Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 74610 dokumen yang sesuai dengan query
cover
Dessy Ana Laila Sari
"ABSTRAK
Klasifikasi emosi manusia merupakan salah satu topik hangat yang dapat dimanfaatkan dalam berbagai bidang, baik medis maupun militer. Emosi manusia sendiri dapat diklasifikasi dengan berbagai metode, salah satunya adalah Machine Learning (ML). Machine learning merupakan proses pembelajaran computer untuk menyelesaikan task tertentu, dengan menggunakan metode ini hasil yang didapatkan akan lebih akurat dan konstan. Dalam tesis ini akan dikembangkan sistem klasifikasi emosi manusia berdasarkan sinyal EEG dari DEAP yang berbasis ML dengan berbagai studi metode ML, seperti Backpropagation Neural Network (BPNN), k-Nearest Neighbor (k-NN), Support Vector Machine (SVM) hingga Random Forest (RF). Sistem klasifikasi kemudian akan dikembangkan kembali menggunakan metode Convolutional Neural Network (CNN). Dari penelitian ini didapatkan bahwa nilai recognition rate yang dihasilkan hanya berkisar 50% dengan nilai maksimal 62%. Sistem juga diberikan feature selection layer untuk memaksimalkan recognition rate, namun penambahan ini tidak memberikan hasil yang signifikan. Dengan demikian recognition rate pada sistem klasifikasi menggunakan sinyal EEG sangat bergantung pada pemrosesan sinyal raw.

ABSTRACT
The classification of human emotions is a hot topic that can be utilized in various fields, both medical and military. Human emotions themselves can be classified by various methods, one of which is Machine Learning (ML). Machine learning is a process of learning computers to complete certain tasks, using this method the results obtained will be more accurate and constant. In this thesis a human emotion classification system will be developed based on EEG signals from DEAP dataset using various ML method studies, such as Backpropagation Neural Network (BPNN), k-Nearest Neighbor (k-NN), Support Vector Machine (SVM) to Random Forest (RF). The classification system will be developed again using the Convolutional Neural Network (CNN) method. From this study it was found that the value of the recognition rate produced is only around 50% with a maximum value of 62%. The system is also given a feature selection layer to maximize recognition rate, but this addition does not provide significant results. Thus the recognition rate in the classification system using EEG signals is very dependent on raw signal processing."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Prima Dewi Purnamasari
"Terdapat dua masalah besar yang diselesaikan dalam disertasi ini, yaitu masalah pemrosesan sinyal dan masalah aplikasi sinyal EEG dalam pengenalan keadaan emosi. Masalah tersebut diselesaikan dengan metode kecerdasan komputasional yang terdiri dari bagian utama, ekstraksi fitur dan klasifikasi. Pada bagian ekstraksi fitur, pada disertasi ini dibahas penggunaan metode konvensional ekstraksi fitur berbasis power spectrum yaitu dengan Discrete Wavelet Transform DWT , dan penggunaan metode baru ekstraksi fitur yang diajukan yaitu analisis bispektrum dengan filter piramida 3D, serta dengan Relative wavelet bispectrum RWB.
Untuk menyelesaikan permasalahan penerapannya pada sistem otomatis pengenal emosi, maka classifier dengan jenis Artificial Neural Network ANN digunakan.Penggunaan DWT dalam metode ekstraksi fitur menunjukkan bahwa fitur Relative Wavelet Energy DWT RWE memberikan recognition rate terbaik, konsep energi relatif ini kemudian digunakan pada metode baru yang diajukan. Pada metode baru ekstraksi fitur menggunakan analisis bispektrum dengan filter piramida 3D, diketahui bahwa persentase mean bispektrum memberikan recognition rate yang terbaik dengan kompleksitas yang lebih rendah 74.22 untuk arousal dan 77.58 untuk valence.
Filter non-overlap dengan ukuran alas yang bervariasi memberikan recognition rate tertinggi, khususnya secara signifikan terlihat untuk jenis emosi arousal. Penurunan jumlah channel EEG sampai dengan 8 channel dapat dilakukan untuk menurunkan biaya komputasi. Metode baru ekstraksi fitur yaitu RWB telah diajukan dalam disertasi ini dan menunjukkan pengenalan yang sangat baik mencapai 90 untuk data sinyal EEG orang alkoholik. Semakin besar lag yang digunakan dalam perhitungan korelasi, semakin tinggi recognition rate yang diperoleh.
Capaian dari penelitian ini membuktikan bahwa RWB cocok untuk digunakan sebagai metode ekstraksi fitur untuk klasifikasi orang alkoholik, dan dapat dipertimbangkan untuk digunakan pada aplikasi lainnya. Dari keempat classifier yang diujikan, dari segi recognition rate, PNN sedikit lebih unggul daripada BPNN, namun uji sensitivity, specificity dan PPV serta grafik ROC menunjukkan bahwa BPNN merupakan classifier yang lebih baik dibanding PNN. Di sisi lain, waktu komputasi PNN untuk mencapai recognition rate maksimum adalah sekitar 3,5 kali lebih cepat dibanding BPNN.

There are two major problems resolved in this dissertation, which are signal processing problem and the problem in EEG signal in the application of recognizing human emotional states. The problems were solved by applying a computational intelligence method consists of two main parts, the feature extraction and the classification. In the feature extraction sub system, this study improved a conventional methods using power spectrum from discrete wavelet transform DWT, and proposed a new method for feature extraction by using bispectrum analysis with 3D pyramid flter, as well as using relative wavelet bispectrum RWB.
To solve the problem in the application of EEG signal for automatic emotion recognition system, the artificial neural network ANN classifier was used.The use of DWT in the feature extraction method shows that the relative wavelet energy DWT RWE feature provides the best recognition rate, the relative energy concept was then used in the proposed new feature extraction methods. In the proposed feature extraction using bispectrum analysis with 3D pyramid filters, the mean percentage of bispectrum feature gave the best recognition rate with lower complexity i.e. 74.22 for arousal and 77.58 for valence.
Non overlap filters with varied base sizes provided the highest recognition rate, and significantly seen for the arousal emotion. The selection of eight EEG channels can be conducted to lower the cost of computing. A novel feature extraction method, the RWB, showed an excellent recognition for the alcoholic person. The larger the lag used in the correlation calculation in RWB, the higher the recognition rate obtained.
The achievements of this study proved that RWB is suitable as a feature extraction method for the classification of alcoholic subjects, and may be considered for use in other applications.Of the four classifiers tested, PNN is slightly superior to BPNN in terms of recognition rate however, the sensitivity, specificity and PPV tests and ROC graph shown that BPNN is a better classifier than PNN. On the other hand, the PNN computing time to reach the maximum recognition rate was about 3.5 times faster than BPNN."
Depok: Fakultas Teknik Universitas Indonesia, 2017
D2271
UI - Disertasi Membership  Universitas Indonesia Library
cover
Ji, Ye Chan
"Umumnya, acute ischaemic stroke AIS didiagnosis menggunakan MRI Magnetic Resonance Imaging, CT Computed Tomography atau fMRI Functional MRI. Namun, MRI, fMRI dan CT tidak tersedia di rumah sakit komunitas rumah sakit tipe C, PUSKESMAS. Selain itu, MRI, fMRI dan CT tidak dapat mengukur untuk waktu yang lama atau tidak mungkin melakukan continuous scanning. Di sebagian besar rumah sakit komunitas, mereka memiliki mesin EEG Electroencephalogram untuk merekam gelombang otak. Sasaran dari penelitian ini adalah kemungkianan mengdiagnossa stroke iskemik dengan menggunakan EEG. Ada beberapa metode yang tersedia untuk mendeteksi AIS, yaitu BSI Brain Symmetry Index, DAR delta/alpha dan DTABR delta theta/alpha beta yang menganalisis rasio gelombang otak dari seluruh otak. Metode-metode ini perlu disempurnakan. Oleh karena itu, penulis mencoba menggunakan metode baru: specific asymmetry BSI. Metode ini membandingkan frekuensi bukan untuk 1-25 Hz melainkan mencari frekuensi band tertentu gelombang otak dari otak kanan dan kiri. Untuk mengembangkan sistem pendeteksian stroke, penulis menggunakan algoritma Extreme Machine Learning ELM karena ELM memberikan data akurat dengan kecepatan tinggi yang susah dibaca oleh mata manusia. Semua data diperoleh dari RS PON Rumah Sakit Pusat Otak Nasional, Jakarta dalam format edf. Ada 66 data pasien strke dan normal dan dianalisis dengan Matlab. BSI dan BSI asimetri spesifik dihitung menggunakan metode pwelch, dan DARs dan DTABR dihitung menggunakan wavelet db4. Algoritma ELM dikonfirmasi menggunakan CT-scan, yang didiagnosis oleh dokter. Diharapkan bahwa metode ini akan berguna untuk mendeteksi AIS di rumah sakit komunitas. Hasil penelitian ini diperoleh nilai akurasi deteksi stroke di atas 87.5.

Generally, acute ischaemic stroke AIS are diagnosed using MRI Magnetic Resonance Imaging, CT Computed Tomography or fMRI Functional MRI. However, MRI, fMRI and CT are not available in community hospitals C type hospitals, PUSKESMAS. In addition, MRI, fMRI and CT cannot measure for a long time or are unlikely to do continuous scanning. In most community hospitals, they have EEG Electroencephalogram machines to record brain waves. There are several methods available for detecting AIS, namely BSI Brain symmetry Index, DAR delta alpha and DTABR delta theta alpha beta that analyze the power ratio of brain waves from whole brain. These methods need to be refined. Therefore, authors attempt to use new method specific asymmetry BSI. This method compares the frequencies not for 1 25 Hz like BSI method, but looking for specific frequency band and the power ratio of brain wave from right and left hemisphere. To develop a stroke detection system, author uses the algorithm Extreme Machine Learning ELM because ELM provides accurate data with high speed rather read by human eye. All data were obtained from RS PON Rumah Sakit Pusat Otak Nasional, Jakarta in edf format. There were 66 voluntary subjects and analyzed with Matlab. The BSIs and specific asymmetry BSIs were calculated using pwelch methods, and the DARs and DTABRs were calculated using wavelet db4. The ELM algorithm was confirmed using CT scan, which was diagnosed by qualified doctors. It is expected that this method would be useful for detecting AIS in community hospitals. This research obtained 87.5 accuracy for detecting stroke."
Depok: Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tsalsabilla Winny Junika
"ABSTRAK

Untuk menunjang pemantauan konsentrasi manusia, perlu adanya pemahaman mengenai respon sinyal dari EEG terhadap dua kondisi manusia ya itu saat sedang konsentrasi penuh dan konsentrasi tidak penuh (adanya distraksi). Dalam mengolah data sinyal EEG tersebut, dibutuhkan metode algoritma dan klasifikasi sinyal untuk mendapatkan hasil data sinyal dari dua kondisi tersebut. Pada penelitian ini akan dijelaskan tentang sistem perancangan pendeteksian konsentrasi manusia berdasarkan sinyal EEG. Metode yang digunakan adalah Fast Fourier Transform (FFT) dan Discrete Wavelet Transform (DWT) sedangkan dalam algoritma klasifikasinya menggunakan Support Vector Machine (SVM). Hasil yang telah didapatkan dalam pengujian ini adalah SVM lebih mampu untuk mengklasifikasikan sistem dengan kernel RBF menggunakan 30% holdout validation. Keakurasian dari sistem ini adalah 91% pada metode DWT dan 72% pada metode FFT. Sehingga, dari kedua ekstraksi metode FFT dan DWT, yang memiliki nilai ekstraksi terbaik adalah DWT.


ABSTRACT
To support the monitoring focused human concentration, there is a need to understand the response of signals from EEG in two conditions which are when human is in full concentration and less concentration (presence of distraction).  To process those EEG signal data, an algorithm method and classification is needed to get the results of signal data from these two conditions In this research, the system of detecting design of human concentration levels based on EEG signals will be explained. The used methods are Fast Fourier Transform (FFT) and Discrete Wavelet Transform (DWT) while the classification algorithm uses Support Vector Machine (SVM).  The result of this research shows that by using SVM, a much more reliable result is achieved when a kernel RBF is used with 30% holdout validation. The result of the aforementioned method yields a 91% accuracy with DWT method and a 72% accuracy with FFT. 

 

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akhmad Aldiya Yusuf
"ABSTRAK
Isu kesehatan mental merupakan sebuah isu yang sangat berkembang pesat pada masa ini. Remaja dan dewasa muda pada usia 16 hingga 30 tahun adalah korban utama yang menjadi penderita penyakit mentalitas. Isu kesehatan mental merupakan isu yang cukup serius dalam bidang medis dan social. Salah satu penyebab dari penyakit pada mentalitas manusia adalah kurangnya kemawasan diri, yang merupakan salah satu kunci dalam menjaga kestabilan mental pada diri seseorang. Sinyal otak merupakan suatu sinyal yang diduga mampu mendekteksi aktifitas otak manusia, dan dari sinyal tersebut, kita mampu membuat suatu sistem klasifikasi kondisi emosional manusia. Pada penelitian ini, EEG Neurostyle dengan 24 kanal digunakan untuk menangkap sinyal kelistrikan dari otak manusia. Metodenya meliputi reaksi seorang subjek terhadap stimulus berupa audio-visual yang berdurasi kurang lebih 5 menit. Subjek terdiri dari 10 orang manusia berumur 18 hingga 22 tahun, dimana tiap subjek menonton sebuah video pada lingkungan yang sama. Ekspresi mimik wajah akan direkam menggunakan kamera sebagai referensi dan konfirmasi agar sesuai dengan emosi yang dideskripsikan oleh subjek. Fitur emosi berupa RPR kemudian diambil untuk kemudian dimasukan kedalam algoritme classifier. Emosi dibagi berdasarkan 4 jenis yaitu: senang, sedih, takut, dan jijik Menggunakan Supervised Machine Learning, kita dapat menggunakan fitur fitur tersebut untuk klasifikasi. Menggunakan k-NN, didapat akurasi diatas 70% dengan menggunakan 4 kelas.

ABSTRACT
Mental health issues are growing rapidly in these recent years. Teenagers and young adult on age 16-30 years old are the most common victims. Mental health is a really serious issue concerning emotional health. One of the causes on emotional health issues is a lack of self-awareness, which is the key cornerstone on maintaining emotional-state. Brain signals has proven that it can read human emotion, and from there we can use brain waves to classify human emotional-state. In this research study, EEG Neurostyle of 24 channels is used to obtain brain electrical signals. The method involves the subject reaction to a set of audio-visual stimuli of approximately 5 minutes, the subject consists of 10 subjects aged 18-22, with each person watched the video-clips in the same environment. The expressions of the subjects were recorded separately to ensure their emotion accordance with the source (i.e. sad clips resulting sad emotion). Then its feature were extracted. The feature were used to classify the emotion into 4 classes: happy, sad, scared, and disgust. Using Supervised Machine Learning Method, we can use these features to identify a new sample to predict which class it belongs to. Using k-NN algorithm as classifier, an accuracy greater than 70% is obtained with 4 classes."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ester Fatmawati
"Telah dirancang prototype motor imagery dengan memanfaatkan perintah sinyal otak yang dihasilkan oleh Electroencephalography EEG . Sinyal EEG digunakan untuk memberikan informasi sinyal motorik. Bentuk unik dari sinyal EEG menggambarkan perintah untuk menggerakkan lengan. Pada kondisi lumpuh sekalipun, informasi motorik pada sinyal EEG masih akan ditemukan saat seseorang membayangkan menggerakkan lengannya. Dalam penelitian ini informasi motorik pada sinyal EEG digunakan sebagai umpan balik dengan menggabungkan 4 elektrode input F3, F4, FC5, FC6 . Akuisisi sinyal EEG menggunakan Emotiv EPOC portable. Probabilistic Neural Network PNN berfungsi sebagai pemrosesan sinyal. Fungsi ini digunakan untuk pengenalan sinyal motor imagery membayangkan gerakan lengan tangan . Karakteristik komputasi yang dilakukan oleh PNN secara parallel mampu mempersingkat waktu pemrosesan sinyal. Hasil pengolahan PNN adalah power maksimum sinyal mu, Power maksimum sinyal beta, frekuensi mu dan frekuensi beta. Kombinasi keempat fitur ini memberikan nilai akurasi yang cukup tinggi. Hasil percobaan menunjukkan bahwa akurasi untuk training rata-rata adalah 85,49 - 91,32 sedangkan nilai untuk testing 82,6 - 87,6 . Alat terapi yang digunakan nBETTER Upper Limb Feedback. Alat terapi akan aktif, bila nilai testing sinyal EEG lebih besar dari 80 . Ke depan, prototype motor imagery ini dapat dikembangkan sebagai alat terapi pasien stroke yang mampu mengurangi ketergantungan pada seorang fisioterapis saat proses terapi.

A modeling arms post stroke therapy used command brain signals generated by Electroencephalography EEG has been designed. EEG signals used to provide motorics information. The unique form of signal EEG describe commands to move the limbs. On condition paralyzed, motorics information on the EEG signals will still be found when someone tried to move his limbs. In this research, we aim used the motorics information on the EEG signals as neuro feedback with combine 4 input electrode F3, F4, FC5, FC6 . EEG signal acquisition using the Emotiv EPOC portable. Probabilistic Neural Network PNN function as signal processing. This function was applied to the recognition research of motor imagery EEG signals imagining arms movement . The parallel computing characteristic of PNN not only improved the generation ability for network, but also shorted the operation time. The result of PNN are maximum mu power, maximum beta power, mu frequency and beta frequency that provided value to calculate classification accuracy. The experimental results show that the accuracy for training on average is 85.49 91.32 while the value for testing is 82.6 87.6 . Therapy tool used nBETTER Upper Limb Feedback. The therapeutic tool will be active, when the value of the EEG signal testing is greater than 80 . In the future, this modeling post stroke therapy can be reduced dependency from physiotherapist.
"
Universitas Indonesia, 2017
T47558
UI - Tesis Membership  Universitas Indonesia Library
cover
Sigalingging, Geraldo Martua
"Elektroensefalografi (EEG), adalah metode perekaman aktivitas kelistrikan otak pada kulit kepala. Aktivitas kelistrikan ini direkam dan diubah menjadi sinyal amplitudo tegangan. Hasil sinyal yang sudah diproses ini akan terklasifikasi pengguna melakukan perintah atau tidak. Sistem ini adalah purwarupa untuk pengembangan Sistem Pengendalian Tangan Artifisial Dengan EEG yang berfungsi menggerakkan tangan artifisial dengan bantuan sinyal gelombang otak. Sistem ini bekerja dengan mendeteksi keberadaan sinyal ERP P300 dalam sinyal EEG. Dalam penelitian ini, metode untuk menganalisis data EEG adalah filtrasi, ekstraksi P300 dan algoritma klasifikasi Support Vector Machines (SVM). Dari metode yang digunakan akan menunjukkan nilai rekognisi yang akan dibandingkan antar filtrasi, ekstraksi dan klasifikasi sehingga menghasilkan Filtrasi dengan Chebyshev Type I Orde 5 dengan nilai rekognisi 61.07%, ekstraksi fitur dengan Independent Component Analysis (ICA) dengan nilai rekognisi 58.64 %, dan klasifikasi data dengan Back Propagation Neural Network dengan nilai 59.97 % adalah algoritma yang paling efektif.

Electroencephalography (EEG), is a method of recording the brain's electrical activity on the scalp. This activity is recorded and converted to a signal amplitude voltage. The result of this signal will be classified as a user or not. This system is a prototype for the development of an Artificial Hand Control System with EEG which functions to move the artificial hand with the help of brain wave signals. This system works by detecting the presence of an ERP P300 signal in the EEG signal. In this study, methods for analyzing EEG data were filtration, extraction P300, and Support Vector Machines (SVM) classification algorithms. From the method used will show the value of recognition that will be compared between filtration, extraction and classification so as to produce Filtration with Chebyshev Type I Order 5 with recognition value of 61.07%, feature extraction with Independent Component Analysis (ICA) with recognition value of 58.64%, and data classification with Back Propagation Neural Network with a value of 59.97% is the most effective algorithm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sigalingging, Geraldo Martua
"Elektroensefalografi (EEG), adalah metode perekaman aktivitas kelistrikan otak pada kulit kepala. Aktivitas kelistrikan ini direkam dan diubah menjadi sinyal amplitudo tegangan. Hasil sinyal yang sudah diproses ini akan terklasifikasi pengguna melakukan perintah atau tidak. Sistem ini adalah purwarupa untuk pengembangan Sistem Pengendalian Tangan Artifisial Dengan EEG yang berfungsi menggerakkan tangan artifisial dengan bantuan sinyal gelombang otak. Sistem ini bekerja dengan mendeteksi keberadaan sinyal ERP P300 dalam sinyal EEG.
Dalam penelitian ini, metode untuk menganalisis data EEG adalah filtrasi, ekstraksi P300 dan algoritma klasifikasi Support Vector Machines (SVM). Dari metode yang digunakan akan menunjukkan nilai rekognisi yang akan dibandingkan antar filtrasi, ekstraksi dan klasifikasi sehingga menghasilkan Filtrasi dengan Chebyshev Type I Orde 5 dengan nilai rekognisi 61.07%, ekstraksi fitur dengan Independent Component Analysis (ICA) dengan nilai rekognisi 58.64 %, dan klasifikasi data dengan Back Propagation Neural Network dengan nilai 59.97 % adalah algoritma yang paling efektif.

Electroencephalography (EEG), is a method of recording the brains electrical activity on the scalp. This activity is recorded and converted to a signal amplitude voltage. The result of this signal will be classified as a user or not. This system is a prototype for the development of an Artificial Hand Control System with EEG which functions to move the artificial hand with the help of brain wave signals. This system works by detecting the presence of an ERP P300 signal in the EEG signal.
In this study, methods for analyzing EEG data were filtration, extraction P300, and Support Vector Machines (SVM) classification algorithms. From the method used will show the value of recognition that will be compared between filtration, extraction and classification so as to produce Filtration with Chebyshev Type I Order 5 with recognition value of 61.07%, feature extraction with Independent Component Analysis (ICA) with recognition value of 58.64%, and data classification with Back Propagation Neural Network with a value of 59.97% is the most effective algorithm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nida Amala Syawalia Adriant
"

Elektroensefalografi (EEG), sebagai metode rekaman neurofisiologis yang telah dimanfaatkan secara luas, terutama dalam penelitian dasar tentang fungsi otak dan pemantauan pasien dengan gangguan neurologis. serta sistem Brain Computer Interface (BCI) untuk menerjemahkan sinyal menjadi perintah atau fungsi tertentu. Dalam perekaman sinyal EEG, terdapat tantangan interferensi dan noise akibat amplitudo sinyal yang sangat kecil (mikrovolt [V]) dan frekuensi rendah. Penelitian ini mengeksplorasi pengembangan elektroda aktif sebagai solusi untuk menguatkan sinyal EEG sehingga dapat meminimalisir noise yang mungkin ada. Elektroda aktif dirancang menggunakan filter aktif Sallen & Key orde 2 dengan respon butterworth menggunakan OPA378 sebagai operational amplifier dengan frekuensi cut-off 0 hingga 100 Hz. Untuk meminimalisir jumlah kabel, diterapkan operasi single-supply sehingga hanya 3 kabel yang diperlukan untuk mengoperasikan elektroda aktif. Prototype elektroda aktif diuji menggunakan EEG simulator NETECH MiniSim 330 dan direkam menggunakan ADS1299 PDK sebagai ADC dan Raspberry Pi 4 Model B untuk menyimpan file rekaman. Hasilnya, elektroda aktif mampu melakukan penguatan sinyal sebesar 22 kali dengan cukup stabil pada rentang frekuensi 20 hingga 100 Hz dengan error sebesar 3.53% dari target penguatan yang diinginkan.


Elektroensefalografi (EEG) is a widely used method for recording neurophysiological signals, primarily for research on brain functions and monitoring patients with neurological disorders. The development of active electrodes is being explored as a solution to improve the quality of EEG signals, which are characterized by very low amplitude (microvolts [μV]) and low frequency. The active electrode is designed using Sallen & Key filter or Butterworth filter with OPA378 as the operational amplifier with a cut-off frequency range of 0 Hz to 100 Hz. To minimize the number of wires, single-supply operation is applied, requiring only three wires to operate the active electrode. The prototype of the active electrode was tested using a NETECH MiniSim 330 EEG simulator and recorded using an ADS1299 PDK as an ADC and a Raspberry Pi 4 Model B to save the recorded file. The results show that active electrodes can provide signal attenuation up to 22 times with sufficient stability in the 20 Hz to 100 Hz frequency range, with an error of 3.35% from the expected

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldo Sultan Manneken
"Dalam pelaksanaan distribusi listrik yang dilakukan PT.”X” terhadap pelanggan PT. “X”, terdapat susut energi listrik yang terjadi baik secara teknis maupun non teknis. Susut energi listrik ini mengakibatkan kerugian yang cukup besar bagi PT.”X” setiap tahunnya. Dalam upaya untuk mengatasi dan mengurangi susut energi non teknis, PT.”X” mengadakan kegiatan P2TL dimana pada kegiatan ini, petugas P2TL akan melakukan pengecekan pada pelanggan PT.”X” yang terindikasi melakukan susut energi non teknis. Namun, dalam pelaksanaan kegiatan P2TL, PT.”X” masih melakukan proses penentuan target operasi P2TL secara manual. Untuk membantu kinerja PT.”X” dalam melakukan kegiatan P2TL, diperlukan pendekatan lain dalam melakukan penentuan target operasi P2TL. Penelitian ini akan melakukan pendekatan berbasis machine learning dengan metode supervised learning untuk melakukan deteksi pencurian tenaga listrik. Terdapat tiga algoritma yang akan digunakan dalam penelitian ini, yaitu: Naïve bayes, Naïve bayes dengan AdaBoost, dan logistic regression. Dalam penelitian ini, dataset yang digunakan adalah dataset pemakaian bulanan 423.216 pengguna listrik PT.”X” pascabayar selama 49 bulan yaitu sejak bulan Agustus tahun 2018 hingga bulan Agustus tahun 2022. Hasil penelitian ini menunjukkan rata-rata akurasi model yaitu Naïve bayes sebesar 53%, Naïve bayes dengan AdaBoost sebesar 64%, dan logistic regression sebesar 75%. Algoritma logistic regression menunjukkan performa paling baik dibandingkan dengan kedua algoritma lainnya yaitu rata-rata precision score 74%, rata-rata F1 score 59% dan rata-rata recall score adalah 60%.

In the implementation of electricity distribution carried out by PT. “X”-to-PT.”X” customers, there are losses in electrical energy that occur both technically and non-technically. This loss of electrical energy results in substantial losses for PT.”X” every year. To overcome and reduce non-technical energy losses, PT.”X” holds P2TL activities where in this activity, P2TL officers will check PT.”X” customers who are suspected of carrying out non-technical energy losses. However, in carrying out P2TL activities, PT.”X” is still carrying out the process of determining P2TL operational targets manually. To assist PT. “X”'s performance in carrying out P2TL activities, another approach is needed in determining P2TL operational targets. This research will use a machine learning-based approach using supervised learning method to detect electricity theft. There are three algorithms that will be used in this study, namely: naïve bayes, naïve bayes with AdaBoost, and logistic regression. In this study, the dataset used is the monthly usage dataset of 423,216 postpaid PT.”X” electricity users for 49 months, from August 2018 to August 2022. The results of this study show that the average accuracy of the model by naïve bayes is 53%, naïve bayes with AdaBoost is 64%, and logistic regression is 75%. The logistic regression algorithm shows the best performance compared to the other two algorithms, where the average precision score is 74%, the average F1 score is 59% and the average recall score is 60%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>