supply 15 hours, if we use 7W lamps so the total power 49W we need input current 4A, so can supply for 6,5 hours."
Medan: Politeknik Negeri Medan, 2019
338 PLMD 22:3 (2019)
Artikel Jurnal  Universitas Indonesia Library
cover
Jansen, Ted J.
Jakarta: Pradnya Paramita, 1995
620 JAN s
Buku Teks SO  Universitas Indonesia Library
cover
Karkati Mustika Andary
"Untuk mendorong pertumbuhan ekonomi masyarakat, pada daerah terisolir seperti daerah kepulauan Nusa Tenggara Timur, saat ini terjadi peningkatan kebutuhan energi listrik. Menurut RUPTL 2021-2030, di beberapa kabupaten Nusa Tenggara Timur memiliki rasio elektrifikasi dibawah 90%, dan pembangkitan listriknya masih mengandalkan energi fosil (crude oil) dengan penggunaan pembangkit diesel. Potensi energi baru terbarukan dapat dimanfaatkan di wilayah tersebut, khususnya energi surya dikarenakan cukup tingginya iradiasi matahari. Dari potensi tersebut dapat dimanfaatkan dengan pembangunan PLTS dan BESS yang terinterkoneksi dengan sistem tenaga listrik eksisting di pulau tersebut sehingga terjadinya sistem hibrida. Dalam pembangunan dan penerapaannya, perlu dilakukan optimasi untuk penentuan lokasinya interkoneksi. Nilai kestabilan tegangan dan frekuensi dari sistem hibrida sebelum dan sesudah terjadinya gangguan perlu ditinjau agar sistem tenaga listrik dapat beroperasi dengan stabil. Berdasarkan studi dan simulasi yang dilakukan, didapatkan kondisi optimum interkoneksi pada skenario alternatif 1, dimana interkoneksi PLTS dan BESS terhubung melalui saluran dengan Bus PLTD X / 20 kV. Hal ini mempertimbangkan operasi PLTD lebih dari 30% daya terpasang generator dengan PLTD beroperasi pada 0,772 MW saat beban pucak siang hari dan 0,658 MW saat beban puncak malam hari. Hasil dengan tegangan pada setiap bus setelah mengalami gangguan di atas nilai rata-rata 0,90 p.u. mengacu pada grid code wilayah NTMP pada variasi tegangan ± 10 %.

To encourage community economic growth, in isolated areas such as the islands of East Nusa Tenggara, currently there is an increase in the need for electrical energy. According to the 2021-2030 RUPTL, several districts of East Nusa Tenggara have electrification ratios below 90%, and electricity generation still relies on fossil energy (crude oil) with the use of diesel generators. The potential for new and renewable energy can be utilized in the area, especially solar energy due to the high solar irradiation. From this potential, it can be utilized by the construction of PLTS and BESS which are interconnected with the existing electric power system on the island so that a hybrid system occurs. In its development and implementation, it is necessary to optimize the location for interconnection. The value of voltage and frequency stability of the hybrid system before and after the disturbance needs to be reviewed so that the electric power system can operate stably. Based on the studies and simulations carried out, the optimum interconnection conditions were obtained in alternative scenario 1, where the PLTS and BESS interconnections are connected through a channel with the PLTD X / 20 kV Bus. This takes into account the PLTD operation of more than 30% of the installed power of the generator with the PLTD operating at 0.772 MW at peak load during the day and 0.658 MW at peak load at night. The results with the voltage on each bus after experiencing a disturbance above the average value of 0.90 p.u. refers to the grid code of the NTMP region at a voltage variation of ± 10%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Harten, P. van
Bandung: Binacipta, 1981
621.31 HAR i
Buku Teks SO  Universitas Indonesia Library
cover
Andreas Anugerah Pitoyo
"Energi terbarukan dari panel surya merupakan energi bersih dan jumlahnya melimpah. Energi terbarukan ini dapat dimanfaatkan untuk mengisi daya kendaraan listrik saat pagi hari sampai sore hari, sehingga panel surya dapat digolongkan sebagai sumber energi listrik sekunder. Panel surya dapat dipasang pada atap Stasiun Pengisian Kendaraan Listrik Umum untuk mengumpulkan energi ketika matahari bersinar. Energi yang dikumpulkan panel surya merupakan energi listrik yang nantinya digunakan untuk melakukan pengisian baterai kendaraan listrik umum. Tentunya, semakin banyak panel surya yang dipasang maka energi listrik yang dikumpulkan semakin banyak, oleh karena itu dapat dipertimbangkan pemasangan panel surya pada sisi atap SPKLU. Melalui abstrak ini, akan dipertimbangkan aspek desain dan ekonomi, seperti NPV, IRR, DPP, dan LCOE dari SPKLU yang didesain. Seiring dengan tren menurunnya harga panel surya dan baterai tiap tahunnya, maka pemanfaatan panel surya di atas atap SPKLU akan semakin mudah terealisasi. Selain energinya bersih, biaya per satuan energi kWh dari panel surya akan semakin murah tiap tahunnya.

Renewable energy from solar panels is one of many renewable energy that is clean and abundant. Energy from solar panel can be used to charge electric vehicles from morning to evening, hence solar panels can be classified as a secondary source of electrical energy. Solar panels can be installed on the roof of Public Electric Vehicle Charging Stations to collect energy when the sun is shining. The energy collected by solar panels is electrical energy which will later be used to charge public electric vehicle batteries. The more solar panels that are installed, the more electrical energy will be harvested, therefore it is good choice to consider installing solar panels on the roof side of the SPKLU. Through this abstract, aspects of design and economics such as NPV, IRR, DPP, and LCOE will be discussed. In line with the trend of decreasing prices for solar panels and battery each year, the use of solar panels on SPKLU roofs will become easier to realize. Apart from being clean energy, the cost per unit of kWh energy from solar panels will get cheaper every year."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Dewa Gede Agus Tri Putra
"System cogeneration adalah produksi energi thermal dan listrik secara simultan dengan sebuah sumber energi primer. System ini disusun oleh 5 komponen utama yaitu: kolektor surya (evaporator), motor torak tenaga uap dengan generator set, unit heat exchanger (kondensor) dan sebuah pompa sebagai sirkulator. Dalam kajian yang dilakukan, faktor-faktor yang mempengaruhi Daya listrik dan Thermal yang dihasilkan dalam system cogeneration ditunjukkan dalam sebuah hubungan matematis, serta pemodelan thermal untuk sebuah gedung lantai 3 yang akan diaplikasikan system cogeneration. Metode yang akan digunakan adalah regression multivariate dengan control least square dan meminimalkan residu antara hasil pengukuran dan hasil perhitungan (error analysis). Setelah kajian yang dilakukan, sebuah model kuadratik yang sesuai untuk mempresentasikan phenomena pisik yang terjadi pada motor torak tenaga uap yang akan digunakan dalam cogeneration system pada sebuah bangunan berlantai 3. Motor torak tenaga uap yang digunakan bekerja pada tekanan 30 bar dan memiliki putaran stabil pada 1500 rpm. Dengan menggunakan software TRNSYS 16 kebutuhan energi thermal gedung disimulasikan selama 8760 jam dan disesuaikan dengan kondisi iklim tempat perencanaan model yang akan dibangun. Dari simulasi yang telah dilakukan maka dapat diketahui bahwa total energy yang di konsumsi gedung tersebut adalah 62.5 kWhep/m2/tahun.

Cogeneration system is the production of thermal and electrical energy simultaneously with a primary energy source. This system is composed by five main components: solar collector (evaporator), steam piston motor with a generator set, the unit heat exchanger (condenser) and a pump as circulator. In a study conducted, the factors that affect the electrical and thermal power generated in the cogeneration system is shown in a mathematical relationship, and thermal modeling for a building that will be applied to cogeneration systems. Methods to be used are a multivariate regression with least square control and minimize the residuals between measurements and calculation response (error analysis). Once the study is done, a quadratic model is appropriate to present the physical phenomena occurring in the small steam engine that will be used in cogeneration system on a three floor building. Small steam engine that has been used work at under pressure of 30 bar on steady rotation at 1500 rpm. By using software TRNSYS 16 thermal energy requirements during 8760 hours of simulated building and adapted to the climatic conditions of the planning model to be built. From the simulations that have been made, it can be seen that the total energy consumption in buildings is 62.5 kWhep/m2/tahun."
Depok: Fakultas Teknik Universitas Indonesia, 2011
T29756
UI - Tesis Open  Universitas Indonesia Library
cover
Nasution, Muhammad Reza Maulana
"Energi surya merupakan salah satu energi terbarukan yang memiliki potensial besar dan belum cukup dieksploitasikan di indonesia untuk menghadapi tantangan global pemanasan global yang terkait dengan krisis energi dan pemeliharaan lingkungan akibat produksi karbon dalam pembangkitan energi dengan energi tak terbarukan seperti energi bahan bakar fosil. Produksi karbon dapat meningkatkan karbon pada atmosfer, sehingga menyebabkan peningkatan temperatur permukaan bumi dan menyebabkan pemanasan global karena sifatnya sebagai gas rumah kaca yang mampu menahan panas keluar dari bumi. Namun pembangkitan energi listrik dengan energi surya memiliki sifat fluktuatif akibat variabilitas pencahayaan matahari, dan pada kondisi operasi nyata, bergantung pada kondisi operasi nyata seperti iklim, temperatur, dan penyinaran matahari. Oleh karena itu digunakan Current-Voltage Characteristic (I-V Characteristic) yang adalah metode menggambarkan hubungan antara arus melalui suatu Sirkuit, perangkat, atau material dan tegangannya dan umum digunakan untuk mengkarakterisasikan operasi sebuah modul surya dengan grafik, sehingga berguna untuk menentukan karakteristik operasi dari suatu perangkat seperti modul surya. untuk dapat membangun kurva Karakteristik I-V pada operasi nyata membutuhkan perangkat pengambil data yang mampu beroperasi secara cepat karena kondisi operasi tersebut akan bervariasi dengan berubahnya waktu dan kondisi pengukuran. oleh karena itu dirancang perangkat pembangun kurva karakteristik I-V dengan harga rendah berbasis mikrokontroler Arduino Uno ATMega328P untuk membangun kurva karakteristik I-V modul surya dengan variasi beban resistif. Perangkat Pembangun Kurva Karakteristik yang dirancang pada penelitian ini menggunakan relay untuk mengubah nilai resistif dengan mengubah beban resistor, voltage divider dengan ADC ADS1115 untuk mengambil data tegangan, dan modul sensor INA219 untuk mengukur arus dari suatu modul surya pada pada suatu nilai resistif. Penelitian terdiri dari peracangan perangkat keras, perangkat lunak, dan pengukuran dengan membangun kurva karakteristik serta analisis nilai pengukuran. Perangkat lunak dibangun menggunakan Arduino IDE dan juga menggunakan Microsoft Excel. Pengujian dilakukan dengan membangun karakteristik I-V dan P-V dari sebuah panel surya silikon monokristalin pada setiap jam antara pukul 06:00 WIB sampai pukul 18:00 WIB pada kondisi operasi nyata dengan langit cerah tak berawan pada posisi selalu tegak lurus terhadap cahaya matahari dan posisi dimana sel surya tegak lurus dengan cahaya matahari pada periode hari dimana sel surya menghasilkan daya terbesar, untuk mengukur perbedaan performa operasi sel surya yang bergerak untuk selalu tegak lurus terhadap matahari dan sel surya yang stasioner dan diarahkan tegak lurus dengan posisi matahari pada periode hari dimana sel surya menghasilkan daya paling besar.

Solar energy is a renewable energy that has great potential and has not been exploited enough in Indonesia to face the global challenges of global warming which is related to the energy crisis and environmental Issues due to carbon production in energy generation with non-renewable energy such as fossil fuel energy. Carbon production can increase carbon in the atmosphere, thereby causing an increase in the earth's surface temperature and causing global warming because of its nature as a greenhouse gas which is able to keep heat inside the earth. However, the generation of electrical energy with the renewable solar energy has a fluctuating nature due to the variability of solar lighting, and in real operating conditions, depends on real operating conditions such as climate, temperature and solar radiation. Therefore, the Current-Voltage Characteristic (I-V Characteristic) which is a method of describing the relationship between the current through a circuit, device, or material and its voltage, is used, I-V Characteristic is generally used to characterize the operation of a solar module with graphics, so it is useful for determining the operating characteristics of a device. such as solar modules. To be able to build an I-V characteristic curve in real operations requires a data collection device that is capable of operating quickly because the operating conditions will vary with changes in time and measurement conditions. Therefore, a low cost I-V characteristic curve builder device based on the Arduino Uno ATMega328P microcontroller was designed to build the I-V characteristic curve for solar modules with resistive load variations. The Characteristic Curve Building Device designed in this research uses a relay to change the resistive value by changing the resistor load, a voltage divider with ADC ADS1115 to retrieve voltage data, and an INA219 sensor module to measure the current from the solar module with a load of a resistive value. The research consists of designing the hardware, software and using the designed device to measure and build an I-V characteristic curve. The software was built using the Arduino IDE and also uses Microsoft Excel. Testing was carried out by establishing the I-V and P-V characteristics of a monocrystalline silicon solar panel every hour between 06:00 WIB and 18:00 WIB in real operating conditions with a clear, cloudless sky at a position always perpendicular to sunlight and the position where the cell solar cells perpendicular to sunlight in the period of the day where the solar cells produce the greatest power, to measure the difference in operating performance of solar cells that move to always be perpendicular to the sun and solar cells that are stationary and directed perpendicular to the position of the sun during the period of the day where the solar cells produce greatest power."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Syifa Restu Pramesti
"ABSTRAK
Pada COP ke-26 tahun 2021 di Glasgow, Pemerintah Indonesia menegaskan komitmen tanah air untuk mencapai net zero emissions (NZE) pada tahun 2060, seiring dengan aksi percepatan dalam rangka Paris Agreement dan United Nations Framework Convention on Climate Change. Fokus utama di sini adalah penggunaan Energi Baru Terbarukan (EBT), khususnya energi surya yang memiliki potensi sangat besar di Indonesia dan dianggap menjadi pemegang peran penting dalam mewujudkan serangkaian pilar Sustainable Development Goals (SDGs), yaitu affordable and clean energy; industry, innovations, and infrastructure; dan climate action. Dalam upaya mencapai target 23% EBT pada bauran energi nasional tahun 2025, Pemerintah Indonesia sedang menggalakkan program pengembangan dari pemanfaatan PLTS atap, terutama untuk daerah perkotaan yang memiliki permasalahan keterbatasan lahan. Penelitian ini akan difokuskan terkait perancangan sistem PLTS atap on-grid pada Gedung Teknologi 3, BRIN yang mana memiliki intensitas radiasi matahari cukup tinggi sekitar 4,83 kWh/m2/hari dan potensi pemanfaatan area atap yang luas menggunakan perangkat lunak PVsyst. Selain itu, dilakukan perbandingan atas fixed tilted plane dengan seasonal tilt adjustment terhadap nilai optimum tilt angle (OTA) tertentu dalam rangka memaksimalkan radiasi matahari untuk dimanfaatkan oleh panel surya. Berdasarkan analisis dan evaluasi secara teknis maupun ekonomis melalui empat skenario yang mampu dilakukan berdasarkan kombinasi hasil perhitungan jumlah komponen dengan pengaturan orientasi, dihasilkan perancangan PLTS yang memiliki pembangkitan sebesar 106,015 kWp dengan kebutuhan komponen sebanyak 233 modul surya dan 4 inverter serta melalui pengaturan orientasi berupa seasonal tilt adjustment adalah berkinerja paling optimal. Menurut aspek teknis yang ditinjau, perancangan tersebut mampu memberikan kontribusi terhadap penggunaan energi listrik pada hari kerja sebesar 46% dan hari libur sebesar 61%, menghasilkan Performance Ratio (PR) sebesar 82,74%, dan menyediakan pembangkitan energi listrik sebesar 158.156 kWh per tahun dengan global incident in collector plane sebesar +2,4%, near shadings: irradiance loss sebesar -0,80%, dan IAM factor on global sebesar -1,84%. Sementara itu, menurut aspek ekonomis yang ditinjau, perancangan tersebut mampu memberikan kontribusi terhadap penghematan biaya tagihan listrik sebesar 37% per tahun, membutuhkan biaya investasi awal sebesar Rp2.220.984.249, menghasilkan Payback Period (PP) pada tahun ke-16, menyediakan Net Present Value (NPV) sebesar Rp2.612.851.243, dan membentuk Benefit Cost Ratio (BCR) sebesar 1,18 dengan umur proyek yang direncanakan selama 20 tahun.

ABSTRACT
At the 26th COP in 2021 in Glasgow, the Government of Indonesia emphasized the country's commitment to achieve net zero emissions (NZE) by 2060, along with accelerated action within the framework of the Paris Agreement and the United Nations Framework Convention on Climate Change. The main focus here is using renewable energy, especially solar energy, which has enormous potential in Indonesia and is considered to be an essential role holder in realizing a series of Sustainable Development Goals (SDGs) pillars, namely affordable and clean energy; industry, innovations, and infrastructure; and climate action. To achieve the 23% renewable energy target in the national energy mix by 2025, the Government of Indonesia is promoting a development program for using rooftop solar power plants, particularly in urban areas with limited land availability. This research will focus on designing an on-grid rooftop solar power plant system at Technology Building 3, BRIN, which has a high solar radiation intensity of around 4,83 kWh/m2/day and the potential to utilize a large roof area using PVsyst software. In addition, a comparison of the fixed tilted plane with the seasonal tilt adjustment to certain optimum tilt angle (OTA) values is carried out to maximize solar radiation to be utilized by solar panels. Based on the analysis and evaluation, technically and economically, through four scenarios that can be done based on the combination of the results of the calculation of the number of components with the orientation settings, the resulting solar power plant design has a generation of 106,015 kWp with a component requirement of 233 solar modules and 4 inverters and through orientation setting in the form of seasonal tilt adjustment is the most optimal performance. According to the technical aspects reviewed, the design can contribute to the use of electrical energy on weekdays by 46% and weekends by 61%, resulting in a Performance Ratio (PR) of 82,74%, and providing electrical energy generation of 158.156 kWh per year with a global incident in collector plane of +2,4%, a near shadings: irradiance loss of -0,80%, and a IAM factor on global of -1,84%. Meanwhile, according to the economic aspects reviewed, the design can contribute to savings in electricity bill costs of 37% per year, requiring an initial investment cost of IDR 2.220.984.249, generating a Payback Period (PP) in year 16, providing a Net Present Value (NPV) of IDR 2.612.851.243, and forming a Benefit Cost Ratio (BCR) of 1,18 with the planned project life of 20 years."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Natasya Dewi Nuraini Sasongko
"Pembangunan Pembangkit Listrik Tenaga Surya (PLTS) telah menjadi program prioritas Kementerian Energi dan Sumber Daya Mineral (ESDM) dalam upaya penerapan energi baru dan energi terbarukan (EBT). Hal ini pun sejalan dengan komitmen Tujuan Pembangunan Berkelanjutan (SDGs) poin 7 (Energi Bersih dan Terjangkau) dan 13 (Penanganan Perubahan Iklim). Sebagai upaya mendukung hal tersebut, pemerintah aktif mendorong instalasi PLTS atap. Penelitian ini membahas mengenai perancangan penambahan PLTS atap on-grid pada Gedung Energi 625 dengan membandingkan dua spesifikasi modul surya yang berbeda. Penelitian ini bertujuan untuk mengetahui perancangan PLTS yang optimal ditinjau dari aspek teknis maupun ekonomi melalui hasil simulasi perangkat lunak PVsyst. Penerapan PLTS atap on-grid tambahan pada Gedung Energi 625 ini diharapkan dapat memberikan penghematan biaya listrik. Dari hasil simulasi, didapat perancangan PLTS atap on-grid tambahan 49,5 kWp yang lebih optimal dengan jenis modul surya JA Solar 550 Wp yang mampu memproduksi energi listrik, yaitu sebesar 72,8 kWh/tahun serta performa rasio sebesar 0,832. Selain itu, mampu memenuhi 28,6% kebutuhan listrik per bulan. Proyek memiliki asumsi lifetime selama 25 tahun. Dari sisi ekonomi, perancangan PLTS tersebut memiliki nilai Net Present Value (NPV) sebesar Rp488.504.798, Internal Rate of Return (IRR) sebesar 11,6%, Payback Period (PP) pada tahun ke-9, Benefit Cost Ratio (BCR) sebesar 1,38, Levelized Cost of Energy (LCOE) sebesar Rp1.121,53/kWh, dan biaya investasi sebesar Rp711.025.000.

The development of PV (Photovoltaic) rooftops has become a priority program for the Ministry of Energy and Mineral Resources (ESDM) in the effort to implement new and renewable energy (EBT). That is in line with the commitment to Sustainable Development Goals (SDGs), precisely Goal 7 (Affordable and Clean Energy) and Goal 13 (Climate Action). As part of these efforts, the government actively promotes the installation of PV rooftops. This study discusses the design of an additional on-grid PV rooftop on Gedung Energi 625 by comparing two different solar modules spesifications. This study aims to determine the optimal design of solar PV regarding technical and economic aspects through the results of PVsyst software simulations. Implementing this additional on-grid PV rooftop on Gedung Energi 625 is expected to provide cost savings on electricity. From the simulation results, a more optimal on-grid rooftop PV design of 49.5 kW was obtained with the JA Solar 550 Wp solar module type capable of producing 72.8 kWh/year electrical energy and a performance ratio of 0.832. Apart from that, it can meet 28.6% of monthly electricity needs. The project has an assumed lifetime of 25 years. From an economic perspective, the PV design will have a Net Present Value (NPV) of IDR 488,504,798, an Internal Rate of Return (IRR) of 11.6%, a Payback Period (PP) of 9 years, a Benefit Cost Ratio (BCR) of 1.38, a Levelized Cost of Energy (LCOE) of IDR 1,121.53/kWh, and investment costs of IDR 711,025,000."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Utari Budihardjo
Jakarta: PDII-LIPI, 1980
R 621.470 BUD t
Buku Referensi  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>