Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 67246 dokumen yang sesuai dengan query
cover
Sudirja
"Penelitian ini membahas tentang metode pembuatan bodi kendaraan terbang dan analisa dari material yang dihasilkan. Konten penelitian ini meliputi literatur, metode penelitian, dan hasil penelitian. Fokus dari penelitian ini adalah pada teknik pembuatan bodi kendaraan terbang dengan cara menyemprot cetakan bodi yang telah dilapisi kain elastis menggunakan resin. Jenis kain elastis yang digunakan untuk penelitian ini adalah kain yang memiliki kemampuan tahan air dan kain yang menyerap air. Ring cetakan digunakan sebagai rangka dan kain elastis untuk membentuk permukaan kemudian disemprotkan oleh resin agar menjadi lebih keras. Setelah kain elastis mengeras maka fiberglass/karbonfiber dan lapisan microsphere akan ditambahkan untuk memperkuat material. Kemudian uji tarik dan uji bending dilakukan untuk mengetahui kekuatan dan kekakuan material ini. Dari pengujian diperoleh bahwa spesimen GRVeWP kain tahan air memiliki kekuatan yang lebih baik daripada spesimen GRVeWP kain penyerap air dengan tegangan tarik 5 [49] Kg / mm [MPa], perpanjangan 2,26 , dan von misses 1.718e 008 N / m sedangkan kain elastis penyerap air dengan 4 [39 ] Kg / mm [MPa] untuk tegangan tarik, perpanjangan 2,24 , dan von misses 2.736e 008 N / m . Kemudian nilai kuat tarik material komposit hasil dari metode penyemprotan rangka kain elastis menggunakan resin ripoksi vinyl ester type 804 dengan material carbon fiber double layer CRVe adalah sebesar 243,729 MPa dengan beban maksimal 3425.98 N sedangkan apabila ditambah dengan lapisan microsphere CRVeM kuat tariknya menjadi 111,014 MPa dengan beban maksimal 4787,33 N. Untuk hasil uji bending specimen CRVeM memiliki modulus elastisitas yang lebih tinggi yaitu sebesar 9,34493 GPa dengan regangan yang lebih kecil yaitu 1,17423 sedangkan untuk specimen CRVe sebesar 7,42774 GPa dengan regangan lebih besar yaitu 2,48458.

This study discusses about the method of flying car's body manufacturing and the analysis of the material product. The content of this study includes literature, research methods, and research results. The focus of this research is on the technique of manufacturing the body of a flying car by spraying molded body that has been coated with elastic fabric using resin. The type of elastic fabric used for this research is a cloth that has waterproof properties and a water absorbing properties fabric. Ring mold is used as a frame and elastic fabric to form a surface then sprayed by resin to make it harder. Once the elastic fabric is hardened then fiberglass carbonfiber and microsphere layers will be added to strengthen the material. Then a tensile test and bending test are performed to determine the strength and rigidity of this material. From the test it was found that the GRVeWP specimen waterproof cloth had better strength than the specimen GRVeWP water absorbent cloth with tensile stress 5 49 Kg/mm MPa, elongation 2.26, and von misses 1.718e 008 N m while the water absorbent cloth with 4 39 Kg mm MPa for tensile stress, 2.24% elongation, and von misses 2.736e 008 N m. Then the value of tensile strength of composite material resulting from this spraying method using vinyl ester type 804 ripoksi resin with carbon fiber double layer CRVe material is 243,729 MPa with maximal load 3425.98 N whereas when added with microsphere layer CRVeM its tensile strength becomes 111.014 MPa with maximum load 4787.33 N. For bending test specimen CRVeM has a higher elastic modulus that is equal to 9.34493 GPa with a smaller strain that is 1.17423% while for CRVe specimen of 7.42774 GPa with a larger strain of 2.48458%."
Depok: Fakultas Teknik Universitas Indonesia, 2018
T50637
UI - Tesis Membership  Universitas Indonesia Library
cover
Hana Nabila Anindita
"Kebutuhan material semikonduktor untuk industri elektronika di Indonesia semakin meningkat ditandai dengan tren sumbangan dari industri elektronika terhadap ekspor industri yang terus meningkat setiap tahunnya. Namun demikian, ternyata Indonesia masih mengimpor bahan baku material semikonduktor. Permasalahan lain dari penggunaan material semikonduktor adalah komponen semikonduktor yang tidak dipergunakan lagi akan dibuang menjadi sampah plastik yang sulit diuraikan. Oleh karena itu pembuatan material semikonduktor yang berasal dari bahan alam dapat menjadi solusi dari permasalahan tersebut. Salah satu material yang dapat digunakan untuk material semikonduktor adalah komposit serat nata de coco dengan filler silika. Metode yang digunakan untuk membuat komposit serat nata de coco dengan filler silika adalah metode perendaman dengan variasi ukuran partikel silika, konsentrasi suspensi silika, dan lama perendaman. Dari hasil SEM-EDX dapat diketahui bahwa silika telah terdeposisi pada serat. Hasil uji konduktivitas listrik menunjukkan bahwa semua komposit yang dihasilkan bersifat semikonduktor. Nilai konduktivitas tertinggi sebesar 1,21 x 10-5 S/cm atau kurang lebih 48 kali konduktivitas serat nata de coco polos dihasilkan dari komposit serat nata de coco/silika dengan ukuran partikel 370 nm, konsentrasi suspensi 6%w/v, dan lama perendaman 3 hari.

The needs of semiconductor material for the electronic industry in Indonesia is increasing each year according to the postive trend of export from electronic industry in Indonesia. In contrast, the fact that Indonesia actually still import the raw material for the semiconductor material that is used in electronic industry is ironic. Another problem comes from the use of semiconductor material is that the unused semiconductor component can be a plastic waste that needs a long time to be degraded. As a solution for this condition, the making of semiconductor material from natural substances is needed. One of the natural substances that can be used as the semiconductor material is nata de coco fiber composite with silica filler. The submerged method is used in the production of nata de coco fiber composite with silica filler by using the immersion time, concentration of nanosilica suspension, and the size of silica particle as the variations. From the SEM-EDX results, it can be seen that silica particle is deposited on the nata de coco fiber. From the conductivity characterization, it is known that all of the composite can be categorized as semiconductor material. The highest electric conductivity, 1,21 x 10-5 S/cm or about 48 times higher than the conductivity of nata de coco fiber, is reached from the nata de coco fiber composite with silica filler that has a particle diameter of 370 nm, and submerged in silica suspension with concentration 6% w/v for 3 days."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54819
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hana Nabila Anindita
"Dalam penelitian ini dilakukan pembuatan komposit semikonduktor dengan menggunakan matriks akrilik yang ditambahkan dengan dua jenis filler yakni ZnO dan serat nata de coco. Tujuan dari penelitian ini adalah untuk mendapatkan material komposit semikonduktor yang memiliki kekuatan mekanik, serta ketahanan termal yang baik. Metode yang digunakan adalah polimerisasi in situ dimana filler dan monomer matriks yang berupa resin dicampurkan kemudian ditambahkan katalis sebanyak 1% berat resin untuk mempercepat polimerisasi sehingga didapat komposit dengan filler yang terdistribusi di dalam polimer akrilik setelah didiamkan selama 12 jam. Komposit ini kemudian diukur modulus elastisitas, suhu transisi gelas, serta konduktivitas listriknya. Penambahan filler nata de coco mampu meningkatkan modulus elastisitas dan suhu transisi gelas dari akrilik. Modulus elastisitas serta suhu transisi gelas tertinggi dicapai oleh komposit akrilik/nata de coco dengan persen volume sebesar 30% yakni 2,68 GPa dan 199,47oC.
Secara umum penambahan filler ZnO dan nata de coco meningkatkan konduktivitas dari komposit. Komposit yang dihasilkan dapat dinyatakan sebagai material semikonduktor karena berada pada rentang konduktivitas 10-8-103 S/cm. Komposit dengan sifat semikonduktor yang paling baik adalah komposit akrilik/ZnO dengan persen volume ZnO sebesar 30% dengan konduktivitas sebesar 2,7 x 10-7 S/cm. Komposit dengan kombinasi filler ZnO sebesar 20% dan nata de coco 10% volume memberikan modulus elastisitas serta suhu transisi gelas yang lebih tinggi dari komposit akrilik/ZnO yakni mencapai 1,79 GPa dan 175,73oC. Sementara konduktivitas dari komposit tersebut lebih tinggi dari konduktivitas akrilik/nata de coco yakni mencapai 1,9 x 10-7 S/cm.

Synthesis of semiconductor composite using acrylic matrix filled with ZnO and nata de coco fiber has been conducted in this research. The purpose of this research is to obtain semiconductor composite material that have a good mechanical strength and thermal resistance. In situ polymerization method is used in this research where fillers and matrix monomer are mixed and then 1%wt of catalyst is added into the mixture to make it polymerizes faster. After 12 hours, the composite with acrylic matrix and filler is ready to be characterized. Three parameters are characterized in this research such as elastic modulus, glass transition temperature, and electric conductivity of the composite. The addition of nata de coco filler can increase the elastic modulus and glass transition temperature of the acrylic. The highest elastic modulus and glass transition temperature is obtained from acrylic/nata de coco composite with 30% filler volume percentage that reach 2,68 GPa and 199,47oC.
In general the addition of ZnO and nata de coco filler can increase the conductivity of the composite. The composites that has been made in this research can be classified as semiconductor material because the conductivity is in the range of 10-8-103 S/cm. Composite that has a high semiconductor characteristic is obtained from acrylic/ZnO composite with 30% filler volume percentage that reach 2,7 x 10-7 S/cm. The composite with 20% volume of ZnO filler and 10% volume of nata de coco gives a higher elastic modulus and glass transition temperature than those in acrylic/ZnO composite that reach 1,79 GPa and 175,73oC. In addition, the conductivity of this composite is 1,9 x 10-7 S/cm which is higher than the conductivity of acrylic/nata de coco composite.;
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T44494
UI - Tesis Membership  Universitas Indonesia Library
cover
Feraldi Putra Andika
"Selama satu abad terakhir, keselamatan penumpang telah menjadi tujuan desain yang penting di antara semua kriteria kinerja kendaraan transportasi darat. Salah satu upaya dalam menjaga keselamatan penumpang adalah membuat struktur kendaraan yang layak tabrakan. Penelitian ini menganalisis crashworthiness tiga konfigurasi tabung komposit yang diperkuat serat karbon (CFRC) di bawah beban kompresi aksial menggunakan metode elemen hingga (FEM). Konfigurasi yang diuji meliputi polyurethane (PU) foam, tabung kosong (hollow), tabung berisi busa (foam-filled), dan tanpa tabung. Hasil simulasi menunjukkan bahwa penambahan polyurethane foam dalam tabung CFRC secara signifikan meningkatkan penyerapan energi spesifik (SEA) dan gaya maksimum yang diserap selama tabrakan. Konfigurasi foam-filled tube memiliki nilai SEA sebesar 20,20 kJ/kg, lebih tinggi dibandingkan dengan hollow tube yang memiliki SEA sebesar 17,84 kJ/kg. Analisis juga menunjukkan bahwa mode deformasi berubah menjadi diamond crushing ketika tabung diisi dengan busa, yang meningkatkan kemampuan penyerapan energi. Studi ini menyimpulkan bahwa pengisian busa pada tabung CFRC meningkatkan performa crashworthiness, menunjukkan potensi untuk digunakan dalam aplikasi otomotif dan kedirgantaraan.

Over the past century, passenger safety has become an important design objective among all the performance criteria of land transportation vehicles. One of the efforts in maintaining passenger safety is to make the vehicle structure crashworthy. This study analyzes the crashworthiness of three configurations of carbon fiber reinforced composite (CFRC) tubes under axial compression load using the finite element method (FEM). The configurations tested include polyurethane (PU) foam without tubes,  hollow tubes, foam-filled tubes, and. Simulation results indicate that the addition of polyurethane foam in CFRC tubes significantly enhances the specific energy absorption (SEA) and maximum force absorbed during a crash. The foam-filled tube configuration exhibited a SEA value of 20.20 kJ/kg, higher than the hollow tube with a SEA value of 17.84 kJ/kg. The analysis also showed that the deformation mode changed to diamond crushing when the tube was filled with foam, improving energy absorption capability. This study concludes that filling CFRC tubes with foam enhances crashworthiness performance, demonstrating potential for applications in the automotive and aerospace industries."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Asep Handaya Saputra
"The electronic industry’s need for semiconductor material is increasing each year due to technology’s rapid development. Semiconductor material has an electric conductivity of approximately 10-8-103 S/cm, and it is used as an important component in electronic devices. Semiconductor material is generally made of plastic modified with conductive filler. The problem with using semiconductor material is that the discarded components can be plastic waste that requires significant time to degrade; therefore, the synthesis of semiconductor material from natural substances must be observed. One of these natural substances is nata de coco fiber modified with a conductive filler. The impregnation method is used in the synthesis of the nata de coco fiber composite. The fillers used in this study are ZnO and silica, and the size of the filler particle and the concentration of the filler suspension are used as variations. From the SEM-EDX results, it can be seen that the filler is successfully deposited on the nata de coco fiber. Silica filler gives a higher conductivity than ZnO filler because of its lower energy band gap. The highest conductivity result is obtained from the composite impregnated in a 0.3-0.4 mm particle diameter of filler with 3% w/v suspension concentration for three days, producing the conductivity result of 6.95×10-6 S/cm for ZnO filler and 10.1×10-6 S/cm for silica filler, or about 16 times higher than the conductivity of nata de coco fiber."
Depok: Faculty of Engineering, Universitas Indonesia, 2015
UI-IJTECH 6:7 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
Anisa Agita
"Kebutuhan akan material penyerap gelombang elektromagnetik semakin tumbuh pada aplikasi militer dan juga pada aplikasi sipil. Material penyerap gelombang elektromagnetik yang selanjutnya akan disebut dengan Radar Absorbing Material (RAM), pada frekuensi tertentu akan melemahkan radiasi gelombang elektromagnetik yang datang dan mendisipasi energi yang diserap dalam bentuk panas. RAM berhasil dibuat dengan metode hand lay up yang tersusun dari carbon black/epoksi/E-Glass fiber. Variasi carbon black sebagai filler diberikan sebesar 0 wt%, 1 wt %, 3 wt %, dan 5 wt%. Karakterisasi penyerapan gelombang elektromagnetik RAM dilakukan dengan uji Vector Network Analyzer (VNA) pada pita frekuensi X-Band 8,2-12,4 GHz. Spesimen RAM dengan kandungan carbon black 5 wt% menunjukkan nilai reflection loss paling optimal sebesar -10,7 dB pada frekuensi 9,5 GHz dengan penyerapan gelombang EM mencapai 91,48 %.

The need for an electromagnetic wave absorbing material has beengrowing formilitary as well as for civil application. Electromagnetic wave absorbing material which would be referred to the Radar Absorbing Material (RAM), at a certain frequency weakens the incoming electromagnetic wave radiation and dissipates the absorbed energy in the form of heat. RAM was successfully made by hand lay-up method which wascomposed of carbon black / epoxy / E-Glass fiber. Variation of carbon black as filler was given by 0 wt%, 1 wt%, 3 wt%, and 5 wt%. Characterization of the electromagnetic wave absorption ofRAM was conducted by Vector Network Analyzer(VNA) test on the X-Band frequency of 8.2 to 12.4 GHz. RAM with the 5 wt%carbon black showedthe most optimal value reflection loss of - 10.7 dB at 9.5 GHz with electromagentic wave absorption reached up to 91.48%.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S60173
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gusti Ruri Lestari
"ABSTRAK
Solusi pada penyembuhan patah tulang belakang akibat osteoporosis yang sedang berkembang saat ini adalah metode vertebroplasty. Vertebroplasty merupakan metode yang menginjeksikan material secara langsung untuk mengisi tulang belakang yang patah dengan bentuk tak beraturan. Oleh karena itu, material mampu injeksi digunakan untuk mengisi cacat tersebut guna membantu proses pembentukan tulang. Pada penelitian ini, komposit alginat-hidroksiapatit mampu injeksi dikembangkan dan diteliti dengan variasi komposisi berat alginat. Pengujian injekabilitas, pengujian tekan, analisis spektroskopi FTIR dan pengamatan Scanning Electron Microscope (SEM) menghasilkan komposit dengan komposisi 60% alginat memiliki modulus tekan sebesar 0.15 MPa dengan kemampuan injekabilitas >85% dan memiliki morfologi yang sesuai yakni berstruktur pori dan berserat secara seragam. Komposisi 60% alginat adalah komposisi optimum sebagai komposit alginat-hidroksiapatit pengisi tulang mampu injeksi. Proses fabrikasi komposit mampu injeksi ini dapat digunakan untuk mengembangkan sistem material mampu injeksi untuk metode vertebroplasty.

ABSTRAK
The cure to the spinal fracture due to osteoporosis that newly developed is vertebroplasty method. Vertebroplasty is a method that injects the material directly to the spine which fractures irregularly. Thus, the injectable materials are used to perfectly fill defect in order to commence the bone formation on the fracture area. In this study, an injectable alginate-hydroxyapatite composite was developed and investigated by varying the weight composition of alginate. Injection capability testing, compressive testing, FTIR spectroscopy analysis and Scanning Electron Microscope (SEM) observation results suggested that composite of 60% alginate conduces compressive modulus of 0.15 MPa with fair injection capability of >85% and resemblance of morphology with uniformly porous and fibrous structure. Composition of 60% alginate is the optimum composition for injectable alginate-hydroxyapatite composite bone filler. This injectable composite fabrication process can be used for the development of injectable materials system for vertebroplasty method."
2016
S64222
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Muzakki
"Salah satu komponen penting kendaraan adalah rangka atau chassis. Rangka merupakan bagian kendaraan yang berfungsi melindungi pengendara dari benturan. Rangka yang nantinya akan didesain tersebut dirancang dengan bobot seringan mungkin dan tetap memerhatikan factor keamanan yang sesuai dengan regulasi Shell Eco-Marathon. Penelitian skripsi ini bertujuan untuk merancang struktur rangka komposit serat karbon mobil untuk kompetisi Shell Eco-Marathon dengan sumber energi penggerak yaitu motor pembakaran dalam atau ICE (Internal Combustion Engine) dan motor listrik. Skripsi difokuskan untuk mendesain struktur rangka komposit untuk mobil hemat energi konsep urban berbahan bakar gasoline dan listrik dengan material komposit serat karbon.Jenis serat karbon yang digunakan yaitu woven wet dengan matriks epoxy serta core material yang digunakan yaitu divinycell h-100. Pembuatan desain struktur menggunakan perangkat lunak Autodesk Inventor 2022 dan Solidworks 2018, penetapan struktur komposit menggunakan Ansys ACP Workbench 19.2, dan simulasi beban menggunakan Ansys Static Stuctural Workbench 19.2. Besar beban pada simulasi didapatkan dengan mengambil data torsi dan daya mobil hemat energi ICE dan listrik tim Universitas Indonesia Supermileage Vehicle (UI-SMV) dengan dynamometer dan shaft dynamometer sebagai data acuan torsi dan daya yang dibutuhkan oleh mobil hemat energi. Uji simulasi kekuatan chassis yaitu beban vertikal, beban puntir, beban pengereman, beban rollbar sebesar 700 N, beban lateral dan beban traksi. Simulasi kekuatan pada perangkat lunak tersebut untuk menemukan hasil berupa tegangan von-mises, faktor keamanan, total deformasi dan massa. Data hasil simulasi akan dijadikan acuan untuk mendesain rangka komposit serat karbon mobil hemat energi dengan mempertimbangkan deformasi maksimal dan safety faktor juga. Massa yang diperoleh dari hasil simulasi untuk mobil ICE sebesar 18,742 kg sedangkan mobil listrik sebesar 19,1 kg. Kemudian untuk target kekakuan dan kekuatan kedua desain chassis mobil layak atau aman untuk digunakan.

One of the important components of the vehicle is the frame or chassis. The frame is the part of the vehicle that serves to protect the driver from collisions. The frame that will be designed will be designed with the lightest possible weight and still pay attention to the safety factor in accordance with the Shell Eco-Marathon regulations. This thesis research aims to design a car carbon fiber composite frame structure for the Shell Eco-Marathon competition with a driving energy source, namely an internal combustion engine or ICE (Internal Combustion Engine) and an electric motor. The thesis is focused on designing a composite frame structure for an energy-efficient urban concept car using gasoline and electricity with carbon fiber composite material. The type of carbon fiber used is woven wet with an epoxy matrix and the core material used is divinycell h-100. The structure design was made using Autodesk Inventor 2022 and Solidworks 2018 software, the determination of the composite structure using Ansys ACP Workbench 19.2, and load simulation using Ansys Static Stuctural Workbench 19.2. The magnitude of the load in the simulation is obtained by taking the torque and power data of the ICE energy-efficient car and the electricity of the Universitas Indonesia Supermileage Vehicle (UI-SMV) team with a dynamometer and shaft dynamometer as reference data for torque and power required by energy-efficient cars. The chassis strength simulation tests are vertical loads, torsional loads, braking loads, rollbar loads of 700 N, lateral loads and traction loads. Strength simulation in the software to find results in the form of von-mises stress, safety factor, total deformation and mass. The data from the simulation results will be used as a reference for designing a carbon fiber composite frame for energy-efficient cars by considering maximum deformation and safety factors as well. The mass obtained from the simulation results for the ICE car is 18.742 kg while the electric car is 19.1 kg. Then to target the stiffness and strength of both the car chassis design is feasible or safe to use.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andrea Baskoro Prabowo
"Serat nata de coco memiliki karakteristik biodegradable, memiliki formasi kristalinitas serat, dan memiliki struktur fisik baik sehingga cocok dikembangkan menjadi material superkuat. Pada penelitian ini dilakukan pemasukan filler nanosilika ke dalam serat nata de coco dengan menggunakan metode post modification (perendaman), serta dipadukan dengan beberapa variasi resin dengan teknik handlay up untuk mendapatkan material komposit yang lebih kuat. Dari hasil pengujian SEM-EDX didapat nanosilika terdistribusi merata di dalam serat, jumlah nanosilika yang masuk ke dalam serat sebanding dengan lama perendaman. Dari hasil uji mekanik didapatkan lama perendaman yang optimum adalah 3 hari karena meningkatkan kuat tarik serat dari 85.6 MPa menjadi 316 MPa. Material komposit yang tertinggi kuat tariknya adalah variasi resin polyamide+epoxy yang mencapai kuat tarik sebesar 96.2 MPa.

Nata de coco fiber has the characteristic of biodegradable, has a crystallinity of fiber formation, and has a good physical structure so that suitable to be developed into high strength material. In this study has been carried out nanosilica filler dispersing into nata de coco fiber using post modification (immersion) method, and making composite nata de coco fiber with some variation of resin using handlay up technique to get stronger composite materials. From the SEM-EDX results found that nanosilica distributed uniformly in the fibers, amount of nanosilica dispersed in the fiber is proportional to the long of immersion. Mechanical test results showed that the optimum immersion time is 3 days because it increases the tensile strength of fiber from 85.6 MPa to 316 MPa. Composite material with the highest tensile strength is a variation of polyamide+epoxy resin with 96.2 MPa of strength."
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1129
UI - Skripsi Open  Universitas Indonesia Library
cover
Shalisya Earlyana Zachra
"Penelitian ini bertujuan untuk mengembangkan material komposit laminat berbasis aluminium 1100 yang diperkuat serat karbon sebagai alternatif material armor ringan untuk aplikasi pertahanan. Latar belakang penelitian ini didorong oleh kebutuhan Indonesia akan material pertahanan yang kuat, ringan, dan mampu menyerap energi kinetik proyektil sesuai dengan standar National Institute of Justice (NIJ) 0108.01. Dengan meningkatnya ancaman dan dominasi impor alutsista, inovasi material lokal yang memenuhi spesifikasi Military Detailed Specification (MIL-DTL) menjadi sangat penting. Komposit difabrikasi menggunakan metode hand lay-up dengan adhesif resin epoksi dan hardener, serta teknik cold rolling untuk reduksi ketebalan matriks sebesar 30%. Variasi lapisan serat karbon meliputi 8, 16, dan 24 lapisan, dengan kelompok sampel Non-Rolling (NR) dan Rolling (R). Hasil pengujian menunjukkan bahwa perlakuan cold rolling meningkatkan kekerasan dan kekuatan tarik material secara signifikan dimana nilai kekerasan Rockwell meningkat sebesar 12,27%. Kekuatan tarik maksimum tertinggi diperoleh pada sampel dengan 24 lapisan serat karbon dengan perlakuan rolling (C24RB), mencapai 952 MPa. Pengujian balistik sesuai standar NIJ 0108.01 mengungkapkan bahwa peningkatan jumlah lapisan serat karbon serta perlakuan cold working mampu meningkatkan ketahanan terhadap penetrasi proyektil. Analisis mikrostruktur menunjukkan deformasi butir aluminium menjadi lebih pipih dan memanjang akibat proses cold rolling.

This study aims to develop a laminated composite material based on aluminum 1100 reinforced with carbon fiber as a lightweight armor alternative for defense applications. The research is driven by Indonesia's need for strong, lightweight defense materials capable of absorbing projectile kinetic energy per National Institute of Justice (NIJ) 0108.01 standards. With rising threats and reliance on imported defense equipment, local innovation meeting Military Detailed Specification (MIL-DTL) standards is essential. The composite was fabricated using the hand lay-up method with epoxy resin and hardener, combined with a cold rolling technique to reduce matrix thickness by 30%. Carbon fiber layers varied between 8, 16, and 24, divided into Non-Rolling (NR) and Rolling (R) groups. Results showed cold rolling significantly improved material hardness and tensile strength. Rockwell hardness increased by 12.27% compared to non-rolled samples, while the highest tensile strength, 952 MPa, was achieved in the 24-layer rolled sample (C24RB). Ballistic testing per NIJ 0108.01 standards demonstrated enhanced projectile resistance with increased carbon fiber layers and cold working. Microstructural analysis revealed aluminum grains were flattened and elongated due to cold rolling. "
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>