Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 72213 dokumen yang sesuai dengan query
cover
Raisa Aulia Hanifah
"Emisi gas buang dari kendaraan bermotor banyak mengandung senyawa yang berbahaya bagi kesehatan manusia maupun lingkungan. Karbon aktif dapat dikembangkan sebagai adsorben guna mendukung upaya penanggulangan pencemaran udara akibat emisi gas kendaraan bermotor. Karbon aktif diproduksi dengan bahan baku biomassa, salah satunya ialah cangkang kelapa sawit yang memiliki kandungan selulosa (6,92%), hemiselulosa (26,16%), dan lignin (53,85%). Karbon aktif berbahan baku limbah cangkang kelapa sawit diproses melalui proses dehidrasi, reduksi, dan diaktivasi kimia menggunakan larutan kalium karbonat (K2CO3) dengan rasio massa 1:1 dan konsentrasi K2CO3 sebesar 20%-w. Selanjutnya, sampel dikarbonisasi pada furnace dengan temperatur 500 ºC dan dilanjutkan dengan aktivasi kimia tahap dua dengan variasi perbandingan massa K2CO3 dan massa bahan baku yang digunakan sebesar 1:1 dan 3:2. Sampel yang telah teraktivasi kimia selanjutnya mengalami aktivasi fisika pada temperatur 750 ºC dan dialiri gas N2 dengan laju 200 ml/menit selama 90 menit. Karbon aktif yang telah disintesis memiliki luas permukaan terbaik pada variasi rasio massa 3:2 yaitu sebesar 1202 m2/g. Modifikasi dilakukan untuk meningkatkan kapasitas adsorpsi dari karbon aktif. Pada penelitian ini, modifikasi dilakukan dengan menyisipkan logam oksida berupa nikel oksida (NiO) ke dalam pori karbon aktif dengan variasi konsentrasi sebesar 0,5%, 1%, 2%. Penyisipan NiO mengurangi luas permukaan karbon aktif hingga 802 m2/g pada variasi konsentrasi 2%. Dari hasil penelitian diketahui bahwa media karbon aktif terimpegrasi NiO 1% yang dipasang pada tabung adsorpsi dapat memberikan hasil penurunan konsentrasi gas CO sebesar 61,95%, HC sebesar 37,96 %, dan CO2 sebesar 48,5 %.

Exhaust emissions from motor vehicles contain many compounds that are harmful to human health and the environment. Activated carbon can be developed as an adsorbent to support efforts to combat air pollution due to motor vehicle gas emissions. Activated carbon is produced with biomass raw materials, one of which is a palm shell which contains cellulose (6.92%), hemicellulose (26.16%), and lignin (53.85%). Activated carbon made from palm shell waste is processed through the process of dehydration, reduction, and chemical activation using potassium carbonate (K2CO3) solution with a mass ratio of 1:1 and K2CO3 concentration of 20%-w. Furthermore, the sample was carbonized in the furnace at a temperature of 500 ºC and continued with second step chemical activation with a variation in the mass ratio of K2CO3 and the mass of the raw material used was 1:1 and 3:2. Samples that have been chemically activated then undergo physical activation at 750 ºC and flowed with N2 gas at a rate of 200 ml/min for 90 minutes. The synthesized activated carbon has the best surface area at a mass ratio of 3:2 which is 1202 m2/g. Modifications were made to increase the adsorption capacity of activated carbon synthesized. In this study, the modification was carried out by impregnating metal oxides in the form of nickel oxide (NiO) into pores of activated carbon with a concentration variation of 0.5%, 1%, 2%. NiO impregnation reduces the surface area of activated carbon up to 802 m2/g at 2% concentration variation. From the results of the study, the NiO 1% -activated carbon mounted on the adsorption tube can result in a decrease in CO gas concentration of 61.95%, HC of 37.96%, and CO2 of 48,5%."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mega Puspitasari
"ABSTRAK
Plastik jenis polietilen yang terdiri dari 1000 atom karbon, kebanyakan diproduksi sebagai kantong plastik yang biasa digunakan hanya sekali pakai lalu menjadi sampah plastik. Banyak sampah plastik tidak terangkut dan menjadi sumber pencemar udara karena dimusnahkan dengan cara dibakar atau dibuang ke badan air atau tanah. Salah satu upaya penanggulangan sampah plastik adalah dengan memanfaatkannya menjadi bahan baku pembuatan karbon aktif. Karbon aktif dari sampah plastik kantong kresek memiliki luas permukaan terbaik dengan agen pengaktivasi aseton 1M sebesar 352,55 m2/g. Penyisipan TiO2 pada karbon aktif mampu meningkatkan luas permukaan sebesar 370,86 m2/g. Karbon aktif berbahan baku sampah plastik dapat digunakan sebagai media penyerap gas CO dan HC pada emisi gas buang kendaraan bermotor. Dari hasil penelitian diketahui bahwa media karbon aktif yang dipasang sepanjang 3 cm, 4 cm dan 5 cm pada tabung adsorpsi memberikan hasil penurunan konsentrasi gas CO masing-masing sebesar 53,74 , 61,35 dan 67,40 , sementara HC sebesar 44,02 , 57,78 dan 59,91 . Pada karbon aktif termodifikasi TiO2 dengan variasi panjang yang sama memiliki efisiensi penurunan konsentrasi gas CO sebesar 58,31 , 69,57 dan 74,83 , HC sebesar 48,18 , 60,40 dan 67,10 . Dari hasil penelitian dapat diketahui bahwa media karbon aktif sepanjang 5 cm dengan penyisipan TiO2 lebih efektif dalam menurunkan konsentrasi gas CO dan HC.

ABSTRACT
Plastics polyethylene comprising 1000 carbon atoms, mostly produced as plastic bags are used only disposable then became trash. Many plastic waste is not transported and be a source of air pollutants since destroyed by fire or discharge into water bodies or soil. One of the plastic waste reduction efforts is to use it as raw material for the preparation of activated carbon. Activated carbon from plastic bags has the best surface area by chemical activation with acetone 1M of 352.55 m2 g. The insertion of TiO2 on activated carbon can increase the surface area by 370.86 m2 g. Activated carbon from plastic waste can be used to adsorbe of CO and HC from motor vehicle exhaust emissions. The result of this research, to make active carbon with 3 cm, 4 cm and 5 cm length in the adsorption tube can be reduce concentrations of CO are 53,74 , 61,35 and 67.40 , while HC are 44.02 , 57.78 and 59.91 . Activated carbon with the modified TiO2 with the same length variation has the efficiency of CO gas concentration reduction of 58.31 , 69.57 and 74.83 , while HC are 48.18 , 60.40 and 67.10 . From the research results can be known the medium of active carbon along the 5 cm with the insertion of TiO2 more effective in reduction the concentration of CO and HC."
2017
S66932
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Jihadilan Aliansyah Putra
"Controlled Atmosphere Storage memiliki CO2 Scrubber yang dapat dikembangkan melalui pengembangan adsorben karbon aktif. Produksi karbon aktif dapat dibuat dengan bahan baku biomassa, salah satunya ialah cangkang kelapa sawit yang memiliki kandungan karbohidrat struktural lignin (53,85%), hemiselulosa (26,16%), dan selulosa (6,92%). Produksi karbon aktif berbahan baku cangkang kelapa sawit melalu mekanisme preparasi bahan baku. Langkah pertama adalah aktivasi kimia dengan merendamkan cangkang kelapa sawit dalam larutan KOH selama 24 jam dan dilanjutkan dengan karbonisasi pada suhu 350oC. Lalu aktivasi kimia kedua dengan variasi rasio KOH : karbon aktif 2:1 dan 4:1 sebelum diaktivasi scara fisika menggunakan gas N2 dengan laju alir 150 ml/menit selama 60 menit pada suhu 800 ᵒC. Hasil karbon aktif terbaik didapat pada rasio 2:1 dengan Bilangan Iod, Luas Permukaan, dan yield berturut-turut 1216,28 mg/g; 1209,78 m2/g; dan 39,01%. Modifikasi karbon aktif yang bertujuan meningkatkan kemampuan adsorpsi CO2 dilakukan dengan perendaman dalam larutan logam NiO dengan variasi loading 0,5%, 1%, dan 2%. Hasil adsorpsi gas CO2 dengan gas analyzer terbaik didapat pada variasi loading 2% dengan presentase adsorpsi sebesar 19,1%.

Controlled Atmosphere Storage has a CO2 Scrubber that can be improved through the development of activated carbon adsorbents. The production of activated carbon can be made with biomass raw materials, one of which is a palm kernel shell which has structural carbohydrate content of lignin (53.85%), hemicellulose (26.16%), and cellulose (6.92%). Production of activated carbon made from palm kernel shells is through the mechanism of preparation of raw materials. The first step is chemical activation by immersing the palm kernel shell in a KOH solution for 24 hours and followed by carbonization at 350 °C. Then the second chemical activation with a variation of the ratio of KOH: activated carbon 2:1 and 4:1 before being physically activated using N2 gas with a flow rate of 150 ml /min for 60 minutes at a temperature of 800 °C. The best activated carbon yield was obtained at a ratio of 2:1 with Iodic Number, Surface Area, and yield respectively 1216.28 mg/g; 1209.78 m2/g; and 39.01%. Modification of activated carbon which aims to increase the ability of CO2 adsorption is done by immersion in a NiO metal solution with loading variations of 0.5%, 1%, and 2%. The best result of CO2 gas adsorption with gas analyzer were obtained at a loading variation of 2% with an adsorption percentage of 19.1%."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Athaya Khanza Kamilia
"
Penyimpanan dan transportasi gas alam merupakan tantangan utama dalam mengoptimalkan penggunaan energi terbarukan. Adsorbed Natural Gas (ANG) adalah suatu metode potensial untuk meningkatkan kapasitas penyimpanan gas alam. Pada penelitian ini, digunakan adsorben dari limbah botol polietilena tereftalat (PET) sebagai potensi pemanfaatan limbah plastik dalam sumber energi terbarukan. Pembuatan karbon aktif dilakukan melalui beberapa tahap, yaitu pre-treatment bahan baku, karbonisasi, aktivasi kimia dengan KOH 4 M, dan aktivasi fisika dengan aliran gas N2. Karbon aktif yang diperoleh kemudian dimodifikasi melalui proses impregnasi logam NiO dengan variasi konsentrasi 0,5%, 1%, dan 2% untuk mengetahui kemampuannya sebagai adsorben. Berdasarkan karakterisasi melalui metode uji bilangan iodin, SEM, dan EDS, diketahui bahwa sampel karbon aktif yang terimpregnasi NiO 2% menunjukan hasil terbaik dengan luas permukaan 997,65 m2/g. Kemudian, dilakukan uji kapasitas adsorpsi dan desorpsi gas alam pada sampel nonimpregnasi dan sampel terimpregnasi untuk mengetahui peningkatan kapasitas penyimpanan gas alam. Kapasitas adsorpsi gas alam terbesar didapatkan oleh karbon aktif terimpregnasi NiO 2% pada suhu 28 oC dan tekanan 9 bar yang mampu mencapai 138,9 g/kg.

Storage and transportation of natural gas has become a major challenge in optimizing the use of renewable energy. Adsorbed Natural Gas (ANG) is a potential method to increase natural gas storage capacity. In this research, adsorbents from waste polyethylene terephthalate (PET) bottles were used as a potential of plastic waste as a renewable energy source. The preparation of activated carbon is carried out through several stages, namely pre-treatment of raw materials, carbonization, chemical activation with KOH 4 M, and physical activation with N2 gas flow. The activated carbon obtained was then modified through a NiO metal impregnation process with varying concentrations of 0.5%, 1% and 2% to determine its ability as an adsorbent. Based on characterization using the iodine number test method, SEM, and EDS, it is known that the activated carbon sample impregnated with 2% NiO showed the best results with a surface area of 997,65 m2/g. Then, natural gas adsorption and desorption capacity tests were carried out on non- impregnated samples and impregnated samples to determine the increase in natural gas storage capacity. The largest natural gas adsorption capacity was obtained by 2% NiO impregnated activated carbon at a temperature of 28 oC and a pressure of 9 bar which was able to reach 138,9 g/kg."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jervis Sinto
"ABSTRACT
Pencemaran udara akibat emisi gas buang kendaraan bermotor dalam bentuk gas-gas berbahaya seperti karbon monoksida CO dan hidrokarbon HC menjadi masalah bagi kesehatan makhluk hidup di lingkungan sekitarnya. Gas-gas tersebut dapat dijerap dengan karbon aktif yang terbuat dari limbah pertanian seperti kulit pisang karena memiliki kandungan lignoselulosa cukup tinggi dan jumlah yang banyak di Indonesia yaitu sekitar 400-700 ribu ton per tahunnya. Karbon aktif dari kulit pisang dalam penelitian ini dibuat melalui tahap dehidrasi, karbonisasi pada suhu 350 C selama 1 jam, kemudian aktivasi secara kimia menggunakan berbagai konsentrasi larutan H2SO4 selama 1 jam pada suhu 85oC. Sebagai pembanding kemampuan adsorpsi, sebagian karbon aktif saat proses karbonisasi juga diaktivasi secara fisika menggunakan gas N2 dengan laju alir 0,15 NL/menit. Karakterisasi karbon aktif dilakukan dengan uji bilangan iodin, SEM, dan EDX. Melalui uji bilangan iodin, luas permukaan karbon aktif terbaik didapat pada karbon yang teraktivasi fisika-kimia menggunakan H2SO4 6 N, yaitu sebesar 614 m2/g. Sementara luas permukaan karbon aktif pada karbon teraktivasi kimia pada konsentrasi H2SO4 yang sama yaitu sebesar 426 m2/g. Karbon-karbon aktif dengan karakteristik terbaik dari masing-masing metode aktivasi diuji kemampuan adsorpsinya untuk menurunkan kadar emisi gas buang CO dan HC pada sepeda motor. Karbon aktif teraktivasi kimia H2SO4 6 N rata-rata mampu mengadsorpsi emisi gas buang CO dan HC secara berturut-turut sebesar 40,46 dan 31,51. Sementara karbon aktif teraktivasi fisika-kimia H2SO4 6 N rata-rata mampu mengadsorpsi emisi gas buang CO dan HC secara berturut-turut sebesar 56,27 dan 42,63.

ABSTRACT
Air pollution caused by motor vehicle exhaust emissions in the form of harmful gases such as carbon monoxide CO and hydrocarbon HC becomes a problem for the health of living things in the surrounding environment. Those gases can be adsorbed with activated carbon made from agricultural waste such as banana peel because it has quite high lignocellulose content and large amount in Indonesia, which is about 400 700 thousand tons per year. Activated carbon from banana peel in this research is made through the dehydration stage, carbonization at 350oC for 1 hour, then chemical activation using various concentrations of H2SO4 solution for 1 hour at 85oC. In comparison with the adsorption capacity, some of the activated carbon at carbonization process also proceed with physical activation using N2 gas with a flow rate of 0.15 NL min. Characterization of activated carbon is done by iodine, SEM, and EDX tests. Through iodine test, the best surface area of activated carbon is obtained in physical chemical activated carbon with H2SO4 6 N, which is 614 m2 g. Meanwhile, surface area of chemical activated carbon in same H2SO4 concentration is 426 m2 g. The activated carbons with best characteristic from each activation method are tested its adsorption ability to decrease exhaust CO and HC emission content in motorcycle. Chemical activated carbon with H2SO4 6 N is capable of adsorbing CO and HC emissions 40.46 and 31.51 respectively. While physical chemical activated carbon with H2SO4 6 N is capable of adsorbing CO and HC emissions 56.27 and 42.63 respectively.
"
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alyssa Ulfatun Jannah
"Sektor transportasi merupakan penyumbang terbesar pencemaran udara, di mana emisi gas buang CO, CO2, dan HC berdampak negatif terhadap kesehatan dan lingkungan. Karbon aktif dapat digunakan sebagai adsorben gas buang kendaraan bermotor (sepeda motor). Bonggol jagung berpotensi digunakan sebagai bahan baku pembuatan karbon aktif karena memiliki kandungan lignoselulosa yang tinggi. Pembuatan karbon aktif bonggol jagung dilakukan melalui tahap preparasi dan dehidrasi, aktivasi kimia pertama menggunakan larutan KOH 20% b/v dengan perbandingan massa sampel terhadap larutan 1:4 selama 24 jam, karbonisasi pada suhu 500℃ selama 2 jam dan diayak dengan ukuran 60 mesh, dilanjutkan dengan aktivasi kimia kedua menggunakan variasi KOH 1% b/v, 3% b/v, dan 5% b/v dengan rasio dan waktu yang sama seperti aktivasi kimia pertama. Sampel yang didapatkan kemudian diaktivasi fisika menggunakan gas N2 0,15 NL/menit pada suhu 600℃ selama 1 jam. Karbon aktif yang didapatkan, kemudian diimpregnasi menggunakan larutan MgO 1 M dengan variasi rasio massa sampel terhadap volume larutan adalah 1:5, 1:10, dan 1:15. Proses aktivasi kimia dua tahap berpengaruh memperbesar karakterisasi iodin yang dihasilkan, sedangkan impregnasi MgO akan menurunkan karakterisasi iodin yang dihasilkan dan meningkatkan efektivitas penjerapan gas buang. Sampel dengan karakterisasi iodin terbaik didapatkan pada sampel AK2F 5% dengan luas permukaan 1142,77 m2 /gr, sedangkan sampel dengan efektivitas penurunan gas buang terbaik didapatkan pada sampel impregnasi 1:10 dengan penurunan gas buang CO, CO2, dan HC sebesar 52,05%, 56,80%, dan 73,96%. Berdasarkan hal tersebut, karbon aktif bonggol jagung dapat dijadikan alternatif adsorben dalam adsorpsi gas buang emisi kendaraan bermotor (sepeda motor).

The transportation sector is the largest contributor to air pollution, where exhaust emissions of CO, CO2, and HC have a negative impact on health and the environment. Activated carbon can be used as an adsorbent for exhaust gases of motor vehicles (motorcycles). Corncob has the potential to be used as a raw material for making activated carbon because it has a high lignocellulose content. The manufacture of corncob activated carbon was carried out through the preparation and dehydration stage, the first chemical activation using a 20% w/v KOH solution with a sample ratio to a 1:4 solution for 24 hours, carbonization at a temperature of 500℃ for 2 hours and sifted with a size of 60 mesh, followed by the second chemical activation using a KOH variation of 1% w/v, 3% w/v, and 5% w/v with the same ratio and time as the first chemical activation. The samples obtained were then activated by physics using N2 gas of 0.15 NL/min at a temperature of 600℃ for 1 hour. The activated carbon obtained, then impregnated using a solution of MgO 1 M with variations in the ratio of sample mass to solution volume are 1:5, 1:10, and 1:15. The two-stage chemical activation process has an effect on enlarging the characterization of iodine produced, while mgo impregnation will decrease the characterization of the iodine produced and increase the effectiveness of exhaust gas absorption. The sample with the best iodine characterization was obtained in sample AK2F 5% surface area of 1142.77 m2 /gr, while the sample with the best exhaust gas reduction effectiveness was obtained in impregnatation samples of 1: 10 with a decrease in CO, CO2, and HC exhaust gases by 52.05%, 56.80%, and 73.96%. Based on this, corncob activated carbon can be used as an alternative adsorbent in the adsorption of exhaust gas emissions from motor vehicles (motorcycles)."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Afdhal Hanafi
"Limbah kulit durian dipilih menjadi bahan baku pembuatan karbon aktif sebagai adsorben gas buang CO dan hidrokarbon karena mengandung selulosa yang tinggi serta diproduksi dalam jumlah yang tinggi yaitu mencapai 700 ribu ton per tahun. Metode aktivasi limbah kulit durian dilakukan malalui aktivasi kimia dan fisika. Aktivasi kimia menggunakan H3PO4 sebagai activating agent sedangkan aktivasi fisika menggunakan N2. Karbon aktif hasil aktivasi kimia fisika ini akan dimodifikasi dengan MgO agar kapasitas adsorpsi dalam menyerap CO dan hidrokarbon dapat meningkat. Karakterisasi yang digunakan adalah uji bilangan iod, SEM dan EDX untuk mengetahui luas permukaan, topografi dan kandungan pada karbon aktif.
Melalui pengujian bilangan iod didapatkan luas permukaan terbaik dengan modifikasi MgO pada rasio 70:30 yaitu sebesar 1149,48 m2/g. Untuk aktivasi kimia fisika, modifikasi MgO rasio 80:20 dan modifikasi MgO rasio 90:10 berturut turut didapatkan luas permukaan sebesar 798 m2/g, 890,23 m2/g dan 859,91 m2/g. Persen penurunan konsentrasi CO dan hidrokarbon terbaik yaitu dengan menggunakan karbon aktif hasil modifikasi MgO rasio 70:30 dengan panjang tabung adsorpsi 5 cm yaitu sebesar 99,14 untuk CO dan 87,73 untuk hidrokarbon.

Durian Shell waste is selected as raw material for making activated carbon as CO and hydrocarbon adsorbent because it contains high cellulose and produced in high number until 700 thousand tons per year. The activation method of durian shell by using chemical and physical acvtivation. Chemical activation using H3PO4 as activating agent and physical activation using N2. The activated carbon from chemical physical activation will modified by MgO to increase adsorption capacity in adsorbing CO and hydrocarbon. Characterization of active carbon used iod number, SEM and EDX to know surface area, topography and the content of activated carbon.
The best surface area from testing iod number is activated carbon with modified MgO ratio 70 30 that have a surface area of 1149.48 m2 g. For the activation of chemical physical, MgO modified ratio 80 20 and MgO modified 90 10 respectively obtained a surface area of 798 m2 g, 890.23 m2 g and 859.91 m2 g. the capacity adsorption is the best by using activated carbon modified MgO ratio 70 30 with 5 cm tube adsorption that is 99.14 for CO and 87.73 for hydrocarbons. Keywords CO and hydrocarbon gases, activated carbon, activation method, modified active carbon, characterization of activated carbon."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66931
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Nursya`bani
"Gas alam merupakan bahan bakar bersih yang lebih ramah lingkungan dibandingkan dengan batubara dan minyak bumi. Salah satu teknologi yang dapat digunakan untuk menyimpan gas alam adalah adsorbed natural gas (ANG). ANG memanfaatkan kemampuan adsorpsi material adsorben seperti karbon aktif untuk menyimpan gas alam. Karbon aktif dibuat dengan menggunakan cangkang kelapa sawit melalui tahapan karbonisasi dan aktivasi. Karbonisasi dilakukan pada suhu 400 oC dan dilanjutkan dengan tahapan aktivasi untuk membuka pori. Aktivasi kimia dilakukan dengan larutan H3PO4, sementara aktivasi fisika dilakukan dengan menggunakan gas N2. Yield yang didapatkan pada penelitian ini adalah sebesar 27,56%. Untuk meningkatkan kemampuan adsorpsi, dilakukan juga impregnasi menggunakan MgO yang divariasikan pada konsentrasi 0,5% b/b, 1% b/b, dan 2% b/b. Karbon aktif dengan hasil terbaik adalah karbon aktif termodifikasi MgO 1% b/b dengan luas permukaan sebesar 1604,00 m2/g. Karbon aktif yang dihasilkan diuji kapasitasnya dalam menyimpan gas alam. Kapasitas adsorpsi gas alam terbesar didapatkan oleh karbon aktif termodifikasi MgO 1% b/b pada suhu 28 oC dan tekanan 9 bar yang mampu mencapai 0,027 kg/kg.

Natural gas is a cleaner fuel that is more environmentally friendly than coal and oil. One of the technologies that can be used to store natural gas is adsorbed natural gas (ANG). ANG utilizes the adsorption ability of adsorbent materials such as activated carbon to store natural gas. Activated carbon is made using palm shells through the stages of carbonization and activation. The carbonization was carried out at 400 oC and followed by an activation step to open the pores. Chemical activation was carried out with H3PO4 solution, while physical activation was carried out using N2 gas. Yield obtained from this experiment is 27.56%. To increase adsorption ability, impregnation was also carried out using MgO with variation of concentration of 0.5% w/w, 1% w/w, and 2% w/w. Activated carbon with the best results was activated carbon with 1% w/w MgO modification with a surface area of 1604.00 m2/g. The activated carbon produced then tested for its capacity to store natural gas. The largest natural gas adsorption capacity was obtained by activated carbon modified with 1% MgO w/w at temperature 28 oC and pressure 9 bar which was able to reach 0.027 kg/kg.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sipangkar, Samson Patar
"Penggunaan gas alam dapat dimaksimalkan denga mengoptimasi metode penyimpanan yang efektif dan aman. Salah satu teknologi penyimpanan gas alam yang aman adalah Adsorbed Natural Gas (ANG). Teknologi ANG dapat dikembangkan melalui pengembangan adsorben berupa karbon aktif. Kapasitas lepas gas alam dari karbon aktif masih dapat ditingkatkan hingga 7,76 dengan penyisipan logam NiO. Karbon aktif dapat diproduksi dengan bahan baku biomassa, salah satunya limbah sabut kelapa karena mengandung selulosa sekitar 32,5 dan lignin sekitar 37. Karbon aktif berbahan baku limbah sabut kelapa akan diproses melalui karbonisasi pada temperatur 500 C, lalu diaktivasi dengan menggunakan agen aktivator berbeda berupa KOH dan NaOH, dan dimodifikasi menggunakan NiO dengan perbedaan konsentrasi 0,5, 1, dan 2. Karbon aktif dengan karakteristik terbaik adalah karbon aktif termodifikasi NiO 1 dengan bilangan iodin sebesar 791 mg g dan SBET 777m2 g. Kapasitas adsorpsi gas metana oleh karbon aktif termodifikasi NiO 1 pada temperatur 28 C dan tekanan 9 bar mampu mencapai 0,046kg kg.

The use of natural gas can be maximized by optimizing effective and safe storage methods. One of the safest natural gas storage technology is Adsorbed Natural Gas (ANG). ANG technology can be developed through the development of the adsorbent in the form of activated carbon. The release capacity of natural gas from activated carbon can still be increased up to 7.76 with NiO metal impregnation. Activated carbon can be produced from biomass such as coconut husk waste because it contains about 32.5 cellulose and 37 lignin. Activated carbon made from coconut husk waste will be processed through carbonization at 500 C, activation using different activator agents in the form of KOH and NaOH, and modification using NiO with differences concentration of 0.5, 1 and 2. Activated carbon that modified with 1 NiO has the best characteristic with iodin number of 791 mg g and SBET of 777 m2 g. The modified activated carbon methane adsorption capacity at 28 C dan 9 bar is 0,046kg kg."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Randy Anggriany
"Penelitian ini dilakukan untuk mengetahui pengaruh karbon aktif berbahan dasar tempurung kelapa sawit dengan bahan pengaktif ZnCl2 terhadap penurunan konsentrasi gas CO serta penjernihan asap kebakaran. Proses aktivasi dilakukan secara kimia dan fisika. Karbonisasi dilakukan pada suhu 400oC selama 2 jam lalu dilanjutkan dengan aktivasi kimia dengan ZnCl2 dengan konsentrasi 25%. Aktivasi fisika dilakukan dengan mengalirkan gas N2 selama 1 jam pada suhu 850 ºC dan dilanjutkan dengan mengaliri gas CO2 selama 1 jam pada suhu 850 ºC.
Penelitian ini menghasilkan karbon aktif yang memenuhi Standar Industri Indonesia dengan luas permukaan sebesar 743 m2/gram, kadar air 14,5%, dan kadar abu total 9,0%. Selain itu karbon aktif yang dihasilkan juga dapat diaplikasikan untuk mengadsorpsi gas CO dari hasil kebakaran dengan persen adsorpsi gas CO sebesar 11,3% pada ukuran partikel 50-37 μm.

This research was conducted to determine the effect of activated carbon made from coconut palm with ZnCl2 as activating agent to decrease the concentration of CO gas and fire fumes purification. The activation process is done chemically and physically. Carbonization was carried out at 400oC for 2 hours and then followed by chemical activation with ZnCl2 at concentrations of 25%. Physical activation is done by flowing N2 gas for 1 hour at 850ºC and followed by flowing CO2 gas for 1 hour at 850ºC.
This research produces activated carbon which follows Indonesian Industry Standard with surface area 743 m2/gram, water content 14.5%, and total ash content 9.0%. The activated carbon produced can also be applied to adsorb CO gas from the fire with the percent adsorption of CO gas by 11.3% in the particle size of 50-37 μm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46908
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>