Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 128885 dokumen yang sesuai dengan query
cover
Adinugroho Anindito
"Salah satu komponen penting dalam kendaraan adalah sistem pengereman. Fungsi utama dari sistem pengereman adalah memberikan deselerasi sehingga dapat memberhentikan laju kendaraan. Bagian penting dari komponen pengereman salah satunya adalah kampas rem. Namun unttuk mengetahui kondisi fisik dari kampas rem perlu dilakukan pembongkaran komponen roda dan rem. Sehingga salah satu tahap awal pengembangan adalah dibuatnya sebuah aplikasi yang dapat melakukan prediksi sisa umur dari kampas rem tersebut tanpa harus melakukan pembongkaran. Namun aplikasi tersebut belum 100% sempurna, perlu adanya verifikasi hasil yang dapat membuktikan bahwa aplikasi siap digunakan. Maka dari itu penelitian kali ini akan melakukan verifikasi aplikasi tersebut melalui pendekatan pemantauan kondisi fisik dari kampas rem itu sendiri. Selain itu pada penelitian kali ini, penulis akan mencoba mencari hubungan antara perilaku berkendara dengan pengaruhnya terhadap laju aus kampas rem. Setelah dilakukan pengujian jalan dengan 3 perilaku berkendara berbeda, didapatkan hasil bahwa pengendara dengan perilaku eco akan terjadi aus sebesar 0.42%, perilaku normal sebanyak 1.65% dan perilaku sport sebanyak 44.96% dari tebal kampas rem semula. Terdapat hasil yang signifikan pada perilaku berkendara sport karena pada perilaku ini tekanan dan suhu pengereman akan sangat tinggi jika dibandingkan dengan eco dan normal. Selain itu juga diketahui bahwa masih terdapat salah alur perhitungan pada program yang dijalankan pada aplikasi dengan faktor koreksi sebesar 33.37. Setelah dilakukan koreksi pada program, faktor koreksi menjadi 0.99. Faktor koreksi ini adalah rasio perbandingan dengan hasil prediksi umur kampas rem berdasarkan pengamatan langsung perubahan ketebalan kampas rem hasil uji jalan.

One important component in a vehicle is the braking system. The main function of the braking system is to provide deceleration so as to stop the vehicle speed. One important part of the braking component is the brake lining. But to know the physical condition of the brake lining, it is necessary to dismantle the wheel and brake components. So that one of the initial stages of development is to make an application that can predict the remaining life of the brake lining without having to do the demolition. However, the application is not 100% perfect, it is necessary to verify the results that can prove that the application is ready to use. Therefore this study will verify the application with the physical condition monitoring approach of the brake lining itself. In addition, in this study, the author will try to find a relationship between driving behavior and its effect on the wear rate of the brake lining. After testing the road with 3 different driving behaviors, it was found that the driver with eco behavior would consume 0.42%, normal behavior as much as 1.65% and sport behavior as much as 44.96% of the thickness of the original brake lining. There is a significant result in sports driving behavior because in this behavior the braking pressure and temperature will be very high when compared to eco and normal. In addition, it is also known that there is still a wrong calculation flow in the program running in the application with a correction factor of 33.37. After making corrections to the program, the correction factor becomes 0.99. This correction factor is the ratio of the ratio with the results of prediction of the age of the brake lining based on direct observation of changes in the thickness of the brake lining on the results of the road test."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alvin Pratama Azmi Adrianto
"Skripsi ini membahas analisis system pengereman dari stairlift dengan penggerak rantai yang pengereman daruratnya yang bertipe locking dan slow down dengan memanfaatkan descender dan tali sebagai media pengeremannya untuk penyandang disabilitas dan lansia. Penelitian ini dilakukan dengan cara melakukan perancangan dan stress analysis dari stairlift terlebih dahulu menggunakan software Autodesk Inventor Professional 2023 dengan parameter pengujian meliputi nilai tegangan Von Mises maksimum, nilai defleksi maksimum, dan nilai safety factor minimum. Hasil penelitian ini adalah stairlift dengan penggerak rantai sudah memenuhi standardisasi ASME A18.1 tahun 2020 tentang Safety Standard for Platform Lifts and Stairway Chairlifts pada aspek tegangan Von Mises di angka 58,2 MPa dari 100 MPa dan defleksi maksimum di angka 0,386 mm dari 6 mm. Sistem pengereman darurat yang telah dirancang dan dibuat dengan descender dan tali sebagai medianya sudah bekerja sesuai dengan ketentuan namun masih dapat dioptimalkan agar keamanan pengguna dapat ditingkatkan.

This thesis discusses the Manufacture of a stairlift with a chain-driven mechanism and a locking-type emergency braking system and a Slow Down – Type Emergency Braking System . The purpose of this system isto assist individuals with disabilities and the elderly in navigating staircases. The researchmethodology involves the initial design and stress analysis of the stairlift using AutodeskInventor Professional 2023 software. The testing parameters include the maximum Von Mises stress value, maximum deflection value, and minimum safety factor value. The research findings indicate that the chain-driven stairlift meets the standards set by ASMEA18.1-2020 regarding the Safety Standard for Platform Lifts and Stairway Chairlifts. Themaximum Von Mises stress value recorded was 58.2 MPa out of 100 MPa, and the maximum deflection value was 0.386 mm out of 6 mm. The designed and implemented emergency braking system, which utilizes a descender and a rope, functions according tothe specified guidelines. Nevertheless, further optimization is necessary to enhance user safety."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Hurricane
"Massa angkut yang melebihi ambang dan pengereman intensif yang disertai dengan minimnya pemeliharaan pada unit kendaraan truk dan bus khususnya terkait performa rem membawa keselamatan berlalu lintas jauh dari kata terjamin. Penelitian ini bertujuan untuk menggagas sebuah inovasi teknologi yang mampu mengabarkan pengemudi secara langsung (real-time) jika didapat indikasi kegagalan rem melalui komparasi secara aktual antara peristiwa deselerasi yang terjadi dengan standar deselerasi yang ditetapkan oleh United Nations Economic Commission for Europe (UNECE) yaitu sebesar 3,86 m/s2 pada lintasan mendatar. Penelitian dilakukan dengan alat peraga untuk menyimulasikan berbagai kondisi pengereman pada kendaraan dan sebuah detektor dini kegagalan rem. Metode penelitian yang digunakan adalah eksperimental kuantitatif. Pengujian performa detektor dini kegagalan rem kemudian dilakukan untuk melihat apakah alat tersebut mampu mengiterasikan standar deselerasi dengan benar sesuai regulasi terkait. Hasil observasi menunjukkan alat ini mampu mengiterasikan garis acuan penurunan kecepatan secara konsisten dengan rerata gradien -3,8549 m/s2 dengan rerata deviasi -0,13% dan mampu mengoreksi standar deselerasi terhadap perubahan kemiringan jalan sebesar -0,081255 m/s2 per derajat dengan rerata deviasi -0,24%. Selain itu, alat ini juga teruji mampu menyeleksi pengereman yang dapat diterima oleh standar deselerasi berdasarkan waktu tempuh sebelum tenggat waktu yang secara otomatis ditetapkan (dengan buffer 15% lebih dini) menyesuaikan kecepatan awal pengereman. Dengan demikian, detektor dini kegagalan rem dinyatakan mampu untuk melakukan pendeteksian potensi kegagalan rem berdasarkan komparasi secara aktual antara peristiwa deselerasi yang terjadi dengan standar deselerasi.

Transport masses that exceed the threshold and intensive braking accompanied by minimal maintenance on truck and bus vehicle units, especially related to brake performance, bring traffic safety far from guaranteed. This study aims to initiate a technological innovation that can inform the driver directly (real-time) if indications of brake failure are obtained through actual comparisons between the deceleration events that occur with the deceleration standard set by the United Nations Economic Commission for Europe (UNECE), which is equal to 3.86 m/s2 on the horizontal track. The research was carried out with props to simulate various braking conditions on vehicles and an early brake failure detector. The research method used is quantitative experimental. Testing the performance of the early brake failure detector is then carried out to see whether the device can iterate the deceleration standards correctly according to the relevant regulations. The observation results show that this device can iterate the reference line for decreasing speed consistently with an average gradient of -3.8549 m/s2 with an average deviation of -0.13% and can correct the standard deceleration for changes in road slope of -0.081255 m/s2 per degree with an average deviation of -0.24%. In addition, this device has also been tested to be able to select acceptable braking by deceleration standards based on the travel time before the automatically set deadline (with a 15% earlier buffer) adjusting the initial braking speed. Thus, the brake failure early detector is said to be capable of detecting potential brake failures based on actual comparisons between deceleration events that occur and deceleration standard."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Hadafi Faturrahman
"

Sistem pengereman adalah salah satu sistem pengaman utama pada kendaraan roda empat dan membutuhkan perhatian khusus dalam pemantauan dan pemeliharaannya. Terdapat banyak faktor yang dapat mengakibatkan komponen sistem ini mengalami potensi kegagalan, salah satunya adalah karakter pengereman yang tidak baik. Pengembangan aplikasi android dengan konsep internet of things (IoT) dan cloud server ini bertujuan untuk mengetahui prediksi sisa masa hidup kampas dan cakram rem serta analisis kenaikan temperatur proses pengereman menggunakan data yang diambil menggunakan raspberry pi 3 B+ melalui OBD II port serta menggunakan pendekatan energi pengereman dari grafik kecepatan terhadap waktu. Hasilnya adalah aplikasi berhasil melakukan akuisisi data dan melakukan analisis, meskipun masih ada rata-rata 3,047 % error rate. Analisis pada aplikasi menyimpulkan periode waktu pemeliharaan komponen kritikal sistem pengereman harus disesuaikan untuk setiap pengguna karena rata-rata pengurangan masa hidup komponen berbeda pada setiap variasi karakter pengereman dengan hasil 20 kilometer per hari untuk kondisi 1 (pengereman yang baik), 25 kilometer per hari untuk kondisi 2 (pengereman yang kurang baik), dan 44 kilometer per hari untuk kondisi 3 (pengereman yang tidak baik).

 


Brake System is one of the most essential system for four-wheeler safety and drivers tend to strictly follow the service manual book for maintenance or replacement. However, brake system condition should be checked regularly because many factors contributing to the accelerated wear rate and other potential failure, one of them is bad braking behavior. The development of this android-based application with internet of things and cloud server concept has the objective to perform life expectancy of disc and pad life also temperature rise increase analysis to determine the condition of brake system according to daily data acquired using raspberry pi 3 B+ via OBD II port with the use of braking energy approach from velocity versus time graph. The results are the application system successfully do data acquisition and run all analysis, although the average error rate is around 3,047 %. The output of the analysis concluded that time interval or period of four-wheeler brake system maintenance must be adjusted because the decreasing of life expectancy for braking character variation are different with the result as follows; 20 kilometer per day for condition 1 (good braking character), 25 kilometer per day for condition 2 (average braking character), and 44 kilometer per day for condition 3 (bad braking character).

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irfan Abdurahman Setiawan
"Dengan berbagai kemajuan teknologi, transportasi tetap bertanggung jawab sebagai penyumbang polusi udara terbesar khususnya emisi CO2. Dampak emisi CO2 ini sangat berbahaya bagi kesehatan dan lingkungan. Sudah ada beberapa cara yang dilakukan untuk mengurangi dampak yang dihasilkan emisi CO2 pada kendaraan roda empat. Salah satunya dengan melakukan tes emisi. Prosedur tes emisi ini dilakukan dengan perilaku berkendara tetap yang menyebabkan tes ini tidak representative terhadap keadaan nyata di jalan, oleh karena itu dibutuhkan monitoring langsung pada perilaku berkendara yang berbeda-beda. Dengan memanfaatkan teknologi OBD II dan konsep IoT (Internet of Things), peneliti dapat melakukan pengembangan ke arah monitoring. Pengembangan dilakukan dengan cara menghubungkan OBD II dan Raspberry Pi ke kendaraan roda empat. Perhitungan emisi CO2 dilakukan dengan memanfaatkan data MAF yang diperoleh dari OBD II. Hasil perhitugan tersebut dikirim ke aplikasi Android melalui Cloud Server agar dapat dibaca oleh pengguna aplikasi Android tersebut. Untuk memverifikasi model perhitungan, pengetesan dilakukan pada Nissan Juke tahun 2015 dengan melakukan uji jalan sejauh 300km pada tiga perilaku berkendara yang berbeda. Emisi CO2 yang dihasilkan diukur menggunakan Portable CO2 Meters Detector Tvoc Hcho AQI Monitor dan dibandingkan dengan hasil uji pada aplikasi. Nilai error verifikasi pengukuran pada masing-masing perilaku berkendara yaitu 11,65 % untuk eco, 7,38% untuk Normal, dan 49,56% untuk Sport. pengetesan yang dilakukan juga menunjukkan bahwa model perilaku berkendara Eco memiliki tingkat emisi terendah dibanding dua perilaku berkendara lainnya dengan jumlah emisi CO2 yang dihasilkan sebesar 33.401,25 g sedangkan untuk Normal dan Sport masing-masing secara berurutan menghasilkan emisi CO2 sebesar 56.250,26 g dan 123.122,99 g. Kemudian apabila dihubungkan dengan parameter perilaku berkendara, perilaku berkendara Eco dengan interval nilai Accelerator Position 4,63% – 10,99% menghasilkan CO2 per detiknya sebesar 0,57 g/s – 1,93 g/s, perilaku berkendara Normal dengan interval nilai Accelerator Position 16,23% – 24,15% menghasilkan CO2 per detiknya sebesar 3,37 g/s – 5,09 g/s, dan perilaku berkendara Sport dengan interval nilai Accelerator Position 71,89% – 78,39% menghasilkan CO2 per detiknya sebesar 13,00 g/s – 14,24 g/s.

With various technological advances, transportation remains responsible as the biggest contributor to air pollution, especially CO2 emissions. The impact of CO2 emissions is very dangerous for health and the environment. There have been several ways to reduce the impact of CO2 emissions on four-wheeled vehicles. One of them is by conducting emission tests. This emission test procedure is carried out with a fixed driving behavior which causes this test not to be representative of the actual situation on the road, because of that we require direct monitoring of different driving behaviors. By utilizing OBD II technology and collaborating with the concept of IoT (Internet of Things) Researchers can make development towards monitoring. Development is carried out by connecting the OBD II and Raspberry Pi that has been programmed to calculate CO2 emissions. The calculation of CO2 emissions is done by calculating the MAF data that can be obtained from OBD II. The results of these calculations are sent to the Android application via Cloud Server so that they can be read by the application's users. To verify the calculation model, testing was done on the 2015 Nissan Juke by conducting a road test on three different driving behaviors. The resulting CO2 emissions are measured using Portable CO2 Meters Detector Tvoc Hcho AQI Monitor and compared with test results on the application. The verification error measurement value on each driving behavior is 11,65% for Eco, 7,38% for Normal, and 49,56% for Sport. The testing also shows that the Eco-driving behavior model has the lowest emission level compared to the other two driving behaviors with the amount of CO2 emissions produced of 33.401,25 g while for Normal and sport respectively produced CO2 emissions of 56.250,26 g and 123.122,99 g. Then when connected with driving behavior parameters, Eco-driving behavior with an interval value of Accelerator Position 4.63% - 10.99% produces CO2 per second of 0.57 g/s - 1.93 g/s, Normal driving behavior with an interval value Accelerator Position 16.23% - 24.15% produces CO2 per second of 3.37 g/s - 5.09 g/s and Sport driving behavior with an interval of Accelerator Position 71.89% - 78.39% produces CO2 per second of 13.00 g/s - 14.24 g/s."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Enggar Handarujati
"

Dalam kendaraan bermotor terdapat sistem yang sangat kompleks, termasuk sistem lubrikasi. Fungsi utama lubrikasi adalah mencegah overheat yang dapat berakibat pada terkuncinya bagian yang bekerja akibat berlebihnya friksi. Minyak pelumas akan mengalami penurunan kualitas selama kendaraan digunakan. Oleh karenanya minyak pelumas disarankan untuk diganti secara berkala. Namun terdapat kebingungan untuk menentukan kapan minyak pelumas harus diganti, jarak yang sudah ditempuh dalam satuan kilometer atau waktu sejak minyak pelumas terakhir diganti dalam satuan bulan. Mengganti minyak pelumas terlalu cepat akan atau telat mengganti minyak pelumas dua-duanya akan berdampak buruk. Sehingga dikembangkan aplikasi android yang dapat melakukan prediksi sisa masa pakai minyak pelumas. Perilaku berkendara yang berbeda-beda pada tiap pengendara juga merupakan faktor yang berpengaruh dalam menentukan masa pakai komponen kendaraan bermotor. Penulis melakukan verifikasi secara laboratoris terhadap prediksi aplikasi. Parameter pengujian laboratorium yang dicari adalah TBN, Viskositas Kinematik pada suhu 40ºC dan 100ºC, serta. Verifikasi dilakukan dengan menghitung MAE dan MSE dari persentase keluaran aplikasi terhadap hasil regresi hasil pengujian laboratorium yang dilanjutkan dengan mencari faktor pengali untuk persentase aplikasi. MAE dan MSE dari persentase keluaran aplikasi pada masing masing perilaku berkendara adalah: eco: 2,39 dan 8,83; normal: 5,78 dan 51,69; sport: 16,24 dan 409,71. Setelah faktor pengali digunakan, MAE dan MSE dari persentase keluaran aplikasi pada masing masing perilaku berkendara turun menjadi: eco: 0,036 dan 0,02; normal: 0,309 dan 0,114; sport: 0,272 dan 0,079.

 


In motorized vehicles there are very complex systems, including lubrication systems. The main function of lubrication is to prevent overheating which can result in the locking of the working part due to excessive friction. Lubricating oil will experience a decrease in quality during vehicle use. Therefore lubricating oils are advised to be replaced periodically. But there is confusion in determining when the lubricating oil must be replaced, the distance traveled in kilometers or the time since the last lubricating oil was replaced in months. Replacing the lubricating oil too soon will or late to replace the lubricating oil will both have a bad impact. So that an android application is developed that can predict the remaining life of the lubricating oil. Different driving behavior of each driver is also an influential factor in determining the life span of motor vehicle components. The author verifies the application prediction with laboratory test. The laboratory testing parameters sought were TBN, Kinematic Viscosity at temperatures of 40ºC and 100ºC, and Viscosity Index. Verification is done by calculating MAE and MSE from the percentage of application output to the regression results of laboratory test results, followed by finding multipliers for the percentage of applications. MAE and MSE of the percentage of application output on each driving behavior are: eco: 2.39 and 8.83; normal: 5.78 and 51.69; sport: 16.24 and 409.71. After the multiplier is used, MAE and MSE from the percentage of application output in each driving behavior drops to: eco: 0.036 and 0.02; normal: 0.309 and 0.114; sport: 0.272 and 0.079.

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
David Edika Atmaja
"Pelumas mesin adalah zat kimia berbentuk cairan yang diberikan diantara dua benda yang bergerak untuk mengurangi gaya gesek yang terjadi. Pelumas mesin perlu diganti secara berkala untuk menjaga keawetan mesin kendaraan roda empat. Produsen pabrikan kendaraan roda empat sudah memberikan jangka waktu penggantian pelumas kepada konsumen, namun jangka waktu tersebut hanya berupa acuan. Tujuan dari penilitian ini adalah mempelajari metode perhitungan untuk menemukan waktu penggantian pelumas yang tepat beserta parameternya, mempelajari hubungan dan karakteristik antara temperatur pelumas mesin dengan temperatur coolant, serta mempelajari hubungan perilaku berkendara terhadap penurunan kondisi pelumas mesin. Penilitian ini dilakukan dengan mengambil data temperatur pelumas mesin dan coolant menggunakan Ancel kemudian dilakukan analisis untuk mendapatkan rumus penentuan temperatur pelumas mesin dan didapati mean absolute error sebesar 0 hingga 3,60. Penilitian ini dilakukan dengan melakukan pengujian perilaku berkendara eco, normal, dan sport sejauh 300 km tiap perilaku berkendara. Pada penelitian ini, data kecepatan putaran mesin dan temperatur coolant diambil melalui OBD II lalu diolah menggunakan Raspberry Pi menjadi RPS dan temperatur pelumas mesin kemudian diolah lebih lanjut oleh backend kemudian data tersebut dikirimkan ke Android. Pada aplikasi Android, output dari hasil pengolahan data tersebut ditampilkan menjadi persentase kondisi pelumas mesin, jarak sisa tempuh pelumas mesin, dan waktu sisa tempuh pelumas mesin. Hasil pengujian menunjukkan bahwa pada perilaku berkendara sport, kondisi pelumas mesin mengalami penurunan paling besar di angka 3,9% diikuti dengan normal sebesar 3,18% dan yang mengalami penurunan paling sedikit adalah eco dengan 2,39%.

Engine oil is a liquid chemical that is given between two moving objects to reduce the frictional force that occurs. Engine lubricant needs to be replaced periodically to maintain the durability of four-wheeled vehicles. Manufacturers of four-wheeled vehicle manufacturers have given the lubricant replacement period to consumers, but this time period is only a reference. The purpose of this research is to study the calculation method to find the right time to replace the lubricant along with its parameters, study the relationship and characteristics between engine lubricant temperature with coolant temperature, and study the relationship of driving behavior to decrease engine lubricant conditions. This research was carried out by taking data on engine lubricant temperature and coolant using Ancel and then analyzing it to get the formula for determining engine oil temperature and found the mean absolute error of 0 to 3.60. This research is done by testing the driving behavior of eco, normal, and sport as far as 300 km for each driving behavior. In this study, engine speed and coolant temperature data are taken through OBD II and then processed using Raspberry Pi into RPS and engine lubricant temperature then further processed by the backend then the data is sent to Android. On the Android application, the output of the data processing results is displayed as a percentage of engine lubricant conditions, engine lubricant remaining distance, and engine lubricant remaining time. The test results show that in sports driving behavior, the condition of engine lubricants decreased the most at 3.9% followed by normal at 3.18% and the lowest decreased was eco with 2.39%."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siregar, Rolan
"ABSTRAK
Kecelakaan sering terjadi karena sistem pengereman yang tidak berfungsi dengan baik. Penyelidikan dilakukan terhadap penyebab kegagalan rem seperti panas berlebih yang terjadi pada komponen rem akibat gesekan antar elemen rem karena menahan beban dan laju kendaraan. Sejauh ini belum ada pengkajian terhadap kinerja sistem rem berdasarkan indikasi temperatur yang dibaca oleh sensor temperatur pada rem yang ada pada tiap roda, sehingga dapat dilihat fungsi rem apakah berjalan dengan baik atau tidak. Sistem pengereman yang tidak berfungsi dengan baik seperti kaliper kurang mencekam akan terlihat dari panas rotor disc yang dihasilkan. Jika satu unit rem tidak berfungsi maka beban pengereman unit lainnya akan bertambah dan dapat menimbulkan panas yang berlebih. Temperatur maksimum dan selisih yang paling tinggi adalah acuan kinerja rem apakah masih berfungsi dengan normal atau tidak, di mana temperature tersebut digunakan sebagai
input untuk alat deteksi temperatur yang bertujuan sebagai alert tambahan performa rem. Selanjutnya apabila pengukuran temperature adalah menggunakan rubbing termokopel maka akan terjadi perbedaan pembacaan temperatur antara temperatur sebenarnya pada rotor brake maka dibuat konversi temperature pengukuran rubbing termokopel terhadap rotor brake yaitu. 2 0.0036 0.3342 83.4 r r T  T  T  Berdasarkan hasil perhitungan tersebut maka temperatur maksimum yang diperbolehkan pada rem di roda depan (salah satu) adalah 233oC , rem belakang 246 oC, selisih maksimum temperatur antar rem belakang dengan depan (R1-R3) adalah 90 oC, antara rem depan kiri dengan depan kanan adalah 69 oC, dan antara rem belakang
kanan dengan kiri adalah 71 oC. Hasil perhitungan temperatur tersebut dihitung ketika sistem pengereman masih berfungsi dengan normal

ABSTRACT
In this research, the assessment of the performance of the brake system based on the rotor disc braking temperatures that exist at each wheel, so that it can be seen whether the brake function works well or not. Where the braking system does not function well as a caliper less gripping will be seen from the hot rotor disc had happened. If the one unit brake is not working then the other unit braking load will increase and can cause overheating. Overheating can cause the brake performance is not functioning optimally due to failure of a material to withstand the heat. Load weight vehicle is varied and braking is done on a straight road and turn with assuming is flat road surface, it is done to find out when the maximum temperature occurs in each brake. Based on the calculation result that a large maximum temperature brake on the front wheel (one) is 222 ° C, the rear brake 239 ° C, the maximum difference of temperature between the rear brakes with the front (R4-R2) is 92oC, between front brakes left with right is 71oC, and between the right rear brakes with the left is 77oC. The maximum temperature and deviation temperature of the brakes are reference brake performance whether still functioning normally or not on the certain vehicle. Temperature detection devices will be developed as an additional alerts brake condition and finally to reduce the risk of vehicle accidents.
"
2016
T46506
UI - Tesis Membership  Universitas Indonesia Library
cover
Philip Budiman
"Aki merupakan sebuah komponen penting dalam sebuah kendaraan roda empat, oleh karena aki sebagai penyedia arus listrik pada saat penyalaan yang membutuhkan energi listrik secara besar dan cepat, sehingga performa aki harus dipantau agar tidak memperngaruhi kenyamanan dalam menggunakan kendaraan roda empat. Kendaraan roda empat biasanya tidak memiliki indikator atau instrument yang memberi peringatan jika performa aki sudah berkurang, juga sulitnya dan tidak tepatnya melihat kondisi aki dengan melihat langsung indikator aki, jika aki tersebut dilengkapi dengan indikator. Sehingga pada penelitian kali ini dibuatnya aplikasi pemantauan performa aki yang berbasis android, sehingga performa aki dapat dilihat dengan mudah dan juga dapat nilai performa secara akurat, juga dalam penelitian kali ini, penelitian juga membuat perbandingan performa aki dalam tiga cara berkendara, yaitu Sport, normal, dan eco, dengan adanya tiga cara berkendara penelitian ini akan memiliki hasil perbedaan performa dengan cara berkendara. Penelitian ini dilakukan dengan cara mengambil dua nilai voltase aki yang berurutan pada saat penyalaan sehingga kita dapat mengkalkulasi niali performa aki. nilai voltase aki tersebut diambil menggunakan bantuan OBD-II pada kendaraan roda empat menggunakan ELM327 yang terhubung dengan Raspberry Pi sebagai penyimpan, pengolah, dan pengirim data ke aplikasi android, sehingga data performa aki dapat langsung dilihat pada aplikasi android.Pada penelitian ini juga didapati aki yang digunakan tidak memiliki pengaruh terhadap suhu kerja aki, juga kendaraan roda empat yang digunakan juga memiliki pembebanan yang stabil dan juga memiliki perangkat untuk mengetahui energi yang keluar dan masuk dari aki, sehingga didapat nilai perhitungan pada performa aki dapat ditetapkan dengan menggunakan penurunan voltase aki paling besar dengan nilai yang didapat dari pengujian. Pada kendaraan roda empat ini memiliki teknologi yang memaksimalkan energi perlambatan untuk dijadikan energi listrik yang disimpan kedalam aki, sehingga pada cara berkendara sport memiliki nilai performa aki yang tinggi hingga +7% dan pada cara berkendara eco memiliki nilai performa aki yang lebih rendah -1,4% dari yang diberikan produsen aki, dan cara berkendara normal memiliki nilai performa aki +0,3% dari nilai performa yang diberikan oleh produsen aki.

The battery is an important component in a four-wheeled vehicle, because the battery as a storage of electric energy when starting. Starting requires large and fast electrical energy, so battery performance must be monitored to affect the comfort of using a four-wheeled vehicle. Four-wheeled vehicles usually do not have indicators or instruments that give a warning if the battery performance has decreased, it is also difficult to see the condition of the battery by looking directly at the battery indicator, if the battery is equipped with an indicator. So in this research, an Android-based battery performance monitoring application was made, so the battery performance can be seen easily and can also be accurately assessed performance, also in this research, this study also made a comparison of battery performance in three driving behaviour, Sport, Normal , and Eco, with the existence of three ways of driving behaviour this study will have the results of differences in performance by driving. This research was conducted by taking two consecutive battery voltage values at the time of ignition so that we can calculate the battery performance value. The battery voltage value is taken using OBD-II on four-wheeled vehicles using ELM327 which is connected to the Raspberry Pi as a storage, processing, and sending data to the Android application, so that battery performance data can be seen directly in the Android application. The battery not have an effect on the working temperature of the battery, also the four-wheeled vehicles used also have a stable loading and also the four-wheeled vehicles have a current sensor, a device to find out the energy that charge or discharge from four-wheeled vehicles battery, so that the calculation value on battery performance can be determined using the largest reduction in battery voltage with the value obtained from testing. This four-wheeled vehicle has technology that maximizes deceleration energy to be converted into electrical energy stored in the battery, so that in sports driving, the battery performance value is high up to + 7% and in eco-driving it has a lower battery performance value of -1, 4% of what the battery manufacturer provides, and normal driving has a battery performance value of + 0.3% of the performance value given by the battery manufacturer."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mahendra Ammar Pratama
"ABSTRAK
Penggunaan kampas rem kereta api konvensional menggunakan material besi tuang kelabu sejatinya masih memiliki kekurangan seiring terdapat konsentrasi tegangan yang tinggi sehingga dapat mengganggu fungsi pengereman. Komposit aluminium menjadi salah satu material yang menjanjikan untuk dijadikan kampas rem kereta api karena memiliki densitas yang rendah serta kombinasi sifat kekuatan dan ketahanan aus yang baik. Dalam penelitian ini, dilakukan fabrikasi komposit Aluminium ADC12 berpenguat boron karbida dengan variasi penambahan penguat sebesar 1, 3, 5, 7, dan 10 % fraksi volum melalui pengecoran aduk. Magnesium sebagai agen pembasahan, Titanium-boron sebagai penghalus butir, dan stronsium sebagai modifier ditambahkan untuk meningkatkan sifat mekanisnya. Karakterisasi material komposit ADC12/B4C dilakukan dengan melakukan analisis metalografi Optical Microscope (OM), Scanning Electron Microscope (SEM), X-Ray Difraction (XRD), dan Optical Emission Spectometry (OES) serta pengujian mekanik seperti tarik, kekerasan, impak, dan keausan. Diperoleh komposisi optimum material komposit ADC12/B4C pada variasi penambahan penguat 7% fraksi volum dengan nilai kekuatan tarik 231.117 MPa, kekerasan 58.34 HRB, ketahanan impak 0.09375 J/mm2, dan laju aus 0.00326 x 10-5 mm/m3. Beberapa fasa yang terbentuk pada material komposit diantaranya Mg2Si, Al2Cu, dan β-Al5FeSi.

ABSTRACT
Conventional railway brakeshoe using gray cast iron material actually still has disadvantages as there is a high stress concentration that can interfere with the braking function. Aluminum composite is one of the promising materials for railway brakeshoe because it has a low density and good combination of strength and wear resistance. In this study, the fabrication of Aluminium ADC12 composites reinforced by boron carbide was carried out with variations in the addition of reinforcement of 1, 3, 5, 7, and 10% volume fractions through stir casting. Magnesium as a wetting agent, Titanium-boron as a grain refiner, and strontium as a modifier added to improve its mechanical properties. Characterization of composite materials ADC12/B4C was carried out by performing metallographic analysis of Optical Microscope (OM), Scanning Electron Microscope (SEM), X-Ray Difraction (XRD), and Optical Emission Spectometry (OES) as well as mechanical tests such as tensile, hardness, impact, and wear. The optimum composition of the composite material was obtained ADC12/B4C with the addition of 7% volume fraction reinforcment with a tensile strength value of 231.117 MPa, hardness of 58.34 HRB, impact resistance 0.09375 J/mm2, and wear rate 0.00326 x 10-5 mm/m3. Some phases formed in composite materials include Mg2Si, Al2Cu, and β-Al5FeSi."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>