Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 168347 dokumen yang sesuai dengan query
cover
Rizki Wira Pratama
"Dalam merancang kendaraan bus listrik, dibutuhkan komponen untuk menyuplai daya ke sistem auxiliary yang membutuhkan tegangan 24V dari sumber baterai 600V. DC-DC konverter terisolasi merupakan solusi untuk mengubah tingkat tegangan dari 600V ke 24V dengan menggunakan metode Switch Mode Power Supply (SMPS) yang bertopologi phase shift full bridge current doubler with synchronous rectification agar dapat memperoleh daya sebesar 3kW. Rangkaian dirancang terisolasi agar aman bagi komponen sistem auxiliary, baterai, dan penggunanya, karena rangkaian sumber dan beban terpisah secara elektris, namun terhubung secara magnetis oleh transformator. Frekuensi switching yang digunakan adalah 100 kHz dengan menggunakan semikonduktor MOSFet. MOSFet harus mencapai kondisi zero voltage swithching yaitu pada saat MOSFet akan menyala, tegangan MOSFet sudah menyentuh angka nol, sehingga tidak terjadi rugi-rugi swithing saat menyala. Kondisi ZVS harus tercapai pada sisi primer maupun sisi sekunder. Tercapainya ZVS akan membuat efisiensi konverter menjadi lebih tinggi sehingga mencapai spesifikasi yang diinginkan. Pada sisi sekunder terdapat rangkaian snubber yang bertujuan untuk mengurangi ringing pada tegangan sekunder, dua induktor dan satu kapasitor yang berfungsi sebagai filter.

Designing electric vehicle, especially bus, a component is needed to supply the power for 24V auxiliary system from 600V battery source. Isolated DC-DC converter is a solution to convert voltage level from 600V to 24V with Switch Mode Power Supply (SMPS) method that designed with phase shift full bridge current doubler synchronous rectification to produce 3 kW of electric power. The circuit has been designed to be safely used for the auxiliary system, battery source, and for the user, because the source circuit and load circuit is electrically separated, but magnetically connected by transformer. Switching frequency that used in this simulation is 100 kHz using MOSFet semiconductor. MOSFet must reach zero swithching voltage condition that is when the MOSFet is turn on, the MOSFet voltage has reached zero, so there is no need to calculate swithing losses when it is on. ZVS condition must be agreed on the primary and secondary side. Reached ZVS will make the converter efficiency higher so that it reaches the desired specifications. On the secondary side there is a snubber circuit that is intended to reduce the ringing voltage at the secondary switching, two inductors and one capacitor that functions as a filter."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Nur Ismail
"Pada saat ini pengembangan dan penggunaan kendaraan listrik masif dilakukan. Kendaraan listrik membutuhkan konverter DC-DC untuk menurunkan tegangan tinggi dari sumber utama — baterai besar — ke tegangan rendah (step down DC-DC converter) sehingga tegangan dapat digunakan oleh komponen - komponen yang membutuhkan tenganan rendah. Topologi konverter DC-DC yang umum digunakan adalah konverter dengan switch tunggal seperti flyback converter dan switch ganda seperti half bridge converter. Akan tetapi kedua topologi tersebut memiliki nilai voltage and current stress (spike, overshoot, dan ringing) yang tinggi dengan demikian akan menimbulkan rugi - rugi daya yang besar serta membutuhkan komponen dengan rating tegangan dan arus yang tinggi. Phase Shift Full Bridge DC-DC Converter (selanjutnya akan disebut PSFB) merupakan salah satu topologi konverter DC-DC terisolasi yang memiliki konfigurasi empat switch (full bridge / active bridge) sehingga dapat memiliki voltage and current stress yang lebih rendah dibandingkan dengan kedua topologi sebelumnya, dengan demikian dapat dihasilkan rugi - rugi daya yang lebih rendah [1]. Tegangan output PSFB ditentukan dari pergeseran fasa active bridge yang dihasilkan melalui kolaborasi keempat switch MOSFET oleh gate driver [2]. Gate driver dikendalikan oleh mikrokontroler yang sudah diporgram dengan algoritma pergeseran fasa dan juga closed loop control. Dalam karya ilmiah ini berhasil dibuat purwarupa PSFB yang dapat menghasilkan tegangan output dinamis sesuai dengan pergeseran fasa dalam active bridge. Nilai tegangan output memiliki kecenderungan meningkat dalam rentang pergeseran fasa 0º sampai 180º dan memiliki kecenderungan menurun dalam rentang pergeseran fasa 180º sampai 360º. Diperoleh juga hasil yang menunjukkan bahwa purwarupa PSFB sudah terintegrasi dengan closed loop control sehingga sistem dapat menghasilkan tegangan output sesuai dengan setpoint yang ada dalam program. Sistem dapat mempertahankan tegangan output sesuai setpoint meskipun diberikan variasi tegangan input dan variasi beban.

Currently, the development and widespread use of electric vehicles are underway. Electric vehicles require a DC-DC converter to convert the high voltage from the main source — a large battery — to a lower voltage (step-down DC-DC converter), allowing it to be used by components that require low voltage. Commonly used topologies for DC-DC converters include single-switch converters like the flyback converter and dual-switch converters like the half-bridge converter. However, both topologies have high voltage and current stress values (spikes, overshoot, and ringing), resulting in significant power losses and the need for components with high voltage and current ratings. The Phase Shift Full Bridge DC-DC Converter (hereafter referred to as PSFB) is one of the isolated DC-DC converter topologies with a four-switch configuration (full bridge/active bridge). This configuration allows it to have lower voltage and current stress compared to the previous two topologies, thereby resulting in lower power losses [1]. The output voltage of the PSFB is determined by the phase shift of the active bridge generated through the collaboration of the four MOSFET switches controlled by a gate driver [2]. The gate driver is controlled by a microcontroller programmed with a phase shift algorithm and closed-loop control. In this scientific work, a prototype of the PSFB has been successfully developed, capable of producing dynamic output voltage in accordance with the phase shift in the active bridge. The output voltage tends to increase in the phase shift range of 0º to 180º and decrease in the range of 180º to 360º. Furthermore, results indicate that the PSFB system has been integrated with closed-loop control, enabling it to generate output voltage according to the various setpoint in the program. The system is able to maintain the output voltage according to setpoint, regardless of various of input voltages and loads."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Albertus Hendra
"Dalam merancang kendaraan bus listrik, dibutuhkan komponen untuk menyuplai daya ke sistem auxiliary yang membutuhkan tegangan 24V dari sumber baterai 400V. Isolated DC-DC converter merupakan solusi untuk mengubah tingkat tegangan dari 400V ke 24V dengan menggunakan metode Switch Mode Power Supply (SMPS) yang bertopologi push-pull agar dapat memperoleh daya sebesar 1kW. Rangkaian dirancang terisolasi agar aman bagi komponen sistem auxiliary, baterai, dan penggunanya, karena rangkaian sumber dan beban terpisah secara elektris, namun terhubung secara magnetis oleh transformator. Frekuensi switching yang digunakan adalah 20 kHz dengan menggunakan semikonduktor IGBT. Pada bagian masukkan terdapat rangkaian snubber agar diperoleh masukkan tegangan yang mendekati ideal. Pada bagian keluaran rangkaian terdapat filter LC yang berfungsi untuk menjaga gelombang tegangan keluaran agar lebih stabil pada suatu nilai. Tegangan keluaran diumpan balik ke pengendali PID yang dirancang dengan metode tempat kedudukan akar berdasarkan pemodelan state-space averaging dan digunakan untuk mengatur keluaran PWM yang menjalankan proses switching pada IGBT, sehingga menjaga keluaran tetap pada nilai tegangan yang diinginkan, yaitu 24V. Seluruh rancang bangun dianalisa melalui hasil grafik simulasi. Hasil penelitian ini diperoleh rangkaian isolated DC-DC converter efisiensi 83.6% dan mampu memberikan keluaran stabil pada 24V dengan daya 1kW.

Designing electric vehicle, especially bus, a component is needed to supply the power for 24V auxiliary system from 400V battery source. Isolated DC-DC converter is a solution to convert voltage level from 400V to 24V with Switch Mode Power Supply (SMPS) method that designed with push-pull topology that the design able to drive 1 kW of electric power. The circuit has been designed to be safely used for the auxiliary system, battery source, and for the user, because the source circuit and load circuit is electrically separated, but magnetically connected by transformer. Switching frequency that used in this simulation is 20 kHz using IGBT semiconductor. Ferrite transformer is used in this simulation to satisfy the required switching frequency of 20 kHz. On the input circuit, there is a snubber circuit to maintain the input voltage to be more ideal. On the output circuit, LC filter is used to maintain the voltage output wave to be more stable on the desired voltage level. The output voltage provides feedback value to PID controller that is designed using Root Locus method based on state-space averaging model and used by the PID controller to control the PWM output to drive the switching process on IGBT semiconductor, hence the output voltage will be maintained on desired level, 24V. The whole design is analyzed through simulation graph result. The result of this study, an isolated DC-DC converter that has efficiency 83.6% and capable of delivering 24V stable output with 1kW power transmission."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Marzuki
"Penggunaan energi listrik saat ini secara garis besar masih menggunakan tegangan arus bolak-balik AC . Hampir semua peralatan elektronik memerlukan sumber arus searah DC terutama pada komputer pribadi Personal Computer . Dalam aplikasinya, sumber tegangan AC perlu dikonversikan menjadi tegangan DC pada sistem catu daya komputer. Sistem pada catu daya komputer memiliki tegangan keluaran yang bervariasi yaitu 3,3v, 5v, 12v, 0, -5v, dan -12v. Berdasarkan hasil pengukuran, besarnya tegangan keluaran pada catu daya komputer berkisar dibawah 5 yang berarti bahwa tegangan tersebut masih dalam kondisi toleransi yang diperbolehkan dan arus yang paling besar terdapat pada pengukuran kabel soket untuk VGA yang memiliki nilai arus DC mencapai 1,550 A pada saat beroperasi, 1,533 pada saat penyalaan komputer dan 422mA pada saat kondisi stand by pada tegangan 12,10 volt DC. Dibutuhkan Konverter DC-DC untuk mengubah level tegangan DC satu ke level tegangan DC lainnya. Adapun jenis konverter DC-DC yang dapat digunakan pada catu daya komputer pribadi yaitu konverter DC-DC topologi Boost Single Input Multiple Output. Simulasi Perancangan Konverter DC-DC menggunakan software ISS Proteus.

The use of electricity nowadays is largely remains using a source of alternating current AC. Almost all electronic devices require a source of direct current DC, especially on personal computers. In its application, the AC voltage source need to be converted into DC voltage in the power supply system of the computer. Systems on the computer power supply has variable output voltage is 3.3V, 5V, 12V, 0, 5V, and 12V. Based on the measurement results, the magnitude of the output voltage of the power supply computer ranges below 5 , which means that the voltage is still in a state of tolerance allowed and the current most contained in the measurement cable connector to VGA that has a value of DC current reached 1,550 A during operation , 1,533 at the time at which the computer and 422mA during the stand by condition at a voltage of 12.10 volts DC. DC DC converters needed to convert one DC voltage level to another DC voltage level. The type of DC DC converters that can be used on a personal computer power supply is a DC DC converter topology Boost Single Input Multiple Output. Simulation of DC DC converter design using Proteus ISS software."
Depok: Fakultas Teknik Universitas Indonesia, 2017
T48146
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Irfan Alfath
"Mengikuti tren global dari mengadopsi energi terbarukan ke dalam sistem tenaga listrik, banyak arus langsung (DC) rumah konsep yang diusulkan, karena sebagian besar energi terbarukan sumber tegangan DC. Penulisan ilmiah ini membahas pengembangan pengisian baterai yang ringan, rendah profil, dan terpasang di dalam sepeda motor listrik yang dapat menghemat ruang dan kompatibel untuk rumah sistem DC. Oleh karena itu, inverter yang umum digunakan dapat dihilangkan karena menghasilkan kerugian konversi daya yang lebih rendah. Desain topologi Dual Active Bridge (DAB) dalam frekuensi switching tinggi sebesar 1 MHz dan menggunakan magnetis planar ini dilakukan untuk mendesain dan menentukan sistem kontrol dari DC-DC konverter yang paling sesuai. Untuk mencapai efisiensi tinggi dalam frekuensi switching tinggi dan untuk mengurangi ukuran charger, perangkat divais elektronika wide band gap (wbg) yang digunakan. Langkah-langkah metodologi desain diusulkan dan divalidasi melalui simulasi pada rangkaian yang mengonversi 120 V dari input ke tegangan output 55 V di 550 W. Hasil dari penelitian ini menunjukkan semua metode phase shift modulation (PSM) berhasil didesain untuk mencapai ZVS. Single Phase Shift merupakan PSM yang terbaik untuk penerapan kasus ini karena memiliki Irms yang paling rendah. Penelitian ini berhasil membuktikan bahwa DAB dapat beroperasional secara dua arah. Desain dibuat hingga tahap pembuatan footprint dengan komponen magnetis menggunakan 84,7% dari total ukuran komponen.

Following the global trend of adopting renewable energy into electric power system, many direct current (DC) House concepts are proposed, because most of the renewable energy sources are DC voltage. This Scientific writing discusses the development of lightweight, low profile, and the built-in electric bike charger that does not take up excessive space and are compatible for home DC systems. Therefore, commonly used inverters can be eliminated as it generates lower power conversion losses. The topology design for the Dual Active Bridge (DAB) topology in a high switching frequency of 1 MHz and using a magnetic planar is performed to design and determine the control system of the most suitable DC-DC converter. To achieve high efficiency in high switching frequencies and to reduce the size of the charger, wide band gap (WBG) devices are used. Step-by-step in design methodology is proposed and validated through simulation on the circuit convert 120 V from input to output voltage of 55 V at 550 W. The result of this research is the Phase shift modulation (PSM) was successfully designed to achieve ZVS. Single Phase Shift is the best PSM for the application of this case because it has the lowest Irms. This research proved that DAB can operate bidirectional. The design is made to the stage of footprint design with the magnetics component use 84,7% of total size of the components."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Sugandi
"DC-DC Switch Mode Power Supply SMPS merupakan rangkaian elektronika yang dapat mengubah suatu level tegangan listrik tertentu menjadi level tegangan listrik lainnya. Perubahan level tegangan memanfaatkan prinsip induksi elektromagnet, yaitu melalui kopel magnetik dari transformator frekuensi tinggi berinti ferit. Frekuensi tinggi di bangkitkan menggunakan mikrokontroler ATmega 328 berbasis Arduino. Frekuensi tinggi yang dihasilkan adalah sekitar 20kHz. Kelebihan SMPS dalam konversi tegangan dibandingkan konverter lainnya adalah SMPS dapat mengkonversi dengan efisiensi yang cukup tinggi, karena rasio tegangan dipertahankan oleh rasio lilitan. Selain itu SMPS juga dapat memisahkan rangkaian secara elektrik. Sehingga jika ada gangguan di sisi primer, sisi sekunder tidak merasakan gangguan secara langsung, begitu pula sebaliknya. Terdapat filter LC dua tahap untuk menghaluskan gelombang keluaran. Terdapat pula pengendali PID untuk mempertahankan tegangan keluaran sesuai dengan referensi. Terdapat pula rangkaian snubber untuk melindungi divais elektronik dari interaksi induktansi leakage transformator dengan kapasitansi Miller divais elektronik tersebut. Nilai ripple factor gelombang keluaran sebelum difilter adalah 1.11, setelah difilter satu tahap adalah 0.556, dan difilter dua tahap 0.222. Pada beberapa pengujian respon transien, didapatlah waktu tunak rata-rata sebesar 1.79 detik. Undershoot dan Overshoot tegangan keluaran terbesar yang terjadi saat pengujian adalah pada nilai tegangan 163.86V dan 268.93V dari set point 220V. Terjadi penurunan suhu MOSFET rata-rata sebesar 7.36oC ketika rangkaian snubber dipasang. Pada pengujian efisiensi, didapat efisiensi tertinggi sebesar 91.7 pada beban 700W.

DC DC Switch Mode Power Supply SMPS is an electronics circuit that used to change DC voltage level from one level to another level. This circuit use electromagnetic induction, which is via magnetic couple of high frequency ferrite transformer to change voltage level. High frequency is produced by ATmega 328 microcontroller with Arduino platform. Frequency that used in this circuit is about 20 kHz. SMPS advantages compare to another voltage converter are high efficiency conversion and it can electrically isolate primary and secondary. So, if there is a fault at primary side, then secondary side is not sense the fault directly, and vice versa. There is a two stage LC filter to make output wave smoother. There is a PID controller to maintain output voltage at its reference. There is a snubber circuit to protect electronic device from interaction between transformer leakage inductance and its Miller capacitance. Output waveform ripple factor before being filtered is 1.111, after being filtered by 1 stage LC filter is 0.556, and after being filtered by 2 stage LC filter is 0.222. From some transient test, average system rsquo s settling time is 1.79 second. Output voltage undershoot and overshoot are respectively 163.86V and 268.93V at 220V set point voltage. MOSFETs temperature has decreased after snubber circuit is placed. From efficiency test, highest systems efficiency is 91.7 at 700 watt load."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Budiyanto
"Sumber energi terbarukan merupakan sumber energi yang potensial untuk dikembangkan, seperti tenaga angin, matahari, dan air. Perkembangan teknologi elektronika daya seperti invertor memberikan solusi atas penggunaan energi terbarukan pada sistem jaringan listrik mikro (microgrid) arus bolak - balik, namun sistem ini sering mengalami persoalan pada frekuensi, tegangan, daya aktif dan daya reaktif saat dua buah atau lebih invertor bekerja bersamaan, sehingga perlu peralatan sinkronisasi dan pengendali yang rumit. Pengembangan sistem jaringan listrik miko arus searah (JLMAS) juga dikembangkan seiring dengan perkembangan peralatan rumah tangga yang dapat dioperasikan dengan sumber arus searah, hal ini juga merupakan solusi dari keterbatasan pada jaringan listrik mikro arus bolak - balik. Dalam sistem JLMAS penggabungan dua buah atau lebih sumber energi terbarukan dapat dengan mudah diparalel, dengan syarat tegangan dan polaritanya sama. Sehingga ini menjadikan peluang untuk mengembangkan sistem JLMAS.
Pembangkit energi terbarukan seperti sel surya dan turbin angin sangat dipengaruhi oleh kondisi alam sehingga produksi listrik yang dihasilkan tidak stabil dan bahkan terhenti sama sekali, untuk itu perlu dilengkapi dengan baterai yang fungsinya selain sebagai penyimpan energi juga untuk menjaga agar pasokan daya listrik ke jaringan listrik mikro menjadi lebih kontinyu. Saat baterai mengalami penurunan dan tidak mampu dalam memberikan suplai energi maka perlu adanya baterai cadangan yang dapat memasok energi ke sistem jaringan. Agar baterai cadangan dapat bekerja maka perlu ada pengendali untuk mengatur kerja baterai tersebut. Beberapa penelitian tentang pengendali tegangan dari pembangkit energi terbarukan telah dilakukan, namun masih dalam satu sistem pembangkit. Penelitian ini bertujuan untuk mengendalikan sistem JLMAS dari dua atau lebih sumber energi terbarukan dan satu baterai cadangan yang mensuplai ke jaringan lisrtik mikro.
Dalam penelitian ini didapatkan sistem pengendali JLMAS yang dapat mendeteksi besarnya tegangan baterai PV dan baterai cadangan pada tegangan 10,8 - 13,6 Vol, yang berfungsi untuk mengatur SOCmin dan SOC maks pada baterai. Tegangan yang digunakan pada sistem JLMAS adalah 254 Vas, tegangan ini dihasilkan dari pengembangan invertor menjadi konvertor penaik tegangan AS-AS dari 12Volt menjadi 254 Volt. Hasil analisa dan perencanaan JLMAS dengan kapasitas daya 1200 VA, dengan penempatan beterai secara terintegrasi besarnya kapasitas pembangkit sel surya pada masing - masing sebesar 9729,42 Wp, sedangkan besarnya kapasitas baterai lokal (baterai PV) sebesar 850 Ah dan baterai cadangan 5000 Ah dengan lama waktu penyimpanan energi 3 hari. Dalam sistem JLMAS beban yang digunakan adalah beban arus bolak - balik berbasis swiching (SMPS) sehingga tanpa harus mengunakan invertor.

The renewable energy source is a source of potential energy to be developed, such as wind, solar, and water energy. The development of power electronics technology such as inverter provides a solution for the use of renewable energy on an AC micro grid system (microgrid), but this system often has problems on frequency, voltage, active power and reactive power when two or more inverters work together, so synchronization and controlling complex equipment are needed. The developing of DC micro grid systems (JLMAS) is also done along with the development of household appliances that can be operated with direct current source. It is also a solution of the limitations on AC micro grid. In JLMAS system combining two or more sources of renewable energy can be easily paralleled, on conditions that the voltage and polarity are the same. So it creates the opportunity to develop a system JLMAS.
The renewable energy such as solar cells and wind turbine are strongly influenced by natural conditions so that electricity production is not stable and even stopped altogether, for it needs to be equipped with a battery that has functions not only as an energy storage but also to ensure the supply of electrical power to the micro grid becomes more continuous. When the battery has decreased and is not able to provide energy supplies, it needs a backup battery that can supply energy to the network system. For backup battery in order to work properly it needs a voltage controller for controlling the battery operation. Some researches on controlling the voltage of renewable energy generation has been done, but still in a generating system. This research aims to control the JLMAS system from two or more sources of renewable energy and a battery backup supplying to the micro electric network.
In this research, it is obtained that the control system of JLMAS that can detect the magnitude of voltage of PV battery and a spare battery at a voltage of 10,8 to 13.6 Volt, which works to regulate SOC min and max on the battery. The voltage used in the JLMAS system is 254Vdc, this voltage is resulted from the development of an inverter to become a boost converter from 12 Volt to 254 Volt. Results of analysis and planning JLMAS with 1200 VA power capacity, with placement of battery in integrating, the magnitude of solar cell generation capacity on each amounting to 9729,42 Wp, while the magnitude of the local battery capacity (battery PV) of 850Ah and a 5000 Ah of battery backup with the duration of energy storage time is 4 days. In JLMAS system is used alternating current load based on switching (SMPS) without using inverter.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
D1489
UI - Disertasi Membership  Universitas Indonesia Library
cover
Natanael Kristian
"Tren perkembangan sumber energi baru terbarukan atau EBT yang terus meningkat dan didukung serta cadangan energi fosil Indonesia yang semakin menipis membuat permintaan terhadap pembangkit listrik EBT semakin tinggi. RUPTL PLN serta regulasi PLN terbaru terus mendukung perkembangan PLTS, salah satunya adalah PLTS Atap dengan memperbolehkan ekspor hingga 65% dari nilai energi yang dihasilkan. Namun, sistem PLTS Atap yang umum dipakai yaitu grid-tie, tidak dapat digunakan saat PLN padam. Maka dari itu, penelitian ini bertujuan untuk membuat sistem proteksi tersebut, melihat pengaruh undervoltage dan overvoltage, variasi waktu tunda, dan meninjau apakah sistem sesuai dengan regulasi-regulasi yang ditetapkan oleh PLN. Rancang bangun sistem proteksi sendiri terdiri dari beberapa komponen utama yaitu Arduino, modul relay elektromagnetis, dan modul sensor tegangan ZMPT101B. Penelitian dilakukan dengan membangun prototipe dan menguji prototipe berdasarkan variasi-variasi pada parameter tegangan dan waktu tunda yang ditentukan. Hasil yang didapatkan menunjukkan waktu pemutusan kurang dari 0.16 detik pada V<50% serta V>120%, kurang dari 2 detik pada 50% ≤ V <88%, dan operasi kontinyu pada 88% ≤ V ≤ 110%. Dari hasil yang ditunjukkan, rancang bangun ini memiliki potensi yang besar sebagai sistem proteksi alternatif karena harganya yang sangat ekonomis dan kemampuan Arduino guna mengintegrasikan smart grid.

The latest trend development of renewable energy that keep increasing and getting more support along with Indonesia’s backup fossil energy that keep decreasing have increased the demand for renewable power plants. RUPTL PLN as well as PLN’s latest regulation keep supporting the development of solar power plant, one of which is solar home system regulation by allowing export of up to 65% from the power generated. However, the most common used solar home system which is grid-tie, is unusable when there is a blackout. Therefore, this purpose of this research is to create protection system such as that, observe the effect of undervoltage and overvoltage, variation of delay, and review if said system fulfill PLN’s regulations. The design of the protection system is composed of several major device which comprise of Arduino, electromagnet relay module, and ZMPT101B voltage sensor module. The research is conducted by building the prototype and testing said prototype with variations from voltage and delay parameter. The result shows that at V<50% as well as V>120% trip time are lower than 0.16 second, at 50% ≤ V <88% trip time are lower than second, and continuous operation at 88% ≤ V ≤ 110%. From the result showed, this design has a great potention to be an alternative protection system for solar home system for its economic price and the ability of Arduino to integrate the system into smart grid."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kadek Eri Mahardika
"Salah satu syarat pembangunan ekonomi suatu negara adalah ketersediaan energi listrik. Energi listrik saat ini tidak hanya dipasok dari sumber energi fosil seperti BBM, gas dan batubara tetapi sudah memanfaatkan sumber energi terbarukan seperti sel surya. Penggunaan sumber energi terbarukan terus diperbesar karena memberikan manfaat lingkungan yang signifikan. Pemilihan sumber energi untuk memasok listrik ke beban yang ada merupakan tema yang penting kedepannya terutama tema bagaimana menjadikan sumber energi terbarukan sebagai sumber listrik utama. Untuk memilih pasokan listrik ini, diperlukan suatu alat yang mengatur secara otomatis pasokan listrik yang akan diberikan ke beban. Sistem pengaturan ini memprioritaskan sumber energi terbarukan. Dalam penelitian ini telah dikembangkan suatu alat yang mengatur secara otomatis sumber pasokan energi listrik. Sistem pasokan listrik yang terdiri dari beberapa jenis sumber ini disebut pembangkit hibrida.Sumber pasokan listrik dapat berupa PLN, genset dan batere yang terhubung dengan panel sel surya. Listrik dari panel surya merupakan sumber utama. Ketika pasokan dari panel surya tidak ada, maka listrik dipasok dari PLN. Tetapi apabila listrik dari PLN tidak ada atau sedang dalam kondisi pemadaman maka listrik dipasok dari Genset. Mekanisme pengaturan ini dilakukan dengan mikrokontroler Atmega 16, yang diprogram dengan menggunakan bahasa C. Alat pengaturan ini juga dapat berfungsi sebagai AMF (automatic main failure) genset. Dari hasil pengujian alat, didapatkan bahwa alat berfungsi sesuai dengan rancangan deskripsi kerjanya.

One of the requirements of a nation's economic development is the availability of electrical energy. Electrical energy is supplied not only from fossil energy sources such as oil, gas and coal but also from renewable energy sources such as solar cells. Usage of renewable energy sources continues to be enlarged, because it provides significant environmental benefits. One of important themes regarding use of renewable energy source is how to select energy source to be supplied to load, especially how to prioritize renewable energy sources as electrical energy resources. To choose energy resources automatically, a tool is required. In this research, a tool to regulated electric power supply has been developed. Power supply system consists of several kinds of sources that is called hybrid power plant. Sources of electricity supply can be either PLN, generator set and battery that are connected with solar cell panels. Electricity from solar cell panels is the main source. When the supply of solar cell panels do not exist, then the electricity is supplied from PLN. But when the electricity from PLN does not exist or are under condition of the electricity outage the supply done from Genset. Regulation mechanism is carried out by using microcontroller ATmega16, which is programmed using C language. This tool can also function as AMF (automatic main failure )of Genset. From testing result, it was found that tool has shown good performance."
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1488
UI - Skripsi Open  Universitas Indonesia Library
cover
Mirzan Ghulami
"ABSTRAK
Telah dibuat SRC 3 fase dengan penyearah voltage doubler. SRC tersebut memiliki spesifikasi tegangan masukan 520VDC, tegangan keluaran 600VDC dan daya maksimum 2kW. SRC tersebut dikendalikan dengan algoritma kontrol soft start dan kontrol PI menggunakan mikrokontroler TMS320F28027. Pada pengujian secara open loop memiliki rentang error sebesar 2 hingga 2.2 . Pada pengujian secara close loop memiliki rentang error sebesar 7 hingga 9 .

ABSTRACT
Three phase series resonant converter with voltage doublers rectifier had been made. It had the spesification such as 520VDC input voltage, 600VDC output voltage and 2kW maximum power. The SRC controlled by microcontroller TMS320F28027 with soft start algorithm and PI controller. In opened loop testing, it has 2 until 2.2 of error. In the other hand, it has 7 until 9 of error when it tested in closed loop condition."
2016
T47174
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>