Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 84012 dokumen yang sesuai dengan query
cover
Istia Prianti Hidayati
"Microbial Elctrolysis Cell adalah suatu sistem biokimia yang memproduksi gas Hidrogen dari bahan organik yang terkandung dalam air limbah. Produksi hidrogen dapat berkurang karena proton CO2 dan hidrogen membentuk metana dan air yang disebabkan oleh bakteri metanogenik. Katalis AC-Fe/SS dipilih karena karbon aktif memiliki luas permukaan yang tinggi serta aktivitas dan stabilitas Fe yang baik. Metode adsorpsi dan fase inversi digunakan untuk menggabungkan AC-Fe pada SS. Penelitian dilakukan dalam reaktor 100mL MEC selama 258 jam. Hidrogen dianalisis dengan GC-TCD. Pengukuran tegangan dilakukan dengan multimeter dan pertumbuhan bakteri dianalisis dengan spektrofotometer. Fraksi gas hidrogen terbesar adalah 60% dengan AC-Fe/SS dan 0,08% tanpa menggunakan katalis. Nilai densitas optik untuk pertumbuhan mikroorganisme tertinggi adalah 0,611 dengan katalis AC-Fe/SS dan 0,427 tanpa menggunakan katalis. Densitas arus tertinggi adalah 99,11 mA / m2 dengan katalis AC-Fe/SS dan 59,52 mA / m2 tanpa menggunakan katalis. Pemodelan Dudley dilakukan menggunakan Matlab dan menunjukkan bahwa Umaxe adalah 1 /hari dan Qmaxe adalah 4,6 mg-S / mg-Xe / hari memiliki efek pada total mikroorganisme yang mendekati percobaan.

Microbial Elctrolysis Cell is a biochemical system for producing Hydrogen gas from organic substances contained in wastewater. Hydrogen production can be reduced because CO2 and hydrogen protons form methane and water caused by methanogenic bacteria. The AC-Fe / SS catalyst was chosen because activated carbon had a high surface area and Fe had good activity and stability. The adsorption and phase inversion method were used to combine AC-Fe on SS. The research was carried out in a 100mL MEC reactor for 258 hours. Hydrogen was analyzed by GC-TCD. Voltage measurements was carried out with a multimeter and bacterial growth was analyzed with a spectrophotometer. The largest hydrogen gas fraction was 60% with AC-Fe / SS and 0.08% without using a catalyst. The highest optical density value for microorganism growth was 0.611 with AC-Fe / SS catalyst and 0.427 without using a catalyst. The highest current density was 99.11 mA / m2 with an AC-Fe / SS catalyst and 59.52 mA / m2 without using a catalyst. The Dudley modeling was done using Matlab and showed that Umaxe was 1 day-1 and Qmaxe was 4.6 mg-S / mg-Xe / day had an effect on the total microorganisms approaching the experiment."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Bagas Muhamad Kartiko
"Proyeksi penurunan suplai air bersih perkapita terjadi akibat keterbatasan sumber dan kenaikan populasi manusia. Pemanfaatan air laut yang berlimpah dengan teknologi desalinasi yang ada saat ini masih membutuhkan energi yang besar.
Penelitian ini akan memaparkan hasil pengujian teknologi desalinasi baru yang hemat energi. Microbial Fuel Cell (MFC), yang bekerja dengan reaksi redoks dan merubah kesetimbangan ion, direkayasa dalam penelitian ini untuk desalinasi. MFC direkayasa menjadi 3 chamber (anoda-garam-katoda) yang dibatasi AEM (Anion Exchange Membrane) dan CEM (Cation Exchange Membrane), yang dinamakan MDC (Microbial Desalination Cell). Variasi jumlah elektroda, rasio kultur dan substrat di chamber anoda serta pengujian kenaikan volume kultur dan substrat di chamber anoda diamati pengaruhnya terhadap performa desalinasi dan jumlah energi listrik yang dihasilkan.
Hasil penelitian ini menunjukkan bahwa dengan menggunakan 3 pasang elektroda, rasio kultur dan substrat 2:3 dan penaikan volume kultur dan substrat 1,5 kali menghasilkan performa desalinasi terbaik dengan laju desalinasi 0,377 mmol/jam, salt removal 34,52%, dan power density rata-rata 2,26.10-2 W/m3.

Declining projection of clean water supply percapita is caused by restrictiveness of water sources and rise of human population. Sea water utilization using current desalination technology still require huge amount of energy.
This research provides new energy-saving desalination technology. Microbial fuel cell which work by redox reaction resulted in imbalance ion concentration among chambers is engineered for desalination application without external energy using 3 chambers (anoda-salt-cathode), named MDC (Microbial Desalination Cell). Number of electrodes, ratio of culture:substrate, volume progression of culture and substrate are evaluated in terms of desalination and electrical energy generating performance.
This research show that MDC using 3 pairs of electrodes, culture and substrate's ratio of 2:3, and culture and progression 1.5 times of culture and substrate’s volume, give best desalination performance by desalination rate 0.377 mmol/h, salt removal 34.52%, and average power density 2.26.10-2 W/m3.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S52565
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gina Annisa
"Pengembangan bio-oil sebagai teknologi bio-base product sangat menjanjikan baik untuk energi maupun sebagai chemicals. Sayangnya bio-oil ini tidak bisa langsung diproses menjadi produk siap pakai seperti bahan bakar atau produk kimia karena sifatnya yang sangat jauh dari sifat-sifat bahan bakar atau produk kimia pada umumnya. Tujuan dari penelitian ini adalah menghasilkan senyawa representatif dari senyawa yang digunakan sebagai bahan bakar dan chemicals (alkana dan alkohol) dari bio-oil melalui upgrading treatment, yaitu proses hidrodeoksigenasi (HDO) dengan katalis CoMo/C.
Penelitian ini menggunakan bio-oil dari pirolisis biomassa tandan kosong kelapa sawit serta katalis CoMo/C dengan autoclave sebagai reaktor dimana jenis reaksi yang digunakan adalah mild HDO dengan suhu operasi berkisar 100-300°C dan tekanan operasi berkisar 10 bar dan waktu reaksi yang sama untuk tiap suhu.
Analisis produk yang ter-upgrade menggunakan GC-MS memperlihatkan bahwa produk senyawa alkana rantai panjang tidak terbentuk tetapi alkohol dalam bentuk fenol terbentuk mencapai 21.68%. Bertambahnya suhu operasi reaksi HDO menunjukkan yield fenol yang semakin banyak.

Development of bio-oil as bio-technology product base is very promising both for energy and the chemicals. Unfortunately, bio-oil can not be directly processed into ready-made products such as fuels or chemical products because its properties is very different from of fuels or chemical products, in general. The purpose of this research is to produce a representative compound of the component as fuel and chemicals (alkanes and alcohols) such hexane and phenol from bio-oil upgrading through treatment, the process hydrodeoxygenation (HDO) withCoMo/Ccatalyst.
This study uses a bio-oil from biomass pyrolysis oil palm empty fruit bunches and the catalyst CoMo/C with the autoclave as a reactor in which the type of reaction used is mild HDO with an operating temperature range 100-300°C with the pressure 10 bar and reaction time is same for all the temperature.
Analysis of the products that were upgraded using GC-MS showed that the products of long chain alkane compounds are not formed but alcohol in the form of phenol is formed reaches 21.68%. Increasing the operating temperature of the HDO reaction shows the increasing of yield of phenol.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43805
UI - Skripsi Open  Universitas Indonesia Library
cover
Pijar Religiaz
"Pada penelitian ini dilakukan osmotic stress untuk merusak dinding sel mikroalga Nannochloropsis sp. Tujuan penelitian ini adalah mendesain perlakuan osmotic stress yang paling efektif dalam mengeluarkan yield lipid sebagai bahan baku sintesis biodiesel. Osmotic stress dilakukan dengan merendam mikroalga dalam larutan agen osmotik berkonsentrasi tinggi.
Perlakuan yang divariasikan mencakup kandungan berat kering sel, waktu rendam, jenis agen osmotik, serta konsentrasi agen osmotik. Kandungan berat kering sel akan mempengaruhi banyaknya sel yang mampu dirusak oleh osmotic stress yang sama. Waktu rendam akan mempengaruhi waktu kontak sel dengan larutan agen osmotik sehingga memberi pengaruh berbeda untuk agen osmotik yang berbeda. Agen osmotik yang digunakan pada penelitian ini adalah glukosa, sorbitol, dan NaCl. Selain itu, konsentrasi agen osmotik turut mempengaruhi tekanan osmotik yang ada sehingga memberikan osmotic stress yang berbeda.
Hasil penelitian ini menunjukkan bahwa kandungan berat kering sel yang paling optimal untuk diberi osmotic stress dan dilanjutkan dengan ekstraksi Bligh dan Dyer adalah 0,3326 g/L. Sementara itu, waktu rendam yang paling efisien dalam mengeluarkan lipid untuk tiap agen osmotik adalah tiga jam. Sedangkan konsentrasi larutan agen osmotik yang paling optimal mengeluarkan lipid untuk tiap agen osmotik adalah 1,5 g/L untuk glukosa, 2 g/L untuk sorbitol serta 0,5 g/L untuk NaCl.

In this study, osmotic stress was done to disrupt the cell wall of microalgae Nannochloropsis sp. The purpose of this study is to design the osmotic stress treatment that is most effective in extracting lipid yield as biodiesel synthesis feedstock. Osmotic stress is done by soaking the microalgae in highly concentrated solution of osmotic agent.
The treatment variation includes content of cell dry weight, soak time, type of osmotic agent, as well as the concentration of the osmotic agent. The content of the cell dry weight will affect the number of cells which can be disrupted by the same osmotic stress. Soak time will affect the contact time of cells with osmotic agent solution so as to give different effects to different osmotic agents. Osmotic agents used in this study are glucose, sorbitol, and NaCl. In addition, the concentration of osmotic agents also influence the osmotic pressure thus providing different osmotic stress.
Results of this study showed that the most optimal content of cell dry weight to be given osmotic stress followed by Bligh and Dyer extraction is 0.3326 g/L. Meanwhile, the most efficient soak time in extracting lipid for each osmotic agent is three hours. While the concentration of osmotic agent solution those are optimum in extracting lipid is 1.5 g/L for glucose, 2 g/L for sorbitol and 0.5 g/L for NaCl.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S52787
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sendy Winata
"

Penelitian ini menawarkan pengujian dan evaluasi dari pengaplikasian pengendali nonlinear model predictive control (NMPC) konvensional dan economic NMPC (E-NMPC) pada sistem reaktor biokimia dengan laju pertumbuhan monod dan penghambat substrat. Tujuan utama pengendalian dengan NMPC adalah optimisasi teknis yaitu dengan meminimalisir deviasi dari nilai konsentrasi biomassa dalam reaktor dengan nilai yang diinginkan. Selain itu, tujuan utama pengendalian dengan E-NMPC adalah optimisasi ekonomi dengan mengoptimisasi produksi biomassa yang dihasilkan reaktor. Variabel yang dikendalikan (CV) adalah konsentrasi biomassa dalam reaktor, sedangkan variabel yang dimanipulasi (MV) yang juga menjadi variabel keputusan pada komponen optimisasi pengendali adalah laju dilusi. Dilakukan identifikasi sistem serta formulasi algoritma dan optimisasi pengendali E-NMPC. Penyetelan pengendali NMPC dan E-NMPC dilakukan dengan fine tuning terhadap parameter-parameter tuning pengendali. Pengendali yang telah disetel disimulasikan pada perangkat lunak optimisasi paralel dengan fine tuning dari pengendali E-NMPC. Untuk menguji performa pengendali, diberikan gangguan step pada konsentrasi substrat umpan untuk mengamati respon pengendali terhadap gangguan tersebut. Parameter utama yang akan dievaluasi untuk meninjau kinerja pengendali adalah besar fungsi objektif ekonomi. Disamping itu, ditinjau juga profil MV, ISE dari CV, serta waktu komputasi pengendali. Hasil simulasi menunjukkan bahwa skema pengendalian dengan NMPC konvensional mampu menjaga dan mengubah CV ke nilai yang diinginkan. Selain itu, skema pengendalian dengan E-NMPC memiliki produktivitas berupa produksi kumulatif biomassa yang lebih tinggi daripada skema pengendalian dengan NMPC konvensional, namun memiliki waktu komputasi yang jauh lebih lama.


This research proposes an examination and evaluation on the application of conventional nonlinear model predictive control (NMPC) and economic NMPC on biochemical reactor system with monod and substrate inhibition growth kinetics. The NMPC controller’s main objective is technical optimization which minimizes the controlled variable deviation from a desired set point, whereas the E-NMPC controller’s main objective is economical optimization which maximizes the cumulative biomass production of the reactor. The controlled variable for this research is the biomass concentration insisde the reactor, whereas the manipulated variable, which also acts as a decision variable for controller optimization, is the dilution rate. Identification of the system is initially done along with formulation of the control algorithm and optimization problem statement for the E-NMPC controller. Tuning of the conventional NMPC and E-NMPC controller is done by fine tuning of the tuning parameters. A step disturbance of feed substrate concentration is used to test the controllers‘ performance. Main evaluation of the controllers‘ performance will be based on economic cost function. Other parameters that will be evaluated are the MV profile, ISE of the CV, and controllers‘ computation time. Result shows that the conventional NMPC schemes are able to bring or maintain the controlled variable to a desired set point. However, the ENMPC scheme outperform the conventional NMPC in cumulative biomass production along the simulation period at the cost of higher computational time.

"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akbar Yudhanto
"Minyak akar wangi merupakan salah satu jenis minyak atsiri yang diperoleh melalui proses penyulingan uap dan merupakan salah satu bahan baku parfum sebagai fixative agent. Teknik penyulingan uap yang digunakan masyarakat menghasilkan minyak dengan rendemen yang rendah 0,3 %, tekanan tinggi 5-6 bar dan berbau gosong. Penelitian ini dititikberatkan pada proses yang terjadi saat penyulingan uap dengan mengamati morfologi akar sebelum dan sesudah penyulingan menggunakan SEM. Untuk mengetahui hasil rendemen minyak akar wangi tertinggi digunakan variasi massa bahan baku akar wangi dengan hasil rendemen terbaik 1,242% saat massa terendah 50 gr.
Pada waktu penyulingan selama 12 jam menghasilkan rendemen minyak akar wangi 1,04% dengan waktu optimum selama 0-5 jam pertama, serta diidentifikasi komponen senyawa minyak akar wangi dengan GCMS pada jam ke-1 penyulingan yang menghasilkan golongan monoterpen-O (tertinggi 6,94%), sedangkan seskuiterpen jumlahnya masih sangat sedikit (4,26%) dan jam ke-5 penyulingan yang menghasilkan komponen yang sama namun dalam jumlah % area-nya lebih banyak.

Vetiver oil is one of the essential oils obtained by steam distillation process and it is one of the raw materials of perfumes as a fixative agent. Steam distillation process used for producing oil in traditional societies with a low yield of 0.3%, the high pressure of 5-6 bar and smelled burnt. This study focused on the process of steam distillation that occurs when the root morphology observed before and after distillation using SEM. To find out the highest results of vetiver oil with feedstock mass variation and the best results yield is 1.242% while the lowest mass of 50 g.
At the time of refining for 12 hours produces vetiver oil yield of 1.04% at the optimum time during the first 0-5 hours, and identified components of vetiver oil compounds by GCMS at 1st hour distillery that produces monoterpenes-O group (highest 6.94%), while the sesquiterpenes numbers are still very small (4.26%) and at the 5th hour distillery that produces the same component but amount % area are much more.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S52793
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michael J. Owen, editor
"This book brings together the field's leading experts who investigated both fundamental and applied aspects of silicone surface science and technology, and introduces the reader to the origins and historical development of silicone surfaces as well as to their most significant current key features.
"
Dordrecht, Netherlands: Springer, 2012
e20406050
eBooks  Universitas Indonesia Library
cover
Renanto Putra Wijaya
"Dalam penelitian ini dilakukan sintesis polistirena-ko-poli(etil akrilat) dengan metode Atomic Transfer Radical Polymerization (ATRP) untuk mempelajari pengaruh konsentrasi stabilisator dan inisiator terhadap solid content dan viskositas, serta mempelajari pengaruh variasi komposisi monomer terhadap temperatur transisi gelas (Tg). Dari hasil penelitian didapatkan bahwa semakin tinggi konsentrasi stabilisator dan inisiator maka solid content dan viskositas akan semakin tinggi, dan pada variasi komposisi monomer tidak memberikan kecenderungan pada temperatur transisi gelas yang dihasilkan. Terbentuknya polistirena-ko-poli(etil akrilat) ditunjukkan oleh hasil karakterisasi dengan Fourier Transform Infra Red dan Differential Scanning Calorimetry yang terlampir dalam penelitian ini dan memiliki hasil tidak terbentuk homopolimer dari masing-masing monomer.

In this research, the synthesis of polystyrene-co-poly(ethyl acrylate) by the method of Atomic Transfer Radical Polymerization (ATRP) has been done to study the effect of the concentration of stabilizers and initiators on the solid content and viscosity of them. Then, this experiment also studied the effect of variations of monomers composition on the glass transition temperature (Tg) of polystyrene-co-poly(ethyl acrylate). The result showed that the higher concentration of stabilizers and initiators were, the higher the solid content and viscosity of the copolymer was obtained. In addition, the monomers composition did not affect the glass transition temperature of the resulting copolymers. The formation of polystyrene-co-poly(ethyl acrylate) was characterized by Fourier Transform Infra Red and Differential Scanning Calorimetry and the results showed that the formation of two homopolymers did not appeared."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S56645
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rania Amalia F Alatas
"ABSTRAK
Pasar tradisional sebagai lokasi penghasil timbulan limbah padat kedua terbesar menghasilkan air lindi melalui proses dekomposisi limbah padat. Penelitian ini menggunakan unit bioreaktor secara aerob dengan proses aerasi dalam mengolah air lindi sampah Pasar Induk Kramat Jati, Jakarta Timur. Penelitian ini bertujuan untuk mengindentifikasi karakteristik awal dan mengetahui waktu kontak serta persentase efisiensi penurunan konsentrasi COD dan amonia (NH3) yang optimum dengan pemberian bioaktivator, yaitu antara bioaktivator Effective Microorganisms 4 (EM4) dan Bioprisma. Bioaktivator merupakan stimulan bakteri in situ air limbah dalam proses pengolahan biologis yang mengandung konsorsium mikroorganisme sehingga pencemaran dapat cepat terurai. Kinerja bioreaktor diketahui melalui eksperimental secara batch dengan waktu kontak 7, 14, 21, 28, dan 35 hari. Variasi pemberian bioaktivator tidak menghasilkan perbedaan yang signifikan berdasarkan uji statistik Independent t-Test (95%). Hasil penelitian memperoleh konsentrasi COD sebesar 15025 mg/L dan amonia sebesar 161,52 mg/L yang melebihi baku mutu PermenLH No. 5 Tahun 2014 sehingga perlu diolah. Waktu kontak optimum pada kedua bioaktivator selama 28 hari dengan melakukan tahapan pengenceran (dilution) 10 kali sebelum pengolahan dan menghasilkan konsentrasi akhir COD sebesar 516,25 mg/L (65,63%) dan amonia sebesar 5,35 mg/L (66,58%) pada pemberian bioaktivator EM4 serta konsentrasi akhir COD sebesar 298 mg/L (80,16%) dan amonia sebesar 4,82 mg/L (69,89%) pada pemberian bioaktivator Bioprisma.

ABSTRACT
Traditional market as the biggest second producer location of solid waste which generates leachate through decomposition of solid waste processes. This research uses aerobic bioreactors unit with aeration process on leachate treatment from solid waste of Traditional Market at Kramat Jati, East Jakarta. It aims to identify initial characteristic and know both the detention time and presentation of reduction efficiency of COD concentration and ammonia (NH3) which optimum by giving bio-activator which is among Effective Microorganisms 4 (EM4) and Bioprisma. Bio-activator is stimulant of in situ bacterial of waste water in biological treatment process which contain microorganism?s consortium so the pollution can quickly unravel. Bioreactor performance is known through experimental in batch system with the detention time of 7, 14, 21, 28, and 35 days. Variation of given bio-activator does not produce significant differences based on statistical tests Independent t-Test (95%). The research results shows COD?s concentrations is amount 15025 mg/L and ammonia is amount 161.25 mg / L which exceed the adequate quality of PermenLH No. 5 Tahun 2014 so it need to manage furthermore. The optimum detention time on both bio-activator for 28 days by doing dilution process 10 times before processing and produce COD final concentration is amount 516.25 mg/L (65.63%) and ammonia is amount 5.35 mg/L in given bio-activator EM4 then COD final concentration is amount 298 mg/L (80.16%) and ammonia is amount 4.82 mg/L (69.89%) in given Bioprisma?s bio-activator.;"
2016
S65580
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agus Supriyanto
"Proses korosi adalah peristiwa berkurangnya mutu material akibat reaksi kimia/elektro kimia dengan lingkungan yang terjadi secara alamiah. Khusus bidang industri otomotif, proses korosi merupakan hal yang paling sering menjadi masalah utama. Oleh karena itu perlu dilakukan perlindungan/proteksi untuk menjaga mutu material."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2000
S27571
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>