Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 123833 dokumen yang sesuai dengan query
cover
Muhammad Zulfikar Fauzi
"ABSTRAK
Formaldehida merupakan senyawa kimia yang digunakan pada industri perekat. PT X merupakan produsen formaldehida di Jawa Timur. Sistem pengendali proses yang digunakan di PT X masih berbasis proportional integral (PI). Pengendali konvensional ini masih memiliki kekurangan. Multivariable model predictive control (MMPC) diajukan untuk meningkatkan kinerja sistem pengendali pada PT X. Model empiris dibuat menggunakan process reaction curve (PRC) dan perhitungan parameter first order plus dead time (FOPDT). Empat manipulated variable (MV) dan empat controlled variable (CV) membentuk 16 model empiris. Perhitungan parameter MMPC, meliputi sample time (T), prediction horizon (P), control horizon (M), dilakukan dengan metode Shridhar dan Cooper (1998) dan dioptimalkan dengan metode fine tuning. Kinerja pengendalian MMPC diuji dengan perubahan set point (SP) dan ketahanan atas gangguan (disturbance rejection). Empat pengendali yang diuji, yaitu pengendali tekanan evaporator (PIC-101), pengendali liquid percent level evaporator (LIC-101), pengendali laju alir steam (FIC-102), dan pengendali suhu udara (TIC-101). Nilai parameter MMPC meliputi T, P, dan M yang optimal berturut turut adalah 3, 62, dan 2. Pengendali MMPC dapat memberikan peningkatan kinerja pengendalian pada uji SP tracking dengan rata rata sebesar 33,24% untuk IAE dan 42,93% untuk ISE. Sedangkan, pada uji disturbance rejection, terdapat peningkatan kinerja dengan rata-rata sebesar 33,48% untuk IAE dan 58,08% untuk ISE.

ABSTRACT
Formaldehyde is chemical substances that is used in adhesive industry. PT X is formaldehyde producer in East Java. PT X is using proportional integral based control system. This conventional controller has several weaknesses. Multivariable model predictive control (MMPC) is used to increase the performance of control system at PT X. Empirical model is made with process reaction curve (PRC) followed by first order plus dead time (FOPDT) calculation. Four manipulated variable (MV) and four controlled variable (CV) will construct 16 empirical models. Calculation of MMPC parameter, which include sample time (T), prediction horizon (P), and control horizon (M), is done with Shridhar and Cooper method (1998) and optimized by fine tuning method. Performance of MMPC is tested by set point changes and disturbance rejection. Four controllers tested are evaporator pressure control (PIC-101), liquid percent level control (LIC-101), steam flow control (FIC-102), and air temperature control (TIC-101). The optimized parameter of MMPC which include T, P, and M are 3, 62, and 2 respectively. MMPC Controller can increase controller performance in SP tracking with average number of 33.24% for IAE and 42.93% of ISE. Meanwhile, in disturbance rejection, there is an increase in average of 33.485 for IAE and 58.08% for ISE."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sultan Shiddiqi Salman
"ABSTRAK
Formaldehida merupakan senyawa kimia yang populer dengan banyak kegunaan, dengan jumlah kebutuhan yang cenderung terus bertambah. PT X merupakan salah satu produsen formaldehida yang masih memiliki permasalahan terkait kapasitas produksinya. PT X masih menggunakan pengendali Proportional-Integral (PI) yang masih mempunyai ruang untuk peningkatan produksinya. Model Predictive Control (MPC) digunakan untuk mengoptimalisasikan parameter pengendalian proses produksi formaldehida di PT X. Model empiris dibuat untuk diterapkan pada pengendali MPC berdasarkan Process Reaction Curve (PRC) dengan menggunakan pendekatan First Order Plus Dead Time (FOPDT). Kinerja pengendali diuji menggunakan set point (SP) tracking dan disturbance rejection. Ada empat pengendali yang diuji, yaitu pengendali laju alir steam (FIC-102), pengendali temperatur udara (TIC-101), pengendali level evaporator (LIC-101), dan pengendali tekanan evaporator (PIC-101). Didapatkan hasil model empirik FOPDT untuk masing-masing pengendali, dengan nilai parameter pengendalian Prediction Horizon (P), Control Horizon (M), dan Sampling Time (T) yang optimal secara berurutan: (1, 2, dan 1) pada FIC-102, (62, 21, dan 1) pada TIC-101, (50, 10, dan 6) pada PIC-101, dan (70, 21, dan13) untuk LIC-101. Terjadi perbaikan kinerja berdasarkan uji perubahan nilai set point baik dihitung melalui IAE maupun ISE sebesar 26,9% dan 8,03% untuk FIC-102, 15,37% dan 32,51% untuk TIC-101, 13,37% dan 25,9% pada PIC-101, serta 23,35% dan 6,71% pada LIC-101. Pada uji disturbance rejection juga terjadi perbaikan kinerja baik dihitung melalui IAE maupun ISE sebesar 96,4% dam 99.74% untuk FIC-102, 13,37% dan 25,9% untuk TIC-101, 54,25% dan 76,67% pada PIC-101, serta 15,96% dan 4,4% pada LIC-101.

ABSTRACT
Formaldehyde is a chemical compound known for its many uses, with the increase of its demand. PT X is one of the producers of formaldehyde that has problems related to its production capacity. PT X right now still uses Proportional-Integral (PI) that still have rooms of improvements. Model Predictive Control (MPC) is used to optimize the process control parameters of formaldehyde production in PT X. The empirical model is made for the MPC based on the Process Reaction Curve (PRC) using First Order Plus Dead Time (FOPDT). The control performance is tested using set point (SP) tracking and disturbance rejection. There are four controls that were tested, which are steam flow control (FIC-102), air temperature control (TIC-101), evaporator level control (LIC-101), and evaporator pressure control (PIC-101). Thus, the results of the empirical FOPDT model for each control is obtained, with the value of Prediction Horizon (P), Control Horizon (M), and Sampling Time (T) parameters are optimal and its value respectively are: (1, 2, and 1) for FIC-102 , (62, 21, and 1) for TIC-101, (50, 10, and 6) for PIC-101, and (70, 21, and 13) for LIC-101. The performance improvement based on the set point change test calculated through the IAE and ISE are 26.9% and 8.03% for FIC-102, 15.37% and 32.51% for TIC-101, 13.37% and 25, 9% for PIC-101, and 23.35% and 6.71% for LIC-101. Based on the disturbance rejection test it is also improvements on the performance both calculated through the IAE and ISE of 96.4% and 99.74% for FIC-102, 13.37% and 25.9% for TIC-101, 54.25% and 76.67% for PIC-101, and 15,96% and 4.4% on the LIC-101."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Adjisetya
"Hidrogen merupakan salah satu gas yang memiliki banyak kegunaan. Salah satunya pada industri kimia. Pada pabrik biohidrogen, unit kompresor merupakan salah satu unit yang penting dalam pabrik biohidrogen dari biomassa. Kompresor berfungsi untuk mencapai tekanan tinggi pada kondisi operasi selanjutnya. Multivariable model predictive control (MMPC) digunakan untuk mengendalikan proses pada pabrik. Untuk mendapatkan pengendalian yang optimal, perlu dilakukan penyetelan. Penyetelan akan dilakukan pada Matlab-Simulink yang diintegrasikan dengan Aspen Plus Dynamics. Sistem pengendalian akan dibuat pada Simulink dan simulasi proses akan dilakukan pada Aspen Plus Dynamic. Penyetelan ini dilakukan dungeon metode Genetic Algorithm dungeon metode pencarian seleksi turnamen. Setelah itu, hasil penyetelan akan dijalankan juga dengan unisim design agar kinerja pengendalian dapat dibandingkan dengan penelitian sebelumnya. Model first order plus dead time (FOPDT) digunakan sebagai model prediksi MMPC. Pada penelitian ini, model FOPDT yang digunakan di MMPC pada Matlab harus dihasilkan dengan cara satuan tekanan keluaran kompresor terlebih dahulu diubah menjadi satuan persentase karena MMPC pada Matlab akan menginterpretasikan variabel-variabel perhitungan dalam satuan persen. Parameter time sampling (T), prediction horizon (P), dan control horizon (M) terbaik yang diperoleh dari metode penyetelan seleksi turnamen pada simulasi dengan unisim untuk perubahan set-point (SP) yaitu 1 detik, 18, dan 3. Untuk uji gangguan parameter T, P, dan M yang diperoleh dengan penyetelan fine tuning terbaik yaitu 1 detik, 341, dan 121. Pada simulasi Matlab-Simulink-Aspen Plus Dynamics, parameter T, P, dan M yang terbaik yaitu 0,05 detik, 18, dan 2 untuk perubahan SP dan 0,05 detik, 7, dan 1 untuk perubahan gangguan.

Hydrogen is one of the gases that has many uses, including in the chemical industry. In a biohydrogen plant, the compressor unit is one of the important units in the biomass-based biohydrogen plant. The compressor unit works to achieve high pressure for further operational conditions. Multivariable Model Predictive Control (MMPC) is used to control the processes in the plant. To obtain optimal control performance, tuning process is necessary. The tuning process will be conducted in Matlab-Simulink integrated with Aspen Plus Dynamics. The control system will be designed in Simulink, and the process simulation will be executed in Aspen Plus Dynamics. The tuning was done using the Genetic Algorithm with tournament selection search method. Subsequently, the tuning results will also be implemented in Unisim Design to compare the control performance with previous research. The First Order Plus Dead Time (FOPDT) model is applied as the prediction model for MMPC. In this study, the FOPDT model used in MMPC in Matlab must be generated by converting the compressor output pressure unit into a percentage unit due to the MMPC in Matlab will interpret the calculation variables in percent units. For the set-point change, the best time sampling (T), prediction horizon (P), and control horizon (M) parameters that were obtained from the tournament selection tuning method in the simulation with Unisim design are 1 second, 18, and 3. For disturbance testinwere obtainedest parameters are 1 second, 341, and 121 that obtained by fine-tuning method. In the Matlab-Simulink-Aspen Plus Dynamics simulation, the best parameters T, P, and M for set-point changes are 0.05 seconds, 18, and 2, and for disturbance changes are 0.05 seconds, 7, and 1."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Fachry Arrifqi
"Ester base oil merupakan pelumas alami yang telah diterima secara luas dikarenakan kemampuan pelumasannya yang tinggi, serta keunggulan seperti kinerja suhu rendah, indeks viskositas yang tinggi, pengurangan gesekan yang sangat baik, dan sifat anti aus. Proses sintesis ester base oil melibatkan dua tahapan utama, yaitu oligomerisasi dan esterifikasi. Penelitian ini bertujuan untuk mendapatkan rancangan serta mendesain pengendalian proses pada proses pre- treatment oligomerisasi pabrik ester base oil dengan multivariable model predictive control (MMPC) 4x4. Metode yang digunakan untuk mendapatkan model first order plus dead time (FOPDT) 4x4 adalah dengan cara dilakukan identifikasi sistem menggunakan metode Smith, metode Wade, dan metode Solver. Selanjutnya, ditentukan model FOPDT terbaik dengan membandingkan nilai root- mean-square error (RMSE) terkecil dari setiap metode. Metode tuning yang digunakan untuk MMPC adalah metode Shridhar-Cooper dilanjutkan dengan fine- tuning untuk mendapatkan nilai parameter P (prediction horizon), M (control horizon), dan T (sampling time). Parameter MMPC tersebut akan diuji berdasarkan respon kinerja pengendali terhadap pengujian set point (SP) tracking dan pengujian disturbance rejection. Kinerja MMPC juga akan dibandingkan dengan kinerja pengendali propotional-integral (PI) dengan perhitungan integral absolute error (IAE) dan integral square error (ISE). Hasil identifikasi sistem didapatkan model FOPDT terbaik menggunakan metode Smith yaitu M1V3, M2V1 ; metode Wade yaitu M1V2, M2V3, M2V4, M4V2 ; metode Solver yaitu M1V1, M1V4, M2V2, M3V1, M3V2, M3V3, M3V4, M4V1, M4V3, M4V4. Metode fine-tuning pada penyetelan MMPC menghasilkan parameter P, M, T terbaik masing-masing sebesar 350, 300, dan 2. Pada pengujian SP ttacking, MMPC menunjukkan kinerja terbaik dalam pengendalian suhu sedangkan kinerja pengendali PI lebih baik dalam pengendalian laju alir. Pada pengujian disturbance rejection, kinerja MMPC lebih baik dibandingkan pengendali PI dengan perbaikan kinerja pengendalian sebesar 7,16% - 61,35% untuk nilai IAE dan 13,96% - 88,60% untuk nilai ISE.

Ester base oil is a natural lubricant widely accepted due to its high lubricating ability, as well as advantages such as low-temperature performance, high viscosity index, excellent friction reduction, and anti-wear properties. The synthesis process of ester base oil involves two main stages, namely oligomerization and esterification. This research aims to obtain a design and design process control in the pre-treatment process of oligomerization in the ester base oil plant with multivariable model predictive control (MMPC) 4x4. The method used to obtain the first-order plus dead time (FOPDT) 4x4 model is by identifying the system using Smith's method, Wade's method, and Solver's method. Furthermore, the best FOPDT model is determined by comparing the smallest root-mean-square error (RMSE) values from each method. The tuning method used for MMPC is the Shridhar-Cooper method followed by fine-tuning to obtain the parameter values P (prediction horizon), M (control horizon), and T (sampling time). These MMPC parameters will be tested based on controller performance responses to set point (SP) tracking testing and disturbance rejection testing. The performance of MMPC will also be compared with proportional-integral (PI) controllers using integral absolute error (IAE) and integral square error (ISE) calculations. The results of the system identification obtained the best FOPDT model using Smith's method, namely M1V3, M2V1; Wade's method, namely M1V2, M2V3, M2V4, M4V2; Solver's method, namely M1V1, M1V4, M2V2, M3V1, M3V2, M3V3, M3V4, M4V1, M4V3, M4V4 .The fine-tuning method in MMPC tuning resulted in the best P, M, T parameters of 350, 300, and 2 respectively. In SP tracking testing, MMPC showed the best performance in temperature control while PI controller performance was better in flow rate control. In disturbance rejection testing, MMPC performance was better than PI controllers with performance improvement ranging from 7.16% to 61.35% for IAE values and 13.96% to 88.60% for ISE values."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jesslyn Phenica
"ABSTRAK
MMPC (Multivariable Model Predictive Control) digunakan untuk mengontrol suhu dan tekanan di kilang regasifikasi LNG untuk mengatasi masalah yang saling mempengaruhi variabel dan mengurangi jumlah pengontrol. Ada empat variabel yang dikontrol (variabel terkontrol, CV) dan empat variabel yang dimanipulasi variabel, MV). CV yang dikontrol adalah tekanan di tangki penyimpanan LNG yaitu tekanan keluaran vaporizer, suhu keluaran vaporizer, dan suhu gas ke pipa. MV dimanipulasi, yang masing-masing berpasangan dengan CV tersebut, adalah laju aliran produk tank top, laju aliran gas pipa, laju aliran air laut, dan pemanas tugas. Identifikasi Model empiris FOPDT (First Order Plus Dead-Time) akan dilakukan terhadap keempatnya pasang CV dan MV untuk menggambarkan interaksi antar variabel. FOPDT diperoleh digunakan sebagai pengontrol di MMPC dan menentukan pengaturan kinerja kontrol Parameter MMPC yaitu P (prediction horizon), M (control horizon), T (waktu sampling). Kinerja kontrol diukur dengan menggunakan metode ISE (Integral Square Error). Hasilnya, parameter MMPC (P, M, T) untuk kondisi regasifikasi LNG adalah optimum masing-masing adalah 330, 1, 1. Ukuran ISE dari pengontrol MMPC dalam setpoint pelacakan: 2.12 × 10-4; 23.834; 0,763; 0,085, dengan perkembangan kinerja pengontrol masing-masing 31.262%, 17%, 175%, 757% dibandingkan kinerja MPC.

ABSTRACT
MMPC (Multivariable Model Predictive Control) is used to control temperature and pressure in the LNG regasification plant to overcome the problem of interplaying variables and reducing the number of controllers. There are four controlled variables (controlled variable, CV) and four manipulated variables
variable, MV). CV that is controlled is the pressure in the LNG storage tank, namely the vaporizer output pressure, the vaporizer output temperature, and the gas temperature to the pipe. MV manipulated, each of which is paired with the CV, is the tank top product flow rate, the pipeline gas flow rate, the seawater flow rate, and the heating duty. Identification of the FOPDT (First Order Plus Dead-Time) empirical model will be carried out on the four CV and MV pairs to describe the interactions between variables. The obtained FOPDT is used as a controller in the MMPC and determines the control performance settings for the MMPC parameters, namely P (prediction horizon), M (control horizon), T (sampling time). Control performance is measured using the ISE (Integral Square Error) method. As a result, the MMPC parameters (P, M, T) for the optimum LNG regasification conditions were 330, 1, 1. ISE size of the MMPC controller in the tracking setpoint: 2.12 × 10-4; 23,834; 0.763; 0.085, with the development of the controller performance respectively 31,262%, 17%, 175%, 757% compared to the performance of MPC.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rickson Mauricio
"Proses dehidrasi gas merupakan salah satu proses yang umum dijumpai pada industri pengolahan gas. Unit dehidrasi gas ini tentu diharapkan dapat beroperasi pada kondisi produksi yang optimum sehingga dapat menghasilkan produk sales gas yang memberikan keuntungan bagi kedua belah pihak. Namun, adanya kandungan hidrokarbon dan uap air pada sales gas akan menyebabkan pembentukan hidrat yang bersifat korosif pada saluran pipa. Untuk mencegah hal tersebut, gas alam yang berasal dari reservoar perlu dikeringkan terlebih dahulu sebelum dijual sebagai sales gas. Oleh karena itu, dibutuhkan sistem pengendalian proses pada bagian-bagian yang penting pada unit dehidrasi gas agar kestabilan dan keselamatan proses produksi dapat terjaga. Sistem tersebut dirancang untuk menjaga keamanan operasi dan memastikan proses berjalan dengan optimal untuk mendapatkan kualitas produk sales gas yang baik. Selama ini pengendalian hanya dilakukan menggunakan pengendali Proporsional-Integral, akan tetapi belum optimal sehingga perlu digunakan pengendali Multivariabel MPC Model Predictive Control. Penyetelan pengendali menggunakan metode Non-Adaptif DMC dan fine tuning kemudian hasil penyetelan dengan metode yang lebih baik akan dibandingkan dengan pengendali PI. Evaluasi kineja pengendalian dilihat berdasarkan seberapa cepat respon pengendali dalam mengatasi perubahan set point dan menangani adanya gangguan serta berdasarkan nilai ISE Integral Square Error. Sebagai hasilnya, metode fine tuning lebih baik digunakan dengan konstanta penyetelan P Prediction Horizon, M Model Horizon, dan T Sampling Time yang optimum adalah 14, 5, dan 3, dengan nilai ISE pada perubahan set point pada pengendalian tekanan dan temperatur sebesar 55 dan 51, atau perbaikan kinerja pengendalian sebesar 11.29 dan 16.39 dibandingkan dengan kinerja pengendali PI.

Gas dehydration process is one of the most common processes in gas processing industry. To produce sales gas that could benefit both parties, an optimum operation condition have to be obtained. However, the presence of hydrocarbon and water vapor on sales gas will lead to the formation of hydrates that are corrosive to the pipeline. Natural gas originating from the reservoir needs to be drained first before being sold as a sales gas to prevent the formation of hydrates. Therefore, a process controlling system is required in the critical parts of gas dehydration unit in order to maintain the stability and safety of the production process. This system is designed to maintain the security of operations and ensure the process runs optimally to get good quality sales gas. Current control system are mostly using Proportional Integral controller, but MPC Model Predictive Control controller is more preferable to optimize the process control. Adjustment of the controller were done using the DMC Non Adaptive method and fine tuning. The best tunning result from those two methods then will be compared with the PI controller. Evaluation of control performance is based on how fast controller could overcoming set point changes, handling disturbance and ISE Integral Square Error value. As a result, fine tuning methods are better used with P Prediction Horizon , M Model Horizon , and T Sampling Time optimization constants of 14, 5, and 3, with ISE values for set point changes in pressure control and temperatures are 55 and 51, or improvement in control performance by 11.29 and 16.39 compared to PI controller performance.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ira Mutiara Dewi
"Model Predictive Control (MPC) merupakan sistem pengendalian yang menggunakan model berdasarkan data hasil pengukuran keluaran (output) saat ini atau masa sebelumnya untuk memprediksi nilai dari variabel proses (input) pada masa yang akan datang. Pada penelitian ini, sistem pengendalian MPC digunakan untuk menangani pengendalian proses variabel jamak dalam unit operasi Continous Stirred Tank Reactor (CSTR) dengan reaksi pembuatan propylene glycol. Model dinamik sesuai dengan kondisi operasi yang dapat mewakili interaksi antara variabel jamak dibuat untuk diterapkan pada sistem pengendali. Sistem pengendalian proses disimulasikan dengan menggunakan perangkat lunak Unisim R390.1. Simulasi pengendalian proses dilakukan untuk menghasilkan performa pengendalian yang optimum dan untuk mengendalikan variable jamak yang saling berinteraksi dalam sistem pada CSTR. Optimasi pada sistem pengendalian dilakukan dengan cara tuning terhadap parameter-parameter MPC seperti model horizon (N), waktu sampel (T), prediction horizon (P), dan control horizon (M).
Hasil dari simulasi menunjukkan Model F sebagai model dinamik terbaik pada pengendali MPC multivariable mampu menangani jangkauan perubahan setpoint dalam rentang perubahan yang kecil dari 0,33 ke 0,331 dengan IAE sebesar 0,10602. Secara keseluruhan, pengendali MPC belum dapat mengendalikan sistem CSTR secara optimum berdasarkan nilai IAE, namun pengendali MPC lebih mampu menjaga kestabilan sistem dibandingkan dengan pengendali PI.
Model Predictive Control (MPC) are control system which use model based on value output variable at present or past to predict value of future process variable. In this research, MPC control system use to handle multivariable process control in unit operation Continous Stirred Tank Reactor (CSTR) with propylene glycol reaction system. Dynamics model based on operating condition which representative interaction between multivariable are made to implement in control system. Process control system simulating in Unisim R390.1 software. The simulation of process control aims to achieve optimum performance of controller and to control interaction between multivariable in CSTR system. Optimasion will be doing in system control with MPC parameters tuning such as model horizon (N), time sampling (T), prediction horizon (P), and control horizon (M).
The Results show that Model F as the best model in MPC multivariable can control the change of setpoint in short length from 0,33 to 0,331 with 0,10602 IAE. Overall, MPC controller can?t controlled CSTR system with optimum result based on IEA value, but MPC can make system more stabile than PI controller.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43763
UI - Skripsi Open  Universitas Indonesia Library
cover
I Gede Eka Perdana Putra
"Dimetil eter DME sebagai energi alternatif yang bersih telah mendapat perhatian dalam beberapa tahun terakhir. Produksi DME dengan distilasi reaktif memiliki potensi untuk menghemat biaya kapital dan penggunaan energi. Meski begitu, kombinasi sistem reaksi dan distilasi dalam satu kolom membuat proses distilasi reaktif menjadi sistem multivariabel yang kompleks dengan perilaku proses yang sangat non linear dan adanya interaksi antar variabel proses yang kuat. Studi ini menginvestigasi pengendalian proses distilasi reaktif DME dengan multivariable Model Predictive Control MPC berdasarkan struktur pengendalian suhu dua titik untuk menjaga kemurnian kedua aliran produk. Model proses diestimasi dengan model first-order plus dead time. Kemurnian DME dan air masing-masing dijaga dengan mengendalikan suhu tahap 5 di zona rektifikasi dan suhu tahap 47 pelucutan. Hasil simulasi menunjukkan bahwa nilai integral of squared error ISE untuk perubahan set point suhu tahap 5 dan 47 dapat dikurangi masing-masing 19,89 dan 18,26 untuk sistem dengan pengendali multivariable MPC dibandingkan dengan pengendali PI konvensional. Selain itu, pengendali multivariable MPC mampu menangani interaksi lup pengendalian yang ditunjukkan oleh respon yang lebih stabil dan tidak berosilasi.

Dimethyl ether DME as an alternative clean energy has attracted a growing attention in the recent years. DME production via reactive distillation has potential for capital cost and energy requirement savings. However, combination of reaction and distillation on a single column makes reactive distillation process a very complex multivariable system with high non linearity of process and strong interaction between process variables. This study investigates a multivariable model predictive control MPC based on two point temperature control strategy for the DME reactive distillation column to maintain the purities of both product streams. The process model is estimated by a first order plus dead time model. The DME and water purity is maintained by controlling stage 5 temperature in rectifying section and stage 47 in stripping section, respectively. The results show that the integral of squared error ISE values for the set point tracking in stages 5 and 47 temperatures can be reduced, respectively, 19.89 and 18.26 for the system under multivariable MPC controller compared to the conventional PI controllers. In addition, the MPC controller is able to handle the loop interactions that is shown by more stable and non oscillatory responses."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66799
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bramantyo
"Untuk menangani gangguan pada proses operasi nonlinear diperlukan suatu bentuk pengendalian. Representative Model Predictive Control (RMPC) adalah salah satu cara untuk memperoleh sekumpulan MPC lokal yang dapat merepresentasikan keseluruhan rentang operasi. MPC lokal ini nantinya digunakanpada Multiple Model Predictive Control (MMPC) untuk mensimulasikanproses operasi nonlinear multi variabel.Skripsi ini membahas penggunaan RMPC untuk memilih beberapa MPC lokal yang kemudian digunakan sebagai model pada MMPC untuk menangani gangguan. Penelitian ini menggunakan model kolom distilasi biner ?Kolom A? yang disimulasikan dengan perangkat lunak MATLAB. Variabel yang dimanipulasi adalah laju refluks dan laju boil up sedangkan variabel yang dikontrol adalah komposisi produk distilat dan komposisi produk bawah. Hasil IAE MMPC dibandingkan dengan IAE kontroler PI konvensional. Untuk gangguan single step; MPC terbaik dengan IAE 0,2564, lebih baik dari IAE kontroler PI 0,7494.Sedangkan untuk gangguan multi step; MMPC terbaik dengan IAE 0,7730, lebih baik dari IAE kontroler PI 0,9808.

In order to handle disturbances in the nonlinear operation some form of control is required. Representative Model Predictive Control (RMPC) is one way to obtain a set of local MPC which able to represent the entire operating range. The local MPC is later used in the Multiple Model Predictive Control (MMPC) to simulate the operation of nonlinear multi-variable process. This thesis discusses the use of RMPC to select some local MPC which is then used as a model for dealing with disturbances in the MMPC. This study uses a model of a binary distillation column "Column A" which is simulated with MATLAB software. The manipulated variable is the rate of reflux and boil-up rate, while the controlled variable is the product composition of the distillate and bottom product composition. MMPC IAE results compared with conventional PI controller IAE. For single step disturbance; the best MPC with IAE 0.2564, is better than PI controller IAE 0.7494. As for the multi-step disturbance; the best MMPC with IAE 0.7730, is better than PI controller IAE 0.9808."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42595
UI - Skripsi Open  Universitas Indonesia Library
cover
Ferdi Fajrian Adicandra
"Optimalisasi pabrik regasifikasi liqufied natural gas LNG penting dilakukan untuk meminimilasi biaya, khususnya biaya operasional. Oleh karena itu penting untuk memilih desain pabrik regasifikasi LNG dan mendapatkan kondisi operasi yang optimum serta mempertahankan kondisi operasi yang optimum tersebut melalui implementasi model predictive control MPC. Kriteria optimalnya adalah minimumnya jumlah energi yang digunakan dan atau integral of square error ISE.
Hasilnya, disain yang optimum adalah menggunakan skema 2 dengan penghematan energi sebesar 40. Sedangkan kondisi operasi yang optimum terjadi jika suhu keluaran vaporizer sebesar 6oC. Untuk mempertahankan kondisi optimum tersebut diperlukan MPC dengan setelan parameter P prediction horizon , M control horizon dan T sampling time sebagai berikut: pengendali tekanan tangki penyimpanan: 90, 2, 1; tekanan produk: 95, 2, 1; suhu vaporizer: 65, 2, 2; dan suhu heater: 35, 6, 5, dengan nilai ISE pada set point tracking masing-masing 0,99, 1792,78, 34,89 dan 7,54, atau peningkatan kinerja pengendalian masing-masing sebesar 4,6 , 63,5 , 3,1 dan 58,2 dibandingkan kinerja pengendali PI.
Penghematan energi yang dapat dilakukan pengendali MPC saat terjadi gangguan pada kenaikan suhu air laut 1oC adalah 0,02 MW dan pengendali MPC juga mengurangi error terhadap kualitas produk sebesar 34,25 dibandingkan dengan menggunakan pengendali PI.

Optimization of liquified natural gas LNG regasification plant is important to minimize costs, especially operational costs. Therefore, it is important to select the LNG regasification plant design and obtain optimum operating conditions while maintaining the optimum operating conditions through the implementation of model predictive control MPC. The optimal criterion is the minimum amount of energy used and or the integral of square error ISE.
As a result, the optimum design is to use scheme 2 with an energy savings of 40 . While the optimum operating conditions occur if the vaporizer output temperature is 6oC. In order to maintain the optimum conditions, MPC is required with parameter setting P prediction horizon, M control horizon and T sampling time as follows tank storage pressure controller 90, 2, 1 product pressure 95, 2, 1 temperature vaporizer 65, 2, 2 and temperature heater 35, 6, 5, with ISE value at set point tracking respectively 0.99, 1792.78, 34.89 and 7.54, or improvement of control performance respectively 4.6, 63.5 , 3.1 and 58.2 compared to PI controller performance.
The energy savings that MPC controllers can make when there is a disturbance in sea temperature rise of 1oC is 0.02 MW and MPC controller also reduces error to product quality by 34.25 compared to the PI controller.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68639
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>