Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 144843 dokumen yang sesuai dengan query
cover
Toby Rufeo
"Skripsi ini membahas penggunaan arsitektur Long Short-Term Memory (LSTM) dalam merancang sebuah model identifikasi. Riset ini membahas pengaruh hyperparameter seperti jumlah hidden layer, jenis fungsi aktivasi, tipe optimizer, dan hyperparameter lainnya terhadap kinerja arsitektur neural network. Selebihnya, Skripsi ini juga membandingkan model Long Short Term Memory (LSTM) dengan arsitektur Convolutional Neural Network (CNN) dan Artificial Neural Network (ANN). Hasil dari penelitian skripsi ini menunjukkan bahwa arsitektur Long Short Term Memory menunjukkan hasil yang optimal pada sistem yang time dependent dan dinamis.

This paper discusses the application of Long Short-Term Memory Networks in designing a identification model. Firstly, this paper discusses the effect of different hyperparameters such as but not limited to: number of hidden layers, type of activation function, type of optimizer used on the performance of the neural network. Furthermore, this paper also compares the performance and effectiveness of different neural networks such as Convolutional Neural Network (CNN) and Artificial Neural Network (ANN) to a LSTM model. The result of this research shows that a Long Short-Term Memory (LSTM) network performs optimally in systems that are time-dependent and dynamic.>i/>
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Joshua Alviando
"Penelitian ini membahas tentang perancangan sistem identifikasi pada sistem dinamik kapal Makara 03 dengan konfigurasi multi masukan dan multi keluaran. Penelitian ini merancang berbagai metode perombakan struktur Jaringan Saraf Tiruan (JST) baik metode sekuensial maupun fungsional untuk dapat menangkap dinamik yang ada pada dinamik kapal Makara 03. Metode-metode pada JST yang dibuat akan dibandingkan dengan hasil dari model matematika yaitu Transfer Function dan State Space untuk membuktikan keberhasilan dan keunggulan JST dalam membuat sistem identifikasi. Hasil dari perbandingan tersebut membuktikan semua metode yang dihasilkan pada penelitian ini mendapatkan hasil yang lebih baik dibandingkan dengan model matematika konvensional.

This research discusses the design of the identification system on the dynamic system of the Makara 03 ship with a multi-input and multi-output configuration. This study designed various structural reshuffle methods for sequensial and functional model of Artificial Neural Network (ANN) to be able to capture the dynamics of Makara 03. The methods in the ANN that were made will be compared with the results of mathematical models namely Transfer Function and State Space for prove the success and superiority of ANN in making identification systems. The results of this comparison prove that all the ANN methods produced in this study get better results compared to conventional mathematical models."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fitri Yulianti
"ABSTRAK
Penelitian ini bertujuan untuk memprediksi tingkat konsumsi gas pipa domestik di
Indonesia menggunakan metode Neural Network, ARIMAX, dan Multiple Linear
Regression (MLR). Peramalan dilakukan hingga periode Desember 2025 dengan
menggunakan data historis tingkat konsumsi gas pipa domestik, inflasi, selisih
harga minyak dan gas, serta selisih harga batubara dan gas periode Januari 2007
sampai dengan September 2012 sebagai prediktor. Hasilnya metode ARIMAX
memberikan hasil yang paling akurat dengan nilai MAPE 3.89%. Metode Neural
Network memberikan hasil forecasting dengan nilai MAPE 6.34%, sedangkan
metode MLR mempunyai tingkat error terbesar dengan MAPE 8.39%. Kapasitas
produksi gas Indonesia cukup besar, tetapi jumlah gas yang dikonsumsi untuk
keperluan domestik masih tergolong sedikit. Hasil forecasting ketiga metode
menunjukkan ke depannya tingkat konsumsi gas akan terus meningkat.
Perbandingan antara hasil forecasting ketiga metode dan Neraca Gas Indonesia
cukup besar. Hal ini menunjukkan meskipun Indonesia memiliki potensi
cadangan gas alam yang sangat melimpah, tetapi permintaan domestik belum
terpenuhi secara maksimal.

ABSTRACT
This study aims to predict the level of domestic pipeline gas consumption in
Indonesia using Neural Network, ARIMAX, and Multiple Linear Regression
(MLR). Forecasting is done until the period of December 2025 using historical
data of domestic pipeline consumption rate, inflation, the difference price of oil
and gas, as well as the difference price of coal and gas from the period January
2007 until September 2012 as predictor. The result ARIMAX method gives the
most accurate results with the value of MAPE 3.89%. Neural Network method
gives forecasting result with MAPE 6.34%, while the MLR method has the largest
error rate with MAPE 8.39%. Indonesia gas production capacity is quite large, but
the amount of gas consumed for domestic use is still relatively small. The third
method of forecasting results indicate the future gas consumption will continue to
increase. Comparison between the results of the three forecasting methods and
Neraca Gas Indonesia is quite large. This shows even though Indonesia has very
abundant potential reserves of natural gas, but domestic demand has not been met
maximally.
"
2013
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sandyka Gunnisyah Putra
"Machine Learning (ML) dan Deep Learning merupakan bidang yang populer pada masa kini. Salah satu ranah tersebut yang menantang untuk diteliti adalah tentang mendeteksi emosi pada teks. Interaksi antara komputer dan manusia dapat menjadi lebih baik apabila komputer dapat mendeteksi emosi, menginterpretasikan emosi tersebut, dan memberikan umpan balik yang sesuai dengan apa yang manusia inginkan. Oleh karena itu, penelitian ini bertujuan untuk membuat sistem pendeteksi emosi pada teks Bahasa Indonesia. Pada penelitian ini, terdapat 2 macam algoritma Deep Learning yang digunakan, yaitu Convolutional Neural Network (CNN) dan Long Short-Term Memory (LSTM). Convolutional Neural Network merupakan salah satu algoritma Deep Learning dimana karakteristik utamanya menggunakan operasi matriks konvolusi. Long ShortTerm Memory merupakan salah satu algoritma Deep Learning dimana merupakan perkembangan dari algoritma Recurrent Neural Network (RNN). Kedua algoritma tersebut akan didukung dengan Word Embedding Bahasa Indonesia dari fastText dan Polyglot. Package text2emotion akan digunakan sebagai data tambahan untuk evaluasi. Input dataset yang digunakan untuk Deep Learning adalah dataset cerita dongeng yang memiliki emosi "Senang", "Sedih", "Marah", "Takut", "Terkejut", dan "Jijik". Input dataset tersebut akan melalui tahap preprocessing berupa Case Normalization, Stopword Removal, Stemming, Tokenizer, dan Padding. Setelah itu, proses training dijalankan dengan menggunakan RandomizedSearchCV sebagai hyperparameter tuning. Hasil akan dibandingkan dan dianalisis berdasarkan nilai Evaluation Metrics Accuracy, Precision, Recall, dan F1-Score. Sistem berhasil dirancang dengan mencapai hasil Accuracy sebesar 91,60%, Precision sebesar 92,48%, Recall sebesar 91,60%, dan F1- Score sebesar 91,68%.

Machine Learning (ML) and Deep Learning is a popular region to be used right now. One of the scopes that challenging to research is about emotion recognition on text. Interaction between computer and human can be better if the computer can recognize the emotion, interpret it, and giving a suitable feedback with the human’s need. Therefore, this research has goal to make an emotion recognition on Indonesian text language. On this research, there’s 2 kind of Deep Learning algorithm that used, that is Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). Convolutional Neural Network is one of Deep Learning algorithm that its main characteristic is using convolution matrix operation. Long Short-Term Memory is one of Deep Learning algorithm which is an improvement from Recurrent Neural Network (RNN) algorithm. Both algorithms will be supported with Indonesian Word Embedding from fastText and Polyglot. Text2emotion package is used for additional data for evaluation. The input dataset that will be used on this Deep Learning is a fairy tale dataset which have “Happy”, “Sad”, “Anger”, “Fear”, “Surprised”, and “Disgust” emotion. That input dataset will be passed to preprocessing stage that consist of Case Normalization, Stop-word Removal, Stemming, Tokenizer, and Padding. After that, training process started with using RandomizedSearchCV as hyperparameter tuning. The result will be compared and analyzed based on Accuracy, Precision, Recall, and F1- Score Evaluation Metrics. System is made with reaching 91.60% Accuracy, 92,48% Precision, 91,60% Recall, and 91,68% F1-Score."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rehan Hawari
"Jatuh merupakan penyebab utama kedua cedera dan kematian yang tidak disengaja di seluruh dunia. Kejadian ini sering terjadi pada lansia dan frekuensinya meningkat setiap tahun. Sistem pendeteksi aktivitas jatuh yang reliabel dapat mengurangi risiko cedera yang dialami. Mengingat jatuh adalah kejadian yang tidak dikehendaki atau terjadi secara tiba-tiba, sulit untuk mengumpulkan data jatuh yang sebenarnya. Deteksi jatuh juga sulit karena kemiripannya dengan beberapa aktivitas seperti jongkok, dan mengambil objek dari lantai. Selain itu, beberapa tahun belakangan dataset mengenai aktivitas jatuh yang tersedia secara publik juga terbatas. Oleh karena itu, di tahun 2019, beberapa peneliti mencoba membuat dataset jatuh yang komprehensif yang mensimulasikan kejadian yang sebenarnya dengan menggunakan perangkat kamera dan sensor. Dataset yang dihasilkan dataset multimodal bernama UP-Fall. Menggunakan dataset tersebut, penelitian ini mencoba mendeteksi aktivitas jatuh dengan pendekatan Convolutional Neural Network (CNN) dan Long Short Term Memory (LSTM). CNN digunakan untuk mendeteksi informasi spasial dari data citra, sedangakan LSTM digunakan untuk mengeksploitasi informasi temporal dari data sinyal. Kemudian, hasil dari kedua model digabungkan dengan strategi majority voting. Berdasarkan hasil evaluasi, CNN memperoleh akurasi sebesar 98,49% dan LSTM 98,88%. Kedua model berkontribusi kepada performa strategi majority voting sehingga mendapatkan akurasi (98,31%) yang melebihi akurasi baseline (96,4%). Metrik evaluasi lain juga meningkat seperti precision naik 11%, recall 14%, dan F1-score 12% jika dibandingan dengan baseline

.Fall is the second leading cause of accidental injury and death worldwide. This event often occurs in the elderly and the frequency is increasing every year. Reliable fall activity detection system can reduce the risk of injuries suffered. Since falls are unwanted events or occur suddenly, it is difficult to collect actual fall data. It is also difficult because of the similarity to some activities such as squatting, and picking up objects from the floor. In addition, in recent years the fall dataset that is publicly available is limited. Therefore, in 2019, some researchers tried to create a comprehensive fall dataset that simulates the actual events using camera and sensor devices. The experiment produced a multimodal dataset UP-Fall. Using this dataset, this study tries to detect falling activity using Convolutional Neural Network and Long Short Term Memory approaches. CNN is used to detect spatial information from image data, while LSTM is used to exploit temporal information from signal data. Then, the results of the two models are combined with the majority voting strategy. Based on the evaluation results, CNN obtained an accuracy of 98.49% and LSTM 98.88%. Both models contribute to the performance of the majority voting strategy with the result that the accuracy (98.31%) exceeds baseline accuracy (96.4%). Other evaluation metrics also improved such as precision goes up to 11%, recall 14%, and F1-score 12% in comparison with baseline."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elyaser Ben Guno
"Automatic Modulation Classification (AMC) secara otomatis mengidentifikasi jenis modulasi apa yang digunakan pada pemancar berdasarkan pengamatan terhadap sinyal yang diterima. Seiring dengan perkembangan pada topik ini, Deep Learning (DL) dapat diterapkan pada AMC dan memiliki kinerja yang menjanjikan. Namun, sebagian besar model DL yang dibuat hanya berfokus pada akurasi, mengabaikan ukuran model dan kompleksitas komputasi yang dapat menjadi masalah bagi perangkat dengan ukuran memori dan daya komputasi yang terbatas. Dalam penelitian ini, model Convolutional Long short-term memory Deep Neural Network (CLDNN) ringan diusulkan untuk mengklasifikasi modulasi. Model yang diusulkan dilatih dan diuji dengan dataset RML2016.10b. Model yang diusulkan memiliki ukuran model dan jumlah parameter yang lebih kecil, serta waktu pelatihan dan klasifikasi yang lebih cepat, relatif terhadap model pembanding, dengan tetap menjaga kualitas akurasinya.

Automatic Modulation Classification (AMC) automatically identifies what type of modulation is used on the transmitter based on observations of the received signal. Along with the development on this topic, Deep Learning (DL) can be applied to AMC and has promising performance. However, most of the DL models created only focus on accuracy, ignoring the model size and computational complexity which can be a problem for devices with limited memory size and computing power. In this study, a lightweight Convolutional Long short-term memory Deep Neural Network (CLDNN) model was proposed to classify modulation. The proposed model was trained and tested with the RML2016.10b dataset. The proposed model has a small model size and parameters, as well as fast training and classification time, relative to the comparison models, while maintaining the quality of its accuracy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Theresia Gowandi
"Analisis sentimen adalah salah satu bidang dari Pemrosesan Bahasa Alami yang membangun sistem untuk mengenal opini dalam teks dan mengelompokkan ke dalam sentimen positif atau negatif. Banyak peneliti telah membangun model yang menghasilkan akurasi terbaik dalam melakukan analisis sentimen. Tiga diantaranya adalah Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), dan Gated Recurrent Unit (GRU), yang merupakan bagian dari deep learning. CNN digunakan karena kemampuannya dalam mengekstrak fitur penting dalam penggalan kalimat, sedangkan LSTM dan GRU digunakan karena kemampuannya yang memiliki memori akan input yang telah diproses sebelumnya. GRU memiliki struktur yang lebih sederhana dibandingkan dengan LSTM. Ketiga model tersebut dapat digabungkan menjadi model gabungan LSTM-CNN, CNN-LSTM, GRU-CNN, dan CNN-GRU. Penelitian sebelumnya telah membuktikan bahwa model gabungan tersebut memiliki akurasi yang lebih baik dibandingkan dengan model dasar LSTM, GRU, dan CNN. Implementasi model dilakukan pada data ulasan aplikasi berbahasa Indonesia. Hasilnya, didapatkan bahwa hampir seluruh model gabungan memiliki akurasi yang lebih baik dibandingkan dengan model dasar.

Sentiment analysis is one of the fields of Natural Language Processing that builds a system to recognize and extract opinion in the form of text into positive or negative sentiment. Nowadays, many researchers have developed methods that yield the best accuracy in performing analysis sentiment. Three particular models are Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), which are part of deep learning architectures. CNN is used because of its ability to extract important features from each sentence fragment, while LSTM and GRU are used because of their ability to have a memory of prior inputs. GRU has a simpler and more practical structure compared to LSTM. These models can be combined into combined LSTM-CNN, CNN-LSTM, GRU-CNN, and CNN-GRU model. Former researches have proved that these models have better accuracy compared to standard models. This research is focused on the performance of all the combined LSTM-CNN, CNN-LSTM, GRU-CNN, CNN-GRU models and will be compared to the standard LSTM, GRU, CNN models. Implementation of the model is performed on a collection of application review data in Indonesian text. As a result, almost all of the combined models have better accuracy than the standard models."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Oxford: Pergamon Press, 1981
003 TRE
Buku Teks  Universitas Indonesia Library
cover
Sinha, N. K.
New York: Van Nostrand Reinhold, 1983
003 SIN m
Buku Teks  Universitas Indonesia Library
cover
Muhammad Hafizh
"AMC, Automatic Modulation Classification, adalah suatu teknologi yang dapat mengklasifikasi jenis modulasi pada suatu sinyal. Dalam perkembangan AMC model Deep Learning yang digunakan biasanya mengejar akurasi dari model tanpa memperhatikan ukuran dari model itu sendiri. Pada penelitian ini, dirancang sebuah model Convolutional Long short-term memory Deep Neural Network (CLDNN) yang ringan dengan metode optimasi model tambahan yang dinamakan Pruning. Pruning sendiri adalah metode optimasi model yang dapat memutus hubungan antar neuron dalam suatu Neural Network guna memperkecil ukuran model dan mempercepat waktu komputasi dengan tetap menjaga akurasi dari model tersebut. Penelitian ini mampu membuktikan bahwa metode optimasi pruning dapat mengurangi ukuran model CLDNN-Y3 hingga 76,92% pada sparsity 0,95. Akurasi model CLDNN-Y3 yang telah dioptimasi sebesar 64,07% pada sparsity 0,5, 64,04% pada sparsity 0,8, 63,74% pada sparsity 0,9, dan 62,86% pada sparsity 0,95.

AMC, Automatic Modulation Classification, is a technology that can classify the type of modulation on a signal. In the development of AMC, Automatic Modulation Classification, Deep Learning models used usually pursue the accuracy of the model regardless of the size of the model itself. In this study, a lightweight Convolutional Long short-term memory Deep Neural Network (CLDNN) model was designed with an additional model optimization method called Pruning. Pruning itself is a model optimization method that can remove connections between neurons in a Neural Network to reduce the size of the model and speed up computational time while maintaining the accuracy of the model. This research has proven that the pruning optimization method is capable of reducing the size of the CLDNN-Y3 model by up to 76.92% at a sparsity level of 0.95. The optimized CLDNN-Y3 model achieves an accuracy of 64.07% at a sparsity of 0.5, 64.04% at a sparsity of 0.8, 63.74% at a sparsity of 0.9, and 62.86% at a sparsity of 0.95."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>