Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 157201 dokumen yang sesuai dengan query
cover
Farros Mufid
"FAA beralih dari teknologi radar ke teknologi ADS-B. Teknologi ADS-B menggunakkan satelit dan tidak lagi menggunakkan radar. ADS-B menyediakan lebih banyak keamanan, lebih banyak cakupan dan lebih murah untuk diterapkan. Teknologi ADS-B memungkinkan pilot untuk melihat pesawat lain di udara langsung dari kokpit mereka. Teknologi ini juga menampilkan cuaca berbahaya, dan area dengan restriksi penerbangan. Teknologi ini mengurangi kecelakaan yang sering terjadi di landasan karena menampilkan pesawat lain di landasan. Karena stasiun bumi lebih mudah ditempatkan daripada radar, itu berarti memungkinkan lebih banyak pesawat dapat dideteksi di daerah terpencil tanpa jangkauan radar. Sinyal satelit juga dikenal lebih tepat dari radar, dan memiliki jangkauan yang lebih jauh. Hal ini memungkinkan untuk pesawat dapat dipisahkan lebih jauh, sehingga lebih banyak pesawat bisa terbang di langit. Selain itu, kita dapat menghemat uang dengan bahan bakar karena pesawat dapat menempuh jarak yang jauh tanpa perlu mendarat (Administration, 2019). Dengan demikian, metode untuk memecahkan kode sinyal ADS-B sangat penting untuk melacak pesawat.
Komunitas Software-Defined Radio baru-baru ini menemukan cara untuk memecahkan kode dan mengekstrak informasi dari sinyal ADS-B. Saat ini, informasi ini terus-menerus dimasukkan ke situs web yang disebut Flight Radar 24. Pengguna yang memiliki Software-Defined Radio dapat berkontribusi ke jaringan ini dan memberikan informasi tentang lokasi pesawat di area lokal mereka. Dengan demikian, semakin banyak pengguna, semakin akurat jalur penerbangannya.
Penelitian ini akan membahas secara mendalam algoritma dan mengusulkan metode untuk mendekode sinyal ADS-B dengan DF 17 secara efisien menggunakan MATLAB, Software-Defined Radio seharga Rp. 350.000 dan antena. Selain itu, penelitian ini juga membahas, menganalisis, dan mengusulkan penerapan teknologi pelacakan penerbangan untuk melakukan investigasi insiden penerbangan, keselamatan drones, dan kemungkinan penggunaan untuk sensor atmosfir.

The FAA is transitioning from radar technology to ADS-B technology. The ADS-B technology relies on satellites rather than radars. ADS-B provides more safety, more coverage and cheaper to implement. The ADS-B technology allows pilots to see other airplanes in the sky directly from their cockpit. It also displays dangerous weather, and areas with flight restrictions. It reduces accidents that happens in the runway, since it displays other planes on the ground. Since ground station is easier to place than radar, it means it allows more planes can be detected in remote areas without radar coverage. Satellites signals are also known to be more precise that radars, and able to cover at greater distance. This allows aircraft to be separated more far, thus more airplanes can fly in the sky. Also, we can save money with fuels since airplanes can cover great distance without the need of landing (Administration, 2019). Thus, a method to decode the ADS-B signal are important to track airplanes.
The software defined radio community had recently discovered a way to decode and extract information from the ADS-B signal. Nowadays, this information is constantly fed to a website called Flight Radar 24. Users that owned a software defined radio can contribute to this network and provide information about plane locations in their local area. Thus, more users result a more accurate flight path.
This project will discuss in depth the algorithm and propose a method to decode the ADS-B signal with DF 17 more efficiently using MATLAB, a cheap $35 software defined radio and an antenna. Furthermore, this project also discusses, analyse and propose the application of the flight tracking technology to do flight incident investigations, drone safety and the possible use for atmospheric sensing."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sirait, Boris Ernest Halasan
"ABSTRAK
Dalam penelitian ini, dibahas mengenai analisis tepat guna untuk mensimulasikan salah satu fase kritis dalam manuver pesawat, yaitu manuver tinggal landas (take off). Parameter spesifik yang diteliti dan dikembangkan dalam penelitian ini merupakan jarak tinggal landas. Pesawat yang diteliti merupakan pesawat berpenumpang dengan penggerak baling-baling (propeller) sehingga kemampuan untuk bermanuver tinggal landas harus disesuaikan dengan ketentuan regulasi Nasional CASR 23. Untuk mendapatkan jarak tinggal landas yang minimal dan tetap sesuai dengan ketentuan regulasi Nasional CASR 23, diperlukan teknik pengendalian tertentu dalam berbagai kondisi manuver tinggal landas. Secara garis besar, penelitian ini menggunakan metode integrasi numerik yang merepresentasikan gerak pesawat sepanjang lintasan tinggal landas sampai ketinggian rintangan (screen height) yang dibagi dalam segmen waktu. Teknik pengendalian yang diperlukan untuk meminimalkan jarak tinggal landas diberlakukan ketika mensimulasikan dinamika gerak pesawat dimulai dari segmen rotasi sampai dengan ketinggian rintangan (screen height). Dalam simulasi dinamika pesawat sepanjang lintasan terbang (flight path), defleksi elevator divariasikan hingga mencapai defleksi optimal untuk menghasilkan jarak tinggal landas yang minimal dan daftar kecepatan (speed schedule) yang tetap sesuai dengan ketentuan regulasi Nasional CASR 23. Penelitian defleksi elevator ini menghasilkan jarak tinggal landas pesawat kurang dari 450 m untuk setiap kondisi atmosfer.

ABSTRACT
In this study, discussed about appropriate analysis to simulate a critical phase on aircraft maneuver, which is take off maneuver. This study specifically concerns and develops about take off distance. The aircraft inspected in this study is small, commercial, and propeller-driven aircraft that must be adapted to CASR 23. Expeditious control technique is required to be able for various kind of take off conditions and to obtain minimum take off distance and also keep speed schedule fit to CASR 23. This study uses numerical integration method which simulates aircraft motion through the length of flight path until it reaches screen height. The simulation of aircraft motion is segmented by time functions. The way to minimize take off distance is enacted when simulating aircraft motion dynamically from rotational speed to screen height. In simulating aircraft motion dynamically along the flight path, elevator deflection is varied until we have an optimal elevator deflection which have to be inputted by pilot to obtain minimum take off distance and adapting speed schedule to CASR 23. This optimized input elevator in this research obtains take off distance less than 450 m.
"
2016
S65268
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rofanaharto Anugrah
"Sistem pelacak bus kampus merupakan sebuah kesatuan dari perangkat-perangkat lunak maupun keras tertentu yang dapat melacak posisi dari bus kampus dan menampilkannya agar dapat dilihat oleh pengguna. Skripsi ini akan membahas sistem pelacak bus kampus di Universitas Indonesia secara keseluruhan mulai dari landasan teori tentang teknologi yang digunakan, perancangan sistem, dan hasil pengujian serta analisa sistem. Selain itu juga diadakan kuisioner yang memberikan gambaran mengenai tanggapan pengguna terhadap sistem pelacak bus kampus Universitas Indonesia ini. Perangkat lunak yang digunakan adalah cygwin sebagai compiler bahasa C. Sedangkan perangkat-perangkat keras utama yang digunakan adalah komputer, modul DT-51 LCMS 2.0 dan modul wireless YS 1020 RF Data Transceiver.
Modul DT-51 LCMS memberikan ID kepada bus berupa 8 bit biner. Oleh modul wireless YS 1020 RF Data Transceiver di sisi pengirim diteruskan dan diterima oleh modul wireless YS 1020 RF Data Transceiver di sisi penerima. Modul wireless YS 1020 RF Data Transceiver penerima yang terpasang pada komputer yang diasumsikan ada di setiap halte meneruskannya ke komputer halte tersebut agar dapat diolah dengan menambahkan ID halte dan dikirimkan ke server melalui protokol TCP/IP. Di server, data terakhir direpresentasikan dalam bentuk GUI sederhana. Langkah-langkah yang dilakukan adalah memprogram modul DT-51 LCMS 2.0, memasang dan menggabungkan modul DT-51 LCMS 2.0 dengan modul wireless YS 1020 RF Data Transceiver serta komputer halte/fakultas, pembuatan program menggunakan bahasa C untuk komputer halte/fakultas dan untuk komputer server.
Hasil pengujian menunjukkan bahwa prototipe sistem pelacak bus kampus Universitas Indonesia ini dapat menampilkan posisi bus kampus dengan cukup akurat, namun masih mempunyai kekurangan yaitu GUI masih sangat sederhana, hanya bisa menampilkan satu bus per satu waktu, dan aplikasinya hanya bisa dijalankan sekali setiap dieksekusi. Dari tanggapan pengguna terhadap sistem ini diketahui bahwa sistem pelacak bus kampus berguna, memiliki GUI yang kurang memenuhi ekspektasi, dan setuju bahwa posisi bus yang ditampilkan cukup akurat.

Campus bus tracking system is an integration of certain softwares and hardwares which can track the position of campus buses and display it to user. This final project will focus on University of Indonesia campus bus, starting from the basic theory about technology used in this system, design of the system, and the testing result with analysis about the system. Besides that, there is a questioner form that will give an abstraction about users' feedback of University of Indonesia campus bus tracking system. Software used in this final project is cygwin as a C compiler. Hardwares used in this system are DT-51 LCMS 2.0 module and YS 1020 RF Data Transceiver wireless module.
DT-51 LCMS module gives an ID for a bus in 8 bit binary. YS 1020 RF Data Transceiver wireless module on the transmitting side forward it and YS 1020 RF Data Transceiver wireless module on the receiving side receive it. YS 1020 RF Data Transceiver wireless module on receiving side installed on a computer is assumed installed on each shelter in University of Indonesia. This computer processes the data and inserts each shelter?s ID. The next process is to forward the final data via TCP/IP to server. In the server, the final data contains bus' ID and shelter's ID represented in a simple GUI. The steps taken are programming DT-51 LCMS module, attaching and integrating DT-51 LCMS 2.0 module and YS 1020 RF Data Transceiver wireless module with computer in the shelter, making program using C for computer in the shelter and for server.
The testing results shows that the prototype of University of Indonesia campus bus tracking system can display the position of campus bus quite accurately but still have some weaknesses. The weaknesses are the GUI is very simple, the GUI can only show a bus in a time, and the application can only run once when executed. Users' feedback about this campus bus tracking system shows that this system is helpful, the design of GUI isn't up to expectation. However, users agree that the position shows in GUI is accurate.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S51036
UI - Skripsi Open  Universitas Indonesia Library
cover
Fidia Triani
"ABSTRAK
Spektrum 1087.7-1092.3 MHz telah dialokasikan untuk global flight tracking pada
World Radiocommunication Conference (WRC-15). ADS-B adalah suatu sistem
broadcast pada pesawat terbang yang memberikan informasi mengenai posisi
pesawat (latitude dan longitude), altitude, velocity, aircraft ID, dan informasi
lainnya yang didapat dari sistem on-board. Metode implementasi ADS-B pada
pesawat adalah dengan mengirimkan pesan data yang diformat pada Mode S
transponder melalui frekuensi 1090 MHz. Terdapat kemungkinan untuk
memanfaatkan frekuensi 1090 MHz sebagai pembawa transmisi Voice Cockpit
Recording (VCR) dari pesawat ke satelit. Tesis ini membuat simulasi tentang
speech compresion untuk voice cockpit recording menggunakan Discrete Wavelet
Transform. Hasil kompresi di transmisikan ke satelit menggunakan frekuensi ADSB.
Kualitas suara yang diterimakan pada receiver diuji menggunakan Mean
Operation Score. Simulasi menghasilkan bahwa Daubechies12, Coiflet5, Symlet10
dan Biorthogonal2.6 mempunyai nilai Ratio Compression and PSNR yang terbaik.
Hasil MOS rata-rata menunjukkan bahwa file hasil transmisi memiliki derau dan
sedikit menggangu. Dari hasil simulasi BER dan pengujian MOS maka kompresi
dengan mother-wavelet Daubechies12 mempunyai hasil yang terbaik. Disimpulkan
bahwa kompresi dengan teknik Discrete Wavelet Transform dapat digunakan untuk
mengirim voice cockpit recording dengan frekuensi ADS-B ke satelit

ABSTRACT
Spectrum 1087.7-1092.3 MHz had been allocated to global flight tracking civil
aviation. Automatic Dependent Surveillance Broadcast (ADS-B) is an aircraft
technology to broadcast information such as latitude, longitude, altitude, velocity,
and also the aircraft identity to the satellite using mode S transponder with 1090
MHz center frequency. There?s an opportunity to utilize 1090 MHz as the
transmission carrier of Voice Cockpit Recording (VCR) from aircraft to satellite.
This paper investigates voice cockpit recording simulation using Discrete Wavelet
Transform based compression technique. The compressed voice was transmitted to
the satellite using ADS-B frequency. The received sound was also tested by Mean
Operation Score. The simulation found that Daubechies12, Coiflet5, Symlet10 and
Biorthogonal2.6 has the best result of Ratio Compression and PSNR. From the
BER simulation result and average MOS results have indicated that Daubechies12
has the best results. It concluded that speech compression with Discrete Wavelet
Transform can be used for sending the voice cockpit recording over ADS-B via
satellite reception."
2016
T46205
UI - Tesis Membership  Universitas Indonesia Library
cover
Adji Kusuma
"ABSTRAK
Teknologi ADS-B (automatic dependent Surveillence broadcast) memilikki keunggulan disisi kecepata dan keakuratan penyajian data dibandingkan dengan PMR (Primary Surveillance Radar) maupun SSR (Scondary Surveillance Radar). Data dapt diterima melalui transponder yang dimilikki oleh pesawat. Sistem pemantauan pesawat dengan teknologi ADS-B dapat bekerja hanya dengan antena omni dan mini komputer Raspberry beserta perangkat receiver RTL-SDR. Penyebaran data dari tiap radar pesawat sederhana dapat dilakukan melalui transmitter dengan frekuensi rendah dan spesifikasi long range. Data dari radar dapat menggunakan nilai binari sehingga tidak membutuhkan bandwith dan bit rate yang besar."
Jakarta: Badan Penelitian dan Pengembangan Kementrian Pertahanan RI, 2019
355 JIPHAN 5:1 (2019)
Artikel Jurnal  Universitas Indonesia Library
cover
Billie Pratama
"Dewasa ini quadrotor mulai diaplikasikan secara luas dalam berbagai bidang. Untuk melakukan suatu tugas yang kompleks, terkadang quadrotor tidak dapat menyelesaikannya sendirian. Oleh karena itu, suatu sistem multi quadrotor digunakan dimana terdapat beberapa quadrotor yang berkoordinasi satu sama lain dalam menyelesaikan suatu misi.
Pada penelitian ini, dua buah quadrotor digunakan dengan formasi leader-follower untuk melakukan penjejakan trayektori. Kedua quadrotor tersebut saling berkomunikasi melalui jaringan WiFi yang telah dikonfigurasikan sebelumnya sehingga pertukaran data dapat terjadi selama percobaan berlangsung.
Dalam eksperimen ini, robot leader akan bergerak mengikuti beberapa trayektori (garis lurus, dan persegi) sementara robot follower akan mengikuti pergerakan robot leader sambil menjaga jarak antar kedua robot. Jarak antar robot yang diinginkan adalah 3 meter secara posisi sumbu X, dengan posisi sumbu Y, Z yang sama.
Sinyal kecepatan yang diterima dari robot leader akan dilakukan sedikit penyesuaian sebelum menjadi sinyal kecepatan bagi robot follower. Keseluruhan misi berjalan secara otomatis menggunakan program ROS yang tertanam pada sebuah mini-pc. Mini-pc tersebut kemudian dihubungkan dengan flight controller Pixhawk melalui protokol MAVLINK yang disediakan oleh package MAVROS. Lalu, pengendali inner loop akan dilakukan oleh Pixhawk sementara pengendali outer loop akan dijalankan pada mini-pc.
Terdapat dua sistem kendali yang digunakan dalam proses penjejakan trayektori, yaitu pengendali posisi dan pengendali orientasi. Kedua pengendali tersebut menggunakan pengendali PID dengan parameter pengendali posisi Kp = 1, Ki = 2, Kd = 0.01, dan parameter pengendali orientasi Kp = 0.007. Keseluruhan sistem yang telah dirancang akan diuji melalui eksperimen langsung.
Hasil pengujian menunjukkan bahwa sistem multi quadrotor dengan formasi leader-follower dapat berjalan dengan baik, dimana trayektori dapat diikuti oleh kedua quadrotor dengan bentuk formasi yang tetap terjaga.

Nowadays the quadrotor has begun to be widely applied in various fields. To do a complex task, sometimes quadrotor cannot do it by itself. Therefore, a multi quadrotor system was used where there were several quadrotors coordinating each other in completing a mission.
In this study, two quadrotors were used with leader-follower formation to conduct a trajectory tracking. Both quadrotors communicate each other via a previously configured WiFi network so that data exchange can occur during the experiment.
In this experiment, robot leader will move to follow several trajectories (straight lines and squares) while robot follower will follow the movement of robot leader while maintaining the distance between the two robots. The desired distance between two robots is 3 meters in the X axis position, with the same Y, Z axis position.
The speed signal received from the robot leader will be made a little adjustment before becoming a speed signal for the robot follower. The entire mission runs automatically using a ROS program embedded on a mini-pc. The mini-pc was then connected to the Pixhawk flight controller via MAVLINK protocol provided by the MAVROS package. Then, the inner loop controller will be carried out by Pixhawk while the outer loop controller will be run on a mini-pc.
There are two control systems used in the trajectory tracking process, namely position controller and orientation controller. The two controllers used PID controllers with position controller parameter Kp = 1, Ki = 2, Kd = 0.01, and orientation controller parameter Kp = 0.007. The entire system that has been designed will be tested through direct experiments.
The test results showed that multi quadrotor systems with leader-follower formation functioned well, where trajectories can be followed by both quadrotor with a formation that is maintained."
Depok: Fakultas Teknik Universitas Indonesia, 2018
T52918
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Hilmy Iskandar
"ABSTRAK
Global Flight Tracking (GFT) merupakan suatu sistem yang berdasarkan target konsep dari Global Aeronautical Distress and Safety System (GADSS) dimana sistem ini dapat melacak posisi pesawat komersil yang sedang beroperasi diseluruh dunia. Automatic dependent surveillance broadcast (ADS-B) adalah teknologi broadcast pesawat yang sedang beroperasi untuk menyiarkan informasi seperti latitude, longitude, altitude, velocity, dan juga identitas pesawat. Pada saat ini penerimaan pesan ADS-B hanya dapat dicakup pada wilayah terrestiral saja. ADS-B penerimaan via satelit dimaksudkan untuk memperluas cakupan dari ADS-B terrestrial. Skripsi ini mensimulasikan satelit Iridium dan Globalstar dengan ketinggian 800 km dan 1400 km yang digunakan untuk komparasi unjuk kerja dengan melihat pengaruh durasi pulsa ADS-B terhadap probabilitas non-collided penerimaan pesan. Ketinggian dari satelit mempengaruhi radius yang akan digunakan untuk menghitung kepadatan dari pesawat yang dapat dicakup oleh satelit. Hasil simulasi menunjukan radius footpirint dari satelit Iridium dan Globalstar adalah 836.6144 NM (Nautical Miles) dan 1083 NM dengan hasil cakupan pesawat untuk masing-masing satelit adalah 9525 pesawat dan 15291 pesawat. Hal ini berarti dengan ketinggian yang lebih tinggi maka cakupan pesawat juga akan meningkat. Namun, durasi pulsa optimum untuk satelit Globalstar 50 μs dan Iridium 120 μs berdasarkan rata-rata probabilitas non-collided penerimaan pesan. Dengan durasi pulsa ADS-B yang lebih pendek maka pesan yang dapat ditransmisikan menjadi lebih sedikit.

ABSTRACT
Global Flight Tracking (GFT) is a system that is based on target concept of Global Aeronautical Distress and Safety System (GADSS) which is the capability to locate civil aviation that operates around the world. Automatic dependent surveillance broadcast (ADS-B) is a broadcast based technology which an aircraft broadcasts messages that contains information including latitude, longitude, altitude, velocity and aircraft identity. Up until now ADS-B message reception can only be achieved via terrestrial station. Hence, ADS-B reception via satellite is intended to expand the coverage of ADS-B terrestrial. This undergraduate thesis simulate the affect of pulse duration of ADS-B to the probability of non-collided message reception using, Iridium and Globalstar satelittes with the altitudes of 800 km and 1400 km respectively is utilized for performance comparisons. Altitude of the satellite affect the radius that is used to calculate the density of the aircraft that the satellite can coverage. The simulation results show that the footprint radius of Iridium satellite and Globalstar is 836.6144 NM (Nautical Miles) which able to cover 9525 aircrafts and 1083 NM which able to cover 15291 aircrafts respectively which means the higher the altitude, the coverage also increase. On the other hand the optimum pulse duration of the ADS-B signal is 50 μs for Globalstar satellite and 120 μs for Iridium satellite based on average probability of non-collided message reception. Consequently shorter pulse duration of ADS-B signal results in less message that can be transmitted.
;"
2016
S64685
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ida Arifin Kusuma Gani
"Kecelakaan lalu lintas merupakan pembunuh terbesar ketiga di Indonesia setelah jantung koroner dan tuberkulosis, dimana salah satu penyebabnya adalah kelelahan pengemudi. Tujuan dari penelitian ini untuk memperoleh tingkat kelelahan pengemudi pria saat menyetir setelah beraktivitas secara real condition menggunakan metode eye tracking dengan parameter visual mata, sehingga jumlah kecelakaan lalu lintas menurun. Melalui studi kelelahan ini akan didapatkan perubahan aktivitas mata pengemudi berdasarkan gerak cepat mata (saccade) dan kedipan mata (eye blink) sehingga dapat disimpulkan batas waktu mengemudi yang disarankan bagi pengemudi pria. Penelitian ini melibatkan lima orang responden pria usia produktif yang diukur tingkat kelelahannya menggunakan eye tracker. Hasil dari penelitian ini didapatkan bahwa parameter kedipan mata (eye blink) lebih sensitif dalam mengukur kelelahan dibandingkan gerak cepat mata (saccade) dan berdasarkan parameter kedipan mata (eye blink) dihasilkan kesimpulan kelelahan pada pengemudi pria dapat terjadi sejak menit ke-30 hingga menit ke-40. Kesimpulan tersebut dapat dijadikan acuan bagi pengemudi pria untuk meningkatkan kewaspadaan jika mengemudi melebihi waktu tersebut.

One cause of traffic accidents -third largest killer in Indonesia after coronary heart disease and tuberculosis- are driver fatigue. The purpose of this study was to measure male driver's fatigue using eye tracking method based on blinks and saccades. From this study we could find out suggested driving time limit for male drivers from driver's eye activity changes, based on blinks and saccades. The study involved five male respondents of productive age using eye tracker. The results of this study are that blinks is more sensitive in measuring fatigue than saccades and fatigue may occur in male drivers since the 30th to 40th minute. The conclusion can be used as a reference for male drivers to increase their vigilance when driving exceeds the time.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S57035
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Jemie Muliadi
"Pesawat Udara Nir Awak (PUNA) identik dengan misi pengawasan dari udara. Misi ini semakin kompleks mulai dari pengawasan area hingga pengawasan terhadap sasaran yang bergerak. Dalam pengawasan terhadap sasaran bergerak, PUNA membutuhkan informasi posisi sasaran untuk suatu selang waktu ke depan serta membutuhkan sistem pemanduan yang menuntunnya semakin dekat pada sasaran tersebut.
Metoda Pelacakan Sasaran telah bervariasi dari Nonlinear Target Tracking, RVQ, Robust Trajectory, Nonlinear Dynamic Inversion, RISE feedback, Multitarget Tracking dan lainnya. Metode-metode ini membutuhkan informasi posisi, kecepatan, bahkan video berpresisi tinggi dalam penerapannya. Sementara, apabila semakin sedikit sensor yang dipasang pada PUNA maka semakin ringan beban yang dibawa dalam misi terbangnya.
Penelitian ini ditujukan untuk merancang metode Pengendali Panduan Terbang (flight guidance-controller) yang dapat diterapkan pada misi terbang pengawasan (surveillance/monitoring) PUNA. Metode ?backstepping-like? dipilih untuk melakukan pemanduan dalam model nonlinear. Dalam Tesis ini, PUNA akan mengukur posisi target dalam Jarak, Sudut Elevasi dan Sudut Azimut dalam Tata Acuan Koordinat Benda. Pengukuran tersebut diolah dengan Extended Kalman Filter untuk memperkirakan posisi target ke masa depan pada suatu selang waktu. Besaran jarak, elevasi dan azimut yang terukur akan diolah menjadi posisi xyz Target dalam Tata Acuan Koordinat Horizon. Selanjutnya, Pengendali Panduan (guidance-controller) akan menghasilkan perintah kendali berupa kecepatan, sudut tanjak lintas terbang dan sudut arah lintas terbang untuk mengarahkan PUNA untuk bergerak menuju Target serta melakukan misi pengawasan.

Monitoring and surveillance mission of a UAV has become more complex because the needs to track moving targets. This is due to the needs of the UAV in getting the position of the targets for a duration of time ahead while it must have guiding system to chase the target.
The methods of such Nonlinear Target Tracking, RVQ, Robust Trajectory, Nonlinear Dynamic Inversion, RISE feedback, Multitarget Tracking etc. has developed for tracking the moving target. For their accuracy, the methods need the position information, speed, and even a high precision video camera to be applied. While the fewer sensors needed, then the smaller of weight will be carried by the UAV for its mission.
This work were intended to design a flight guidance-controller that suitable to be applied in PUNA (Indonesian Unmanned Aerial Systems) which is doing target-tracking in its surveillance or monitoring mission. The guidance controller will be constructed using the 'backstepping-like' method. The PUNA measured the target?s Range, Elevation and Azimuth angle in the Body Reference Coordinate System. Then, the measured parameter will be processed into the Extended Kalman Filter to predict the target?s position for a durations of moment ahead of the measurement time. The measured range, elevation and azimuth will be processed into xyz-position of the target with respect to Horizontal Reference Coordinate System. Then the guidance-controller derived the commanded velocity, flight path angle, and course angle so the PUNA can reduce its distance from target and continuously doing its surveillance mission.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T42197
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>