Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 55321 dokumen yang sesuai dengan query
cover
Kantia Sidiq Permana
"Kegiatan pada proses gas sweetening berkontribusi pada pelepasan emisi ke udara. Penelitian ini menekankan pengaruh parameter proses terhadap emisi yang dihasilkan dengan pengembangan alat komputasi untuk perhitungan greenhouse gas (GHG) dan polusi udara berbasis UNISIM. Alat komputasi ini memungkinkan kalkulasi emisi udara (berdasarkan standar dan peraturan yang berlaku) yang terintegrasi dengan simulasi rekayasa proses pada unit natural gas sweetening. Simulasi base case untuk menghasilkan spesifikasi sales gas menggunakan pelarut MDEA menghasilkan beban emisi sebesar 1.527 tonne CO2e/day dan 0,348 tonne SO2e/day. Pada penurunan tekanan sour gas, beban emisi meningkat menjadi 1.554 tonne CO2e/day dan 0,368 tonne SO2e/day, sebagai konsekuensi penambahan sistem kompresi. Penggunaan DEA sebagai pelarut memberikan konsekuensi emisi yang tidak berbeda jauh dengan simulasi base case, yaitu sebesar 1.522 tonne CO2e/day dan 0,338 tonne SO2e/day, akibat dari peningkatan laju alir acid gas dan penurunan duty reboiler karena konsentrasi lean amine yang didominasi oleh air pada penggunaan solvent DEA. Variasi kapasitas gas menghasilkan emisi yang tidak linier, dimana penurunan kapasitas gas akan menghasilkan emisi acid gas yang semakin menurun akibat dari laju alir acid gas yang lebih rendah, disisi lain pada penurunan kapasitas gas akan terdapat titik minimum penggunaan laju alir lean amine sehingga akan terdapat titik minimum pada emisi yang dihasilkan dari unit reboiler. Untuk menghasilkan sweet gas sesuai spesifikasi LNG menggunakan pelarut DEA, beban emisi naik secara signifikan menjadi 2.652 tonne CO2e/day dan 0,747 tonne SO2e/day karena penyerapan CO2 yang lebih optimal oleh lean amine akan mengakibatkan pelepasan emisi CO2 yang lebih tinggi, selain itu penggunaan laju alir lean amine yang tinggi akan meningkatkan emisi dari unit reboiler

Activities in gas sweetening process contribute to release emissions into the air. This research emphasizes the effect of process parameters on emissions generated by the development of computational tools for the calculation of greenhouse gas (GHG) and air pollution based on UNISIM. This computational tool enables to calculate of air emissions (based on standards and regulations) that are integrated with process engineering simulations on natural gas sweetening units. Base case simulation to produce sales gas specifications using MDEA solvent produces an emissions to 1,527 tonne CO2e/day and 0.348 tonne SO2e/day. Decrease in sour gas pressure, increases emissions to 1,554 tonne CO2e/day and 0.368 tonne SO2e/day as a consequence of the addition of the compression system. Using DEA as a solvent produces emissions of 1,522 tonne CO2e/day and 0.338 tonne SO2e/day, because an increase in acid gas flow rate and a decrease in duty reboiler due to the concentration of lean amine which is dominated by water. Variation of gas capacity produces non-linear emissions, where a decreased in gas capacity will produce acid gas emissions that decreased due to lower acid gas flow rates, on the other hand on decreasing gas capacity there will be a minimum point of lean amine flow rates so that there will be a minimum emissions from reboiler units. To produce sweet gas according to the LNG specifications using a DEA solvent, the emission rises significantly to 2,652 tonne CO2e/day and 0,747 tonne SO2e/day because absorption by lean amine will higher due to result in higher CO2 emissions, on the other hand higher of lean amine flow will increase emissions from reboiler units."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mu`to Naimah
"Kalkulator emisi berbasis spreadsheet UniSim yang terintegrasi dengan simulasi gas sweetening telah dibuat. Simulasi gas sweetening penelitian ini menggunakan pelarut methyl diethanolamine (MDEA). Base case sour gas memiliki laju air 145,72 MMSCFD dengan komposisi 15,74% CO2 dan 0,1% mol H2S. Pengolahan acid gas melalui venting menghasilkan beban emisi CO2equivalent, dan emisi H2S yang terbesar (masing-masing sebesar 1.432,55 tonne/day, dan 5,83 tonne/day) dibandingkan pengolahan acid gas melalui skema flare, maupun thermal oxidizer. Beban emisi CO2equivalent, dan H2S yang dihasilkan melalui skema flare masing-masing sebesar 983,67 tonne/day, dan 0,12 tonne/day. Beban emisi CO2equivalent, dan H2S yang dihasilkan melalui skema thermal oxidizer masing-masing sebesar 939,69 tonne/day, dan 5,84 x 10-4 tonne/day. Penggunaan acid+flash+sweet gas sebagai bahan bakar reboiler menghasilkan beban emisi CO2 equivalent yang paling sedikit (378,45 tonne/day) namun menghasilkan beban SO2equivalent yang tertinggi (0,89 tonne/day) jika dibandingkan dengan penggunaan bahan bakar lain (sweet gas, flash+sweet gas, dan acid+sweet gas). Semakin rendah komposisi metana pada bahan bakar, maka lebih sedikit karbon yang terkonversi menjadi CO2, dan semakin rendah beban emisi CO2equivalent. Semakin tinggi komponen H2S pada bahan bakar maka semakin tinggi beban emisi SO2. Penggunaan bahan bakar acid+flash+sweet gas menghemat penggunaan sweet gas hingga 3,47 MMSCFD jika dibandingkan dengan penggunaan sweet gas saja yang membutuhkan laju alir total 8,21 MMSCFD. Beban emisi CO2equivalent yang dihasilkan dari unit flare semakin meningkat dan beban emisi SO2equivalent semakin menurun seiring meningkatnya komposisi CO2 pada sour gas. Beban emisi dalam CO2equivalent yang dihasilkan dari flare dengan komposisi sour gas 20,74% ialah yang terbesar dibandingkan dengan komposisi CO2 yang lebih sedikit (10,74%, 12,74%, 15,74%, dan 17,74%) yaitu sebesar 1.365,18 tonne/day, namun menghasilkan beban emisi dalam SO2 equivalent yang terkecil dibandingkan komposisi CO2 yang lebih sedikit yaitu sebesar 10,32 tonne/day."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Slamet
"Unit Gas sweetening merupakan salah satu fasilitas inti pada produksi gas alam di suatu kilang minyak dan/atau gas. Di suatu lapangan gas alam yang dikelola oleh PT. X terdapat masalah sering terjadinya korosi di unit Gas sweetening, terutama pada bagian kolom absorber (unit kontaktor). Disamping itu juga terjadi kehilangan sejumlah gas hidrokarbon bernilai ekonomis tinggi, yang ditandai dengan tingginya komposisi C1-C3 (metana, etana, propane) di aliran venting gas asam. Oleh karena itu, perlu dilakukan kajian teknis untuk mengidentifikasi akar masalah dan aksi yang perlu dilakukan guna menanggulangi masalah tersebut.
Pendekatan yang dilakukan pada kajian teknis ini meliputi kunjungan lapangan (survey), analisis laboratorium, dan simulasi proses Gas sweetening. Survey lapangan ke kilang gas alam dilakukan dengan standar savety yang ketat, untuk mengetahui kondisi aktual di lapangan, termasuk pengambilan data primer dan sampel yang diperlukan untuk analisis laboratorium. Untuk memenuhi aspek teknis dan etika profesi, berbagai pengujian laboratorium dilakukan di Laboratorium Uji yang tersertifikasi oleh KAN (Komite Akreditasi Nasional). Simulator yang digunakan untuk optimasi proses adalah VMGsim. Fluid package yang dipakai adalah Amine Package dengan mode stedy state simulation. Untuk memenuhi aspek teknis dan etika profesi, aplikasi simulator proses yang digunakan (VMGsim) merupakan versi legal yang diperoleh secara formal.
Berdasarkan hasil-hasil kajian yang telah dilakukan menunjukkan bahwa proses korosi di unit Gas sweetening telah terjadi, dengan indikasi meningkatnya kandungan Fe secara drastis (lebih dari 70 kali lipat) dalam larutan amine. Beberapa faktor penyebab kemungkinan terjadinya korosi diantaraanya: (a). Larutan amine yang digunakan mengandung klorin (Cl) sangat tinggi (> 18000 ppm; standar savety < 1000 ppm), (b). CO2 loading di rich amine cukup tinggi (> 0,5 mol CO2/mol amine), dan (c). Konfigurasi unit Gas sweetening yang sederhana (tanpa adanya unit stripping), sehingga larutan amine yang dihasilkan hanya semi-lean amine (bukan lean amine). Pada kondisi existing dapat diperoleh sweet gas dengan kandungan CO2 sesuai spesifikasi, namun hydrocarbon losses di acid gas venting masih cukup tinggi yaitu 1,8 % (kondisi desain: 0,95 %). Beberapa faktor penyebab tingginya hydrocarbon losses tersebut diantaranya adalah: (a). Adanya perubahan suhu feed gas (naik lebih dari 10 oC), (b). Terjadinya foaming di kolom absorber, yang diindikasikan oleh terbentuknya padatan NaHCO3 (analisis FTIR) dan FeCl3 (analisis ICP) pada pelarut amine, (c). Tidak dioperasikannya unit Carbon filter, dan (d). Tingginya laju sirkulasi amine yang digunakan. Optimasi proses yang disertai dengan penambahan beberapa unit (seperti cooler di feed gas, cooler di semi-lean amine, dan heater/boiler sebelum LP-Flash) dapat menurunkan hydrocarbon losses di acid gas venting hingga menjadi 1,3 %. Keuntungan yang didapat setelah optimasi tersebut adalah peningkatan produk sweet gas sebesar 0,47 MMSCFD.

Gas sweetening unit is one of the core facilities in the natural gas production in an oil-gas refinery. In a natural gas field operated by PT. X, there is a problem of corrosion in the Gas sweetening unit, especially in the absorber column (contactor unit). In addition, there is also a loss of valuable hydrocarbon gases, which is characterized by the high composition of C1-C3 (methane, ethane, propane) in the acid gas venting stream. Therefore, it is necessary to conduct a technical study to identify the causes of the problems and the actions that need to be taken to overcome the problems.
The approach taken in this technical study includes field visits (surveys), laboratory analysis, and simulation of the Gas sweetening process. Field surveys to the natural gas refinery are carried out with strict safety standards, to determine the actual conditions in the field, including the collection of primary data and samples needed for laboratory analysis. To meet the technical aspects and professional ethics, various laboratory tests are carried out at a Test Laboratory certified by KAN (National Accreditation Committee). The simulator software used for process optimization is VMGsim. The fluid package used is the Amine Package with a steady state simulation mode. To meet the technical and ethical aspects, the process simulator software used (VMGsim) is the legal version which is obtained formally.
Based on the results of the study, it shows that the corrosion process in the Gas sweetening unit has occurred, with indications of a drastic increase in the Fe content (more than 70 times) in the amine solution. Several factors causing the possibility of corrosion include: (a). The amine solution used contains very high chlorine (Cl) (> 18000 ppm, standard savety < 1000 ppm), (b). CO2 loading in rich amine is quite high (> 0.5 mol CO2/mol amine), and (c). Gas sweetening unit configuration is simple (without any stripping unit), so that the resulting amine solution is only semi-lean amine (not lean amine). In existing conditions, sweet gas can be obtained with CO2 content according to specifications, but hydrocarbon losses in acid gas venting are still quite high, namely 1.8% (design condition: 0.95%). Some of the factors causing the high hydrocarbon losses include: (a). There is a change in the feed gas temperature (increase more than 10 oC), (b). The occurrence of foaming in the absorber column, which was indicated by the formation of solids NaHCO3 (FTIR analysis) and FeCl3 (ICP analysis) in amine solvent, (c). Not operating the Carbon filter unit, and (d). The high rate of circulating amine used. Process optimization accompanied by the addition of several units (such as cooler in feed gas, cooler in semi-lean amine, and heater/boiler before LP-Flash) can reduce hydrocarbon losses in acid gas venting to 1.3%. The advantage obtained after the optimization is an increase in sweet gas products by 0.47 MMSCFD.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
PR-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Bimo Agung Wicaksono
"

Pada industri pemurnian gas alam, umumnya CO2 hasil pemisahan dari gas alam di lepas ke atmosfer. Pelepasan CO2 secara langsung ke atmosfer dapat menimbulkan permasalahan lingkungan salah satunya adalah pemanasan global. Ada beberapa alternatif usaha mitigasi pengurangan emisi CO2 salah satunya adalah dengan pemanfaatan CO2 untuk EOR. Injeksi CO2 ke dalam reservoir minyak dapat meningkatkan kinerja pemulihan minyak dan dapat menyimpan CO2 secara permanen ke dalam tanah untuk mengurangi efek gas rumah kaca. Proses penangkapan CO2, transportasi ke sumur injeksi dikenal dengan teknologi Carbon Capture, Utilization and Storage (CCUS). Penelitian ini membahas tekno-ekonomi dari pemanfaatan CO2 dengan pembangunan fasilitas CCUS pada industri pemurnian gas alam di lapangan X. Emisi yang di lepas sebesar 3,56 Mt CO2e/tahun akan ditangkap dan di transportasikan ke sumur di lapangan Y dengan jarak 44 km. Penelitian ini membandingkan fasa superkritis dan fasa gas pada transportasi pipa CO2 point-to-point. Penelitian ini juga menghitung jumlah emisi yang dapat dikurangi oleh penerapan CCUS. Dari hasil perhitungan diperoleh bahwa pada jarak 44 km, transportasi pipa CO2 dalam fasa gas lebih ekonomis dibanding fasa superkritis dengan investasi sebesar US$ 252.974.905. Dari analisa kelayakan proyek diperoleh IRR 54% dengan dua tahun masa pengembalian. Penerapan teknologi CCUS di lapangan X juga dapat mengurangi emisi sebesar  3 Mt CO2e/ tahun.

 


 

In the natural gas sweetening industry, CO2 from natural gas separation generally released into the atmosphere. The direct release of CO2 into the atmosphere can cause environmental problems, such as global warming. There are several alternative mitigation efforts to reduce CO2 emissions, one of which is the utilization of CO2 for EOR. Injection of CO2 into oil reservoirs can improve oil recovery performance and can permanently store CO2 into the geological storage to reduce the effects of greenhouse gases. The process of CO2 capture, transportation to injection wells is known as Carbon Capture, Utilization and Storage (CCUS) technology. This study discusses the techno-economics of CO2 utilization with the development of CCUS facilities in field X. Emissions released at 3.56 Mt CO2e / year will be captured and transported to wells in the Y field at 44 km distance. This study compares the supercritical phase and gas phase in the CO2 pipeline point-to-point transportation. This study also calculates the amount of emissions that can be reduced by the application of CCUS. The results obtained that at a distance of 44 km, CO2 pipeline transport in the gas phase is more economical than the supercritical phase with an investment of US$ 252,974,905. From the project feasibility analysis give an IRR of 54% with a two year return period. The application of CCUS technology in field X can also reduce emissions by 3 Mt CO2e / year.

 

"
2019
T52921
UI - Tesis Membership  Universitas Indonesia Library
cover
Widodo Saptoputro Suparman
"Pada kegiatan eksploitasi dan produksi gas bumi yang dilakukan oleh Kontraktor Production Sharing (KPS Energy Equity EPIC (Sengkang) Pty. Ltd. disingkat EEES di Lapangan Gas Kampung Baru, Desa Poleonro, Kecamatan Gilireng, Kabupaten Wajo, Propinsi Sulawesi Selatan, gas yang dihasilkan dari sumur-sumur gas di Lapangan Kampung Baru, Blok Sengkang, Kabupaten Wajo, Propinsi Sulawesi Selatan pada umumnya mempunyai kandungan gas Hidrogen Sulfida (H2S) cukup tinggi, yaitu berkisar antara 50-600 ppm.
Kehadiran senyawa belerang di dalam bahan bakar sangat tidak disenangi dalam pengelolaannya, karena semakin tinggi kandungan belerang akan menjadikan mutu bahan bakar semakin rendah. Di samping itu, senyawa belerang dapat merugikan makhluk hidup karena menghasilkan gas-gas yang bersifat racun seperti hidrogen sulfida (H2S) dan sulfur dioksida (SO2). Selain itu gas hydrogen sulfida sangat korosif pada permukaan logam. Dengan demikian akan menimbulkan problema yang serius dalam pemipaan dan peralatan-peralatan produksi lainnya. Karenanya sebagai pengguna bahan bakar gas, PLTG Sengkang mensyaratkan bahwa kandungan H2S yang terdapat dalam gas maksimal 10 ppm.
Salah satu usaha yang dilakukan oleh EEES untuk menurunkan atau memisahkan senyawa belerang yang terkandung di dalam gas tersebut yaitu dengan memberikan campuran bahan kimia pada proses pentawaran (Sweetening Process).
Pemakaian bahan kimia tersebut sendiri dalam pelaksanaannya akan menghasilkan limbah cair maupun limbah padat dari bekas kemasannya. Selain itu, senyawa sulfida yang terdapat dalam bahan bakar (H2S) maupun yang terjadi akibat proses pembakaran (SO2) juga akan menghasilkan limbah gas yang dapat membahayakan lingkungan sekitarnya dimana kegiatan pemerosesan gas tersebut berada.
Pusat Pemrosesan Gas Alam (Central Processing Plant) Kampung Baru yang berada di Kecamatan Gilirang, Kabupaten Daerah Tingkat II Wajo, Propinsi Sulawesi Selatan, dengan luas mencapai 147 km2, wilayah ini adalah 5,86% dan wilayah Kabupaten Wajo, atau 0,15% dari luas wilayah propinsi Sulawesi Selatan yang luasnya sekitar 100.500 km2. Kondisi tanah di sekitar lokasi penelitian cenderung tanah kapur, sebagian besar lahan merupakan sawah tanah hujan yang ditanami padi satu kali, dan sungai sering mengalami kekeringan dan bahkan sampai defisit air.
Limbah cair yang dihasilkan dari proses produksi (produced water) tersebut ditampung di suatu kolam dan di evaporasikan dengan bantuan sinar matahari, limbah cair domestik dibuang langsung ke sungai, sedangkan limbah gas di bakar melalui flare stack setinggi 30m.
Seat ini Pusat Pemerosesan Gas Alam (Central Processing Plant) Kampung Baru akan ditingkatkan kapasitas produksinya dari 27,5 menjadi 53 juta setara kaki kubik gas setiap hari, sesuai dengan meningkatnya laju permintaan bahan bakar gas untuk pembangkit listrik.
Penelitian ini secara umum bertujuan untuk memilih cara yang efektif dalam mengelola lingkungan pada proses pengilangan gas alam yang bersifat asam pada pabrik pemrosesan gas alam di Lapangan Gas Bumi Kampung Baru, dan secara khusus untuk mengetahui pengaruh penggunaan bahan kimia dalam proses pengilangan gas alam yang bersifat asam tersebut terhadap kualitas lingkungan.
Diharapkan dari penelitian ini didapatkan hasil: (1) dengan berkurangnya pemakaian bahan kimia dalam proses pengilangan gas alam yang bersifat asam akan dapat mengurangi terjadinya limbah yang dihasilkan dari pabrik pemerosesan gas alam tersebut terhadap lingkungan sekitar, (2) dengan semakin berkurangnya bahan kimia yang digunakan, dari segi ekonomi akan mengurangi biaya produksi dan pengelolaan lingkungan.
Hipotesis kerja yang diajukan adalah (1) Penggunaan bahan kimia dalam pemerosesan gas alam yang bersifat asam dapat meningkatkan konsentrasi logam dalam produk gas alam maupun limbahnya, dan (2) Keberadaan Pabrik Pengilangan Gas Alam yang bersifat asam dapat mempengaruhi lingkungan perairan dan udara sekitarnya.
Penelitian dilakukan dengan metode Kuasi Eksperimental dan dilaksanakan dari bulan Juni 2001 sampai dengan Agustus 2002, dimana data yang digunakan adalah data primer dan sekunder dalam bentuk time series. Sebagai variabel bebas dalam penelitian ini adalah kualitas gas alam dari sumur gas, dan sebagai variabel tidak bebas adalah kualitas cairan terproduksi (produced liquid) yang diambil di pipa outlet dan kolam penampung limbah (Evaporation pond). Sebagai kontrol juga dilakukan pengambilan sampel air tanah/permukaan, tanah dan udara ambient dan lokasi sekitar. Data primer yang diperoleh dari pengukuran secara langsung di lapangan dan di laboratorium, serta data salt-under yang diperoleh dari penelitian sebelumnya, studi pustaka dan sebagainya, kemudian dianalisis secara deskriptif.
Berdasarkan hasil penelitian penulis berkesimpulan bahwa: (1) Penggunaan bahan kimia dalam proses pengilangan gas alam yang bersifat asam akan berpengaruh terhadap konsentrasi logam (ppm) yang terdapat dalam bahan kimia bekas (Cr, Cu), dan air buangan (As, Cr), serta menghasilkan limbah padat (sludge) yang bersifat reaktif dan korosif, (2) Bahan kimia meningkatkan konsentrasi logam (ug/m3) dalam gas alam tersebut (Ba, Zn, Cad Cu, Cr, Se); (3) Terjadinya limbah B3 dari padatan yang terperangkap pada Coalescing Filter yang dipasang di Patila Metering Station sebelum gas alam tersebut digunakan untuk bahan bakar turbin; (4) Terdapat kandungan logam berat yang cukup tinggi dalam air limbah di Iuar parameter yang tercantum dalam Kep.MNLH No.Kep-42/MNLH/10/96 maupun SK.Gub.Sulsel No.465/1995; (5) Kemungkinan terjadinya pencemaran tanah dan air tanah disekitar lokasi penelitian dengan melihat adanya kandungan hidrokarbon pada contoh tanah dan pemeriksaan kualitas air tanah yang memperlihatkan beberapa parameter sudah melebihi baku mutu yang ditetapkan Peraturan Menteri No. 416/Menkes/Per.IX/1990; (6) Terjadinya pencemaran udara di sekitar lokasi, yaitu dengan melihat hasil pengukuran terhadap kandungan debu/partikulat sudah melampaui batas baku mutu menurut PP No. 41/1999, dan diperkirakan konsentrasi SO2 dari emisi gas maksimum adalah 2794,9 ug/m3, melampaui baku mutu menurut PP No. 41/1999 yang besarnya 900 ug/m3; (7) Terjadi pencemaran bau yaitu dengan mendengar pengaduan masyarakat sekitar mengenai adanya bau telur busuk; (8) Terjadinya peningkatan penyakit ISPA dan terdapatnya penyakit anemia dan penyakit kulit alergi pada masyarakat disekitar Pusat Pengilangan Gas Alam sejak beroperasinya pabrik tersebut.
Berdasarkan hasil penelitian dan kesimpulan diatas penulis menyarankan untuk: (1) mencari alternatif lain mengenai bahan kimia yang ramah lingkungan; (2) memperbaiki atau mengubah desain dari sistem pengolah limbah cair terproduksi dan desain sistem pengolah limbah cair domestik yang ada sekarang; (3) mengadakan kajian lebih lanjut mengenai Kep.MNLH No. Kep-42/MNLH/14/96 jo Kep-09/MNLH/4/97 mengenai Baku Mutu Limbah Cair bagi Kegiatan Minyak dan Gas Bumi serta Panas Bumi; (4) perlu dilakukan pemantauan dan pengelolaan atas debu (partikulat) dan emisi SO2 yang keluar dari flare stack, agar terjadinya pencemaran udara dari kegiatan pengilangan gas alam yang bersifat asam dapat diminimalisasikan; (5) melakukan pengelolaan lebih lanjut untuk filter bekas; dan (6) melakukan penelitian lebih lanjut mengenai pengaruh kegiatan Pengilangan Gas Alam terhadap kesehatan masyarakat yang tinggal di sekitarnya.

The Effect of Natural Gas Processing Refinery Activity on the Environment (Case study at Kampung Baru Central Processing Plant, Sengkang Block Gas Field, Wajo Regency, South Sulawesi)In the exploration and production of natural gas activities performed by Energy Equity Epic (Sengkang) Pty. Ltd, the Production Sharing Contractors of Badan Pelaksana MIGAS, abbreviated as Energy Equity Epic Sengkang (FEES), at Kampung Baru Gasfield, Poleonro Village, Gilireng District, Wajo Regency, the South Sulawesi Province, the natural gas produced by gas wells generally contain relatively high content of Hydrogen Sulfide (H2S), which is between 50-600 PPM.
The higher content of Sulfur in gasoline makes lower quality gas fuels. Beside, the Sulfur compound can bring damage to the living creatures as it produces poisonous gas such as Hydrogen Sulfide (H2S) and Sulfur Dioxide (SO2). Also the Hydrogen Sulfide is corrosive to metal surface. It can make serious problems to piping and other production equipment. Therefore, as the user of gas, Sengkang Gas Power Plant requires maximum 10 PPM of H2S in gas. One of the efforts conducted by EEES in reducing or filtering the Sulfur compound contained in gas is by giving chemical substance in sweetening process.
The chemical itself produce liquid and solid waste (from the packaging). The Sulfur compound contained in H2S and the one produced as the result of incineration (SO2) also produces waste harmful to the surrounding environment.
The Kampung Baru Central Processing Plant is located at Gilirang District, Regency of Wajo, South Sulawesi. The area is 147 km2, 5,86% of the total area of Wajo Regency, or 0.15% from 100,500 km2, the total area of South Sulawesi. The area is partly limestone and mostly is one time planted rice field, and the river is frequently dry.
The Liquid waste produced from production process is put into a pond and evaporated with sun energy, while domestic waste is channeled directly to the river. Gas liquid is incinerated through flare stack with high level of 30 in.
The production capacity of Kampung Baru Central Processing Plant is going up from 27.5 to 53 mmcf per day, following the increase of demand for gas supply for power plant.
This research is conducted to find out (1) the effective environmental management for gas processing in gas produced from the Kampung Baru gas field, in particular and (2) to find out the impact of chemical use in processing gas towards environment.
The expected results are (1) the decrease of sulfur level will reduce the use of chemical substance in gas processing which also will reduce the waste produced from the plant, (2) the less chemical substance used, the less cost for production and environmental management.
The proposed work hypothesis are (1) the use of chemicals in gas processing can increase metal concentrate contained in natural gas and the waste produced, and (2) The existence of acidic Gas Processing Plant can give impact to the surrounding waters and air.
The research was conducted with Experimental Kuasi method. It was conducted from June 2001 until September 2002, where the data used was primary and secondary data in a form of time series. The free variable in this research is the gas quality from gas field and the non-free variable is the quality of produced liquid taken from the outlet pipe and the evaporation pond. The sample was also taken from soil and air from the surrounding area. The primary data obtained from direct measuring at the field and in laboratories, and the secondary data obtained from the previous research, book research and etc, and then analyzed descriptively.
Based on the research, the writer conclude that the writer conclude that (1) the use of chemical gas processing will give impact to metal concentrate (ppm) contained in used chemical (Cr, Cu) and wasted water (As, Cr), sludge which is corrosive and reactive, (2) the chemical increase the metal concentrate (ug/m3) contained in gas (Ba, Zn, Cd, Cu, Cr, Se); (3) the solid matter stuck in coalescing filter installed at PMS before the gas is used for turbine fuel produces B3 waste. (4) There is relatively high contain of heavy metal in waste water exceeding the parameter stated in the Decree of Environmental Minister No. Kep-42/MNLH/14/96 and Decision Letter of the Governor of South Sulawesi No.465/1995; (5) the possibility of soil and ground water pollution in the surrounding research area because there is hydrocarbon content in the soil sample and the examination on ground water showed that some parameter had exceeded the quality standard stated in the Ministerial Regulation No.416/Menkes/Per.IX/1990; (6) pollution occurred in the surrounding area as resulted in the metering on particulate content which had exceeded the limit of quality standard according to the Government Regulation No.41/1999, and it is estimated that the SO2 concentrate from gas emission is 2794.9 ug/m3, exceeding the limit of quality standard according to the Government Regulation No.41/1999 which is 900 ug/m3; (7) an air pollution occurred which produces bad odor based on the report from surrounding residents; (8) There is an increase of ISPA disease, anemia and allergic skin problems suffered by community live in the Gas Processing Plant surrounding ever since the plant started its operation.
Based on the research and the conclusion above the writer suggests the following:
(1) to look for other alternative to use chemicals that are environmental friendly;
(2) to change the design of produced liquid and domestic waste processor system available at present; and
(3) to study further regarding Kep.MNLH No.Kep-42/MNLH/14/96 dated 9 October 1996 regarding the Quality Standard of Liquid Waste for Activities in Oil and Gas and Geothermal;
(4) it requires monitoring and management on particulate and gas emission as the result of flare stack, to minimize the air pollution produced from the gas processing plant; and
(5) to do more intensive a research on the impact of activities at Gas Processing Plant toward community health in the surrounding area."
Depok: Program Pascasarjana Universitas Indonesia, 2003
T11165
UI - Tesis Membership  Universitas Indonesia Library
cover
I Gusti Bagus Wijaya Kusuma
"Penggunaan kendaraan bermotor perlu diikuti dengan upaya untuk melestarikan lingkungan hidup, karena gas buang dari hasil proses pembakaran sangat nyata pengaruhnya terhadap pencemaran udara dan lingkungan. Satu metoda untuk menyelesaikan permasalahan di bidang pencemaran udara telah dilakukan dengan menggunakan suatu alat tambahan, yang dirancang di Program Studi Teknik Mesin Universitas Udayana. Berdasarkan pada data pengujian yang telah dilakukan terhadap alat tambahan tersebut, tampak dengan jelas bahwa alat tambahan yang telah dirancang mampu mengurangi emisi gas CO secara signifikan, hingga batas paling minimum, serta secara rata ? rata mampu dikurangi hingga di atas 54 %. Selain mampu mengurangi emisi gas buang CO2 dan HC, juga mampu meningkatkan kandungan O2. Alat tambahan tersebut tidak berpengaruh terhadap unjuk kerja kendaraan saat beroperasi. Satu keuntungan lainnya adalah alat tambahan juga mampu mengurangi tingkat kebisingan yang ditimbulkan oleh motor.

Emission gas reducer on motor vehicle, automobile, light engine of boat and stationary combustion engine. The use of motor vehicle should be followed by protection against damages on the environment, since the exhaust gas from combustion engine has significantly affect on air and environmental pollution. One method to solve the problems in air pollution has been done by using a re-heater designed in Mechanical Engineering Department, University of Udayana. In accordance to the test on the re-heater, it can be seen very clear that the re-heater has significantly reduce the CO emission of about 54%. It also reduces the CO2 dan HC emission, and in the other side increases the number of O2. The re-heater has no significant effect to engine performance during the operation and also reduces the noise of motor."
Depok: Lembaga Penelitian Universitas Indonesia, 2002
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Achmad Djohan Asmawi
"Menipisnya cadangan minyak bumi, akan menjadikan bahan bakar minyak konvensional seperti Premix, Premium dan Solar semakin mahal harganya, dan subsidi terhadap minyak solar yang dilakukan Pemerintah selama ini suatu saat akan tidak dapat dilanjutkan. Melihat fenomena ini, menjadikan Pemerintah mengambil langkah kebijaksanaan bidang energi antara lain. kebijaksanaan konservasi dan diversifikasi energi guna mengurangi peranan bahan bakar minyak (BBM) dan meningkatkan peranan energi lain. Ini dimaksudkan untuk mengurangi tingkat ketergantungan terhadap pemakaian BBM dan menggantikan dengan jenis energi lain guna memenuhi kebutuhan energi, khususnya untuk transportasi.
Pembangunan yang semakin meningkat menjadikan tingkat pertumbuhan ekonomi semakin tinggi. Salah satu dampak yang terjadi adalah merangsang produksi dan jumlah kendaraan bermotor. Kehadiran kendaraan bermotor dalarn masyarakat sangatlah panting, akan tetapi telah terjadi pula permasalahan lalulintas seperti kemacetan, kecelakaan dan pencemaran udara. Hasil penelitian dari pola penggunaan BBM menunjukkan bahwa kontribusi pencemaran udara yang berasal dari sektor transportasi mencapai 60%, selebihnya sektor industri 25%, rumahtangga 10% dan sampah 5%.
Untuk menghindari atau mengurangi polusi udara akibat emisi gas buang dari sektor transportasi, maka perlu dilakukan perlindungan melalui upaya pengendalian terbadap sumberiemisi gas buang kendaraan bermotor, sehingga pembebanan udara ambien tetap berada di bawah ambang batas yang diperbolehkan.
Alternatif bahan bakar pengganti yang paling memungkinkan saat ini adalah bahan bakar gas (BBG), karena selain cadangannya dalam jumlah besar juga menurut hasil penelitian yang dilakukan oleh LEMIGAS (1992) pada kendaraan yang berbahan bakar bensin, BBG lebih efisien dan lebih bersahabat dengan lingkungan. Untuk kendaraan berbahan bakar minyak solar (BBMS), penggantian ke BBG secara langsung masa sulit dilaksanakan karena sistem pembakaran yang berbeda dibanding kendaraan berbahan bakar bensin. Akan tetapi dengan teknologi yang ada, maka Cara dengan pemakaian alat Conversion Kit dapat dilakukan, di mana BBMS yang dipakai dapat disubstitusi dengan bahan bakar minyak solar-gas (BBMSG).
Bila kendaraan bermotor yang berbahan bakar bensin dapat menggunakan bahan bakar gas yang terbukti lebih efisien dan lebih ramah dengan lingkungan, maka penelitian ini melihat emisi gas buang yang ditimbulkan oleh kendaraan bermotor Isuzu Panther BBMS, yang disubstitusi dengan BBMSG. Emisi gas buang yang diteliti dibatasi pada parameter karbon monoksida (CO), nitrogen oksida (NOx) dan hidrokarbon (HC).
Tujuan penelitian secara umum adalah untuk dapat mengantisipasi pemakaian bahan bakar alternatif dalam rangka menunjang kebijaksanaan diversifikasi dan konservasi energi, dan memperkenalkan kepada masyarakat bahwa kendaraan berbahan bakar solar dapat pula menggunakan bahan bakar gas dengan cara substitusi.
Secara khusus penelitian ini melakukan uji coba untuk mengetahui :
a. Seberapa besar emisi gas buang CO, NOx dan HC yang ditimbulkan bila menggunakan BBMS.
b. Seberapa besar perbedaan emisi gas buang untuk masing-masing parameter tersebut di atas bila dilakukan substitusi dengan BBMSG.
c. Apakah ada perbedaan emisi gas buang yang ditimbulkan antara kendaraan tersebut di tune-up (0 km) dan tidak di tune-up (setelah kendaraan menempuh jarak 5000 km), ditinjau dari bahan bakar yang digunakan.
Penelitian ini merupakan penelitian eksperimental dengan menggunakan mobil Isuzu Panther berbahan bakar solar yang dikondisikan. Maksud dikondisikan, kendaraan terlebih dahulu di tune-up (0 km) kemudian dipasang alat Conversion Kit. Penelitian dilakukan pada kendaraan dalam keadaan static atau posisi gigi transmisi bebas dan kendaraan pada posisi transmisi masuk pada kecepatan dan rpm sebagai berikut:
1.
Gigi transmisi 0 (stalls), kecepatan 0 km/jam, rpm 1500.
2. Gigi transmisi 1, kecepatan 20 km/jam, rpm 2000.
3. Gigi transmisi 2, kecepatan 40 km/jam, rpm 2500.
4. Gigi transmisi 3, kecepatan 60 km/jam, rpm 3000.
5. Gigi transmisi 4, kecepatan 80 km/jam, rpm 3500.
6. Gigi transmisi 5, kecepatan 100 km/jam, rpm 4000.
Sampel diambil sebanyak tiga kali pada tiap-tiap parameter yang diuji. Selanjutnya diulang kembali sebelum di tune-up (setelah kendaraan menempuh jarak 5000 km.) Data seluruh pengamatan pada setiap kali perulangan, baik kendaraan di tune-up atau tidak, sebanyak 216 kasus (sampel). Analisis data dilakukan dengan menggunakan pendekatan statistik deskriptif dan inferensial. Statistik deskriptif digunakan untuk menggambarkan secara umum karateristik hasil pengamatan, sedangkan statistik inferensial digunakan untuk menguji hipotesis yang diajukan yang mana dalam hal ini digunakan analisis sidik ragam (ASRA) dengan menggunakan fasilitas komputer program Microstat versi 4.1 dari Ecosoft Inc.
Hasil penelitian yang dilakukan menunjukkan bahwa:
1. Ada perbedaan yang nyata untuk emisi gas buang NOx, bila memperhitungkan bahan bakar yang digunakan. Penggunaan BBMSG menimbulkan emisi NOx lebih rendah dibandingkan dengan penggunaan BBMS.
2. Tidak ada perbedaan yang nyata untuk emisi gas buang CO, bila kendaraan menggunakan BBMS ataupun BBMSG.
3. Ada perbedaan yang nyata untuk emisi gas buang HC, bila memperhitungkan bahan bakar yang digunakan. Penggunaan BBMSG menimbulkan emisi gas buang HC yang lebih tinggi, dibandingkan dengan penggunaan BBMS.
4. Ada perbedaan yang nyata emisi gas buang CO, NOx, dan HC bila memperhatikan kecepatan. Semakin cepat kendaraan melaju memperlihatkan semakin tinggi emisi gas buang yang dihasilkan.
a. Untuk parameter CO, dengan kecepatan kendaraan 100 km/jam adalah:
- 9,7 kali lipat dibandingkan kecepatan 20 km/jam;
- 6,4 kali lipat dari 40 km/jam;
- 2,5 kali lipat dari 60 km/jam;
- 1,5 kali lipat dari 80 km/jam.
b. Dengan kecepatan 100 km/jam diketahui emisi NOx yang dihasilkan adalah:
- 1,5 kali lipat dari kecepatan 20 km/jam;
- 1,2 kali lipat dari 40 km/jam;
- 1,1 kali lipat dari 60 km/jam;
- 1,1 kali lipat dari kecepatan 80 km/jam.
c. Emisi gas buang HC pada kecepatan 100 km/jam adalah:
- 2,4 kali lipat dari kecepatan 20 km/jam;
- 2 kali lipat dari 40 km/jam;
- 1,3 kali lipat dari 60 km/jam;
- 1,1 kali lipat dari 80 km/jam.
Kendaraan tersebut berlaku dalam keadaan tune-up (0 km) dan tidak tune-up (5000 km), baik menggunakan BBMS ataupun BBMSG dengan ukuran kelipatan yang tidak jauh berbeda.
5. Emisi gas buang CO yang dihasilkan tidak beda nyata antara kendaraan di tune-up (0 km) maupun tidak di tune-up (5000 km). Walaupun demikian CO lebih tinggi 1,4 kali lipat bila menggunakan BBMSG dibanding BBMS.
6. Untuk parameter NGx, emisi yang dihasilkan menunjukkan adanya perbedaan nyata antara kendaraan di tune-up dan tidak tune-up. Ternyata penggunaan BBMSG lebih baik dari penggunaan BBMS. Emisi karena penggunaan BBMS adalah 1,3 kali lipat lebih tinggi dibanding pada penggunaan BBMSG.
7. Untuk parameter HC, emisi gas buang yang dihasilkan, tidak ada perbedaan nyata baik kondisi tune-up maupun tidak tune-up. Namun bila dianalisis menurut bahan bakar yang digunakan, emisi HC pada penggunaan BBMSG cenderung lebih tinggi 1,1 kali lipat dibanding pada penggunaan BBMS.
8. Efisiensi ekonomi penggunaan BBMSG menunjukkan penghematan 58% lebih murah dari BBMS.
9. Dari percobaan dengan menggunakan BBMSG melalui penambahan alat Conversion Kit, yang mana campuran BBM yang digunakan adalah 40% BBMS dan 60% BBG, keadaan emisi gas buang untuk parameter utama sudah dapat diketahui. Untuk itu penelitian yang serupa oleh pihak lain terhadap beberapa parameter yang belum diteliti, konsumsi bahan bakar, akselerasi dan lain sebagainya dipandang perlu untuk dilakukan, sehingga temuan-temuannya dapat melengkapi hasil penelitian.

Decreasing the fossil fuel reserve will make combustible material lice Premix, Premium and Diesel fuel more expensive. Government subsidy for Diesel fuel will one day be discontinued. This phenomenon made the government take steps in the field of energy policy, namely conservation policy and energy diversification in order energy sources. Such is mean to reduce the level of dependency towards fossil fuel and replace it with other kinds of energy in fulfilling the need, particularly for transportation purposes.
The ever increasing level of development resulted in an even higher economic growth. One of the impact that is occurring includes the stimulation in the number of motorized vehicle production. Its presence in the community is very important indeed, but another issue arises, namely traffic problems like accidents, traffic jams, air pollution, etc. Research results of the pattern of using fossil fuel showed that the contribution of air pollution originating from transportation reached 60%, the remaining sectors include industry 25%, domestic 10% and solid waste 5%.
To evade or reduce air pollution as a result of exhaust gas emission from the transportation sector, the protection should be carried out through the endeavors of control towards the source or motorized vehicle exhaust gas emission. Such would keep the ambient air below the allowable threshold.
The most possible replacement fuel as alternative, at present, is gas fuel (BBG). Besides its huge amount of reserves, the study result of Lemigas (1992) on vehicles with gasoline, BBG is more efficient and friendly with the environment. Vehicles with Diesel fuel could not be changed directly with BBG. The change is still difficult to implement because they differ in the combustion system compared to those with gasoline. Otherwise, with the availability of technology, by using the convention kit tool, it can be carried out whereby the Diesel fuel material used can be substituted with BBG.
When a gasoline motorized vehicle can use BBG that turned out to be more efficient and more friendly with the environment, thence, this study focused on exhaust gas emission caused by Isuzu Panther motorized vehicle with Diesel fuel combustion material that is substituted by BBG. The studied gas emission was limited to the parameters CO, NOx and HC.
The objective of this study is to anticipate the use of alternate fuel within the framework of supporting the diversification and energy conservation policy as well as introducing to the community that vehicles with Diesel fuel material can also use BBG by substitution. In particular, this study is to carry out a trial to know:
a. How big the exhaust gas emissions of CO, NOx and HC are when using the Diesel fuel material (BBMS).
b. How big the difference in exhaust gas emission for the respective parameters when it was carried out by BBMSG substitution.
c. If there is difference in exhaust gas emission when the vehicle is tuned-up (0 km) and not tuned-up (after completing a distance of 5000 km), both from the fuel used as well as the velocity of the vehicle point of view.
This study is an experimental study by using Panther Isuzu motorcar with conditioned Diesel fuel. Its mean that the car is first of all tuned-up (0 km) then a conversion kit is installed. The study is carried out when the motorcar is stationary or the transmission position is free and when the transmission position is in and the car is running at a velocity and rpm were as follows:
1. Transmission at 0 (static), velocity 0 km per hr, rpm 1500
2. Transmission at 1, velocity 20 km per hr, rpm 2000
3. Transmission at 2, velocity 40 km per hr, rpm 2500
4. Transmission at 3, velocity 60 km per hr, rpm 3000
5. Transmission at 4, velocity 80 km per hr, rpm 3500
6. Transmission at 5, velocity 100 km per hr, rpm 4000
For each parameter tested, the sample taken was three times. Then, it is repeated prior to be tuned-up (after the vehicle covered a distance of 5000 km). The entire observance data at every single repetition, both, whether the vehicle was tuned-up or not, the total number was 216 cases or samples. Data analysis was undertaken by using the descriptive statistical approach as well as inferential. The first was used to illustrate, in general, the characteristics of observance results, whereas, inferential statistic was used to test the proposed hypothesis that was presented and in this case was used for variance analysis (ANOVA) by using the facilities of Microstate version 4.1 computer program from Ecosoft Inc.
The result of the study disclosed that:
1. The gas emission of NOx from diesel fuel-gas vehicle tends to be lower than that from diesel fuel vehicle.
2. The gas emission of CO from diesel fuel-gas vehicle tends to be the some as that from diesel fuel vehicle.
3. The gas emission of HC from diesel fuel-gas vehicle tends to be higher as that from diesel fuel vehicle.
4. There is significant difference of exhaust gas emission by Panther Isuzu vehicle when attention is paid on the velocity of the vehicle.
a. For the CO parameter with a velocity of 100 km per hour:
. 9.7 times compared with a velocity of 20 km per hour
. 6.4 times with a velocity of 40 km per hour
. 2.5 times with a velocity of 60 km per hour
. 1.5 times with a velocity of 80 km/hour
b. With a velocity of 100 km per hour NOx emission is known to be:
. 1.5 times the a velocity of 20 km per hour
. 1.2 times the a velocity of 40 km per hour
. 1.1 times the a velocity of 60 km per hour
. 1.1 times the a velocity of 80 km per hour
c. HC exhaust emission at a velocity of 100 km per hour is:
· 2.4 times the a velocity of 20 km per hour
· 2 times the a velocity of 40 km per hour
· 1.3 times the a velocity of 60 km per hour
· 1.1 times the a velocity of 80 km per hour
The vehicle in question holds in a tune-up (0 km) condition and not tune-up (500 km) both using BBMS or BBMSG with a multiplication measurement that do not differ much.
5. CO exhaust gas emission produced do not differ significantly between vehicle's tuned-up (0 km) as well as tuned-up (5000 km). Even then, CO is 1.4 times higher when using BBMSG compared to BBMS.
6. For NOx parameter, the emission produced showed significant difference between vehicle's tuned-up and not tuned-up. It turned out that BBMSG use is better than BBMS. The emission due to BBMS use is 1.3 times that of BBMSG.
7. There is no significant difference both tuned-up as well as not tuned-up for HC exhaust gas emission. However, if the analyzed according its fuel used, then HC emission tends to be higher by using BBMS compared to BBMSG, namely 1.1 times.
"
Jakarta: Program Pascasarjana Universitas Indonesia, 1996
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Yusuf Mulyana
"Kenaikan emisi gas rumah kaca akibat dari meningkatnya migrasi penduduk yang dipicu oleh pertumbuhan ekonomi di DKI Jakarta membawa efek domino terhadap pembangunan kota di masa depan. Untuk itu, dibutuhkan upaya untuk mengurangi konsumsi energi dan emisi sebagai kunci dalam pembangunan kota yang berkelanjutan. Sebagai respon dari fenomena ini, Pemerintah DKI Jakarta telah merancang sebuah dokumen rencana aksi daerah yang berisi strategi-strategi untuk mengurangi emisi gas rumah kaca. Penelitian ini bertujuan untuk mendapatkan sebuah model pembangunan kota yang digunakan untuk mengevaluasi beberapa strategi penurunan emisi gas rumah kaca terhadap sektor transportasi, rumah tangga dan industri sebagai tiga sektor penyumbang emisi terbesar di perkotaan. Sistem dinamis digunakan sebagai basis teori untuk mendapatkan gambaran dampak dari berbagai pilihan strategi penurunan emisi gas rumah kaca. Hasil dari permodelan menunjukkan bahwa dari tiga skenario yang diuji, skenario berpindah ke kendaraan umum memberikan dampak yang cukup signifikan terhadap penurunan emisi gas rumah kaca.
The increase in greenhouse gas emissions as a result of the increased migration of the population triggered by economic growth in Jakarta brings domino effect against the urban development in the future. For that, it takes a concerted effort to reduce energy consumption and emissions as a key in the sustainable urban development. In response to this phenomenon, the Government of Jakarta has designed regional action plan document which contains strategies for reducing greenhouse gas emissions. This research aims to obtain a model of urban development used to evaluate multiple strategies of greenhouse gas emissions reductions against sectors of transport, households and industries as the three biggest emitters in urban areas. System dynamics theory is used to get an overview of the impact of various policy options in decreasing greenhouse gas emissions. The results of the modelling show that the three scenarios tested, the scenario switches to public transport provide significant impact against a decrease in greenhouse gas emissions."
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59573
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanna
"ABSTRAK
Proses gas sweetening dilakukan terhadap gas alam sebagai solusi untuk menghilangkan gas H2S dan CO2, salah satu caranya adalah dengan penambahan metildietanolamina (MDEA). MDEA selama digunakan dalam proses pemurnian gas dapat menyerap air sehingga menyebabkan konsentrasi MDEA menurun. Untuk meregenerasi larutan MDEA encer menjadi larutan yang pekat kembali, digunakan metode reverse osmosis (RO). Pada penelitian ini telah berhasil dilakukan proses penghilangan air dari larutan MDEA encer menggunakan sistem RO dengan satu membran poliamida komersil, menggunakan flow restrictor 800 mL/menit. Variasi temperatur feed dilakukan pada suhu 200, 290, dan 360 C. Larutan MDEA 1%, 3%, dan 5% v/v diregenerasi dalam waktu masing-masing 1 jam, 3 jam, dan 4 jam. Berdasarkan pengukuran konsentrasi MDEA dengan refraktometer, didapati bahwa penggunaan flow restrictor 800 mL/menit dalam sistem RO mampu memekatkan larutan MDEA 1% v/v menjadi 1,8% v/v dengan faktor pemekatan 1,59. Suhu yang efektif digunakan untuk sistem RO yang telah dilakukan adalah 290C atau suhu ruang, karena dapat memekatkan larutan MDEA 1,13% v/v menjadi 1,8% v/v. Kemudian, semakin lama waktu regenerasi maka semakin besar konsentrasi MDEA dalam konsentrat yang dihasilkan. MDEA 1% v/v dalam waktu 1 jam dapat dipekatkan hingga 6,46% v/v. MDEA 3% v/v dalam waktu 3 jam dapat dipekatkan hingga 9,45% v/v dan MDEA 5% v/v dalam waktu 4 jam dapat dipekatkan hingga 10,79% v/v. Dengan SEM dapat diketahui kerusakan struktur poliamida yang dialami membran.

ABSTRAK
Gas sweetening processes is applied to the natural gas as a solution of removing H2S and CO2 gasses, one of them is by adding methyldiethanolamine (MDEA). MDEA during used in the gas sweetening process can absorb water, and the MDEA concentration will be decreased. For regenerating MDEA dilute solution into its former concentration, reverse osmosis (RO) method is used. In this research, water removal process was conducted by RO process using polyamide commercial membrane, under 800mL/min flow restrictor. The feed temperatures were varied 200, 290, dan 360 C. MDEA 1%, 3%, and 5% v/v solution was regenerated in 1 hour, 3 hours, and 4 hours, respectively. Based on determination of MDEA concentration using refractometer, discovered that under 800 mL/min flow restrictor RO system can concentrate MDEA 1% v/v solution into 1,8% v/v with concentrate factor of 1,59. Effective temperature that used in this RO system is 290C or room temperature, because it can concentrate MDEA 1,13% v/v solution into 1,8% v/v. Then, increasing of regeneration time can increase the concentration of MDEA solution in the product of concentrate. MDEA 1% v/v solution in 1 hour can be concentrated up to 6,46% v/v. MDEA 3% v/v solution in 3 hours can be concentrated up to 9,45% v/v and MDEA 5% v/v solution in 4 hours can be concentrated up to 10,79% v/v. The damage of polyamide membrane structure is known by SEM analysis."
2016
S63694
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hajime Arimoto
"In this research, a layered-recurrent artificial neural network (ANN) using the back-propagation method was developed for simulation of a fixed-bed industrial catalytic reforming unit called Platformer. Ninety-seven data points were gathered from the industrial catalytic naphtha reforming plant during the complete life cycle of the catalytic bed (about 919 days). Ultimately, 80% of them were selected as past horizontal data sets, and the others were selected as future horizontal ones. After training, testing, and validating the model with past horizontal data, the developed network was applied to predict the volume flow rate and research octane number (RON) of the future horizontal data versus days on stream. Results show that the developed ANN was capable of predicting the volume flow rate and RON of the gasoline for the future horizontal data sets with AAD% (average absolute deviation) of 0.238% and 0.813%, respectively. Moreover, the AAD% of the predicted octane barrel levels against the actual values was 1.447%, which shows the excellent capability of the model to simulate the behavior of the target catalytic reforming plant."
Depok: Faculty of Engineering, Universitas Indonesia, 2011
UI-IJTECH 2:1 (2011)
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>