Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 12873 dokumen yang sesuai dengan query
cover
"This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation. "
Switzerland: Springer Nature, 2019
e20507207
eBooks  Universitas Indonesia Library
cover
Loshin, David, 1963-
"
ABSTRACT
Big Data Analytics" will assist managers in providing an overview of the drivers for introducing big data technology into the organization and for understanding the types of business problems best suited to big data analytics solutions, understanding the value drivers and benefits, strategic planning, developing a pilot, and eventually planning to integrate back into production within the enterprise.
"
Amsterdam: Morgan Kaufmann, 2013
658.472 LOS b
Buku Teks  Universitas Indonesia Library
cover
Ishmah Naqiyya
"Perkembangan teknologi informasi dan internet dalam berbagai sektor kehidupan menyebabkan terjadinya peningkatan pertumbuhan data di dunia. Pertumbuhan data yang berjumlah besar ini memunculkan istilah baru yaitu Big Data. Karakteristik yang membedakan Big Data dengan data konvensional biasa adalah bahwa Big Data memiliki karakteristik volume, velocity, variety, value, dan veracity. Kehadiran Big Data dimanfaatkan oleh berbagai pihak melalui Big Data Analytics, contohnya Pelaku Usaha untuk meningkatkan kegiatan usahanya dalam hal memberikan insight yang lebih luas dan dalam. Namun potensi yang diberikan oleh Big Data ini juga memiliki risiko penggunaan yaitu pelanggaran privasi dan data pribadi seseorang. Risiko ini tercermin dari kasus penyalahgunaan data pribadi Pengguna Facebook oleh Cambridge Analytica yang berkaitan dengan 87 juta data Pengguna. Oleh karena itu perlu diketahui ketentuan perlindungan privasi dan data pribadi di Indonesia dan yang diatur dalam General Data Protection Regulation (GDPR) dan diaplikasikan dalam Big Data Analytics, serta penyelesaian kasus Cambridge Analytica-Facebook. Penelitian ini menggunakan metode yuridis normatif yang bersumber dari studi kepustakaan. Dalam Penelitian ini ditemukan bahwa perlindungan privasi dan data pribadi di Indonesia masih bersifat parsial dan sektoral berbeda dengan GDPR yang telah mengatur secara khusus dalam satu ketentuan. Big Data Analytics juga memiliki beberapa implikasi dengan prinsip perlindungan privasi dan data pribadi yang berlaku. Indonesia disarankan untuk segera mengesahkan ketentuan perlindungan privasi dan data pribadi khusus yang sampai saat ini masih berupa rancangan undang-undang.

The development of information technology and the internet in various sectors of life has led to an increase in data growth in the world. This huge amount of data growth gave rise to a new term, Big Data. The characteristic that distinguishes Big Data from conventional data is that Big Data has the characteristic of volume, velocity, variety, value, and veracity. The presence of Big Data is utilized by various parties through Big Data Analytics, for example for Corporation to incurease their business activities in terms of providing broader and deeper insight. But this potential provided by Big Data also comes with risks, which is violation of one's privacy and personal data. One of the most scandalous case of abuse of personal data is Cambridge Analytica-Facebook relating to 87 millions user data. Therefor it is necessary to know the provisions of privacy and personal data protection in Indonesia and which are regulated in the General Data Protection (GDPR) and how it applied in Big Data Analytics, as well as the settlement of the Cambridge Analytica-Facebook case. This study uses normative juridical methods sourced from library studies. In this study, it was found that the protection of privacy and personal data in Indonesia is still partial and sectoral which is different from GDPR that has specifically regulated in one bill. Big Data Analytics also has several implications with applicable privacy and personal data protection principles. Indonesia is advised to immediately ratify the provisions on protection of privacy and personal data which is now is still in the form of a RUU."
Depok: Fakultas Hukum Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nico Juanto
"E-commerce dan big data merupakan bukti dari kemajuan teknologi yang sangat pesat. Big data berperan cukup penting dalam perusahaan e-commerce untuk menangani perkembangan semua data, mengolah setiap data tersebut dan menjadi competitive advantage bagi perusahaan. Perusahaan XYZ.com mengalami kesulitan dalam menganalisis stok dan tren dari produk yang dijual. Jika hal ini tidak ditanggulangi, maka perusahaan XYZ.com akan kehilangan opportunity gain. Untuk menentukan tren dan stok produk secara cepat dengan akurat, dibutuhkan big data predictive analysis. Penelitian ini mengolah data transaksi menjadi data yang dapat dianalisis untuk menentukan tren dan prediksi tren produk berdasarkan kategorinya dengan menggunakan big data predictive analysis. Hasil dari penelitian ini akan memberikan informasi kepada pihak manajemen kategori apa yang berpotensi menjadi tren dan jumlah minimal stok yang harus disediakan dari kategori produk tersebut.

E commerce and big data are evidence of rapid technological advances. Big data plays an important role in e commerce companies to handle and analyze all data changes, and become a competitive advantage for the company. XYZ.com experience a difficulty in analyzing stocks and commerce product trend. If this issue not addressed, XYZ.com company will lose an opportunity gain. To determine trends and stock accurately, XYZ.com can use big data predictive analysis. This study processes transaction data into data that can be analyzed to determine trends and predictions of product trends based on its categories using big data predictive analysis. The results of this study give massive informations to management about what categories will potential become trends and minimum stock required to be provided."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2017
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Febtriany
"Saat ini kompetisi di industri telekomunikasi semakin ketat. Perusahaan telekomunikasi yang dapat tetap menghasilkan banyak keuntungan yaitu perusahaan yang mampu menarik dan mempertahankan pelanggan di pasar yang sangat kompetitif dan semakin jenuh. Hal ini menyebabkan perubahan strategi banyak perusahaan telekomunikasi dari strategi 'growth '(ekspansi) menjadi 'value added services'. Oleh karena itu, program mempertahankan pelanggan ('customer retention') saat ini menjadi bagian penting dari strategi perusahaan telekomunikasi. Program tersebut diharapkan dapat menekan 'churn' 'rate 'atau tingkat perpindahan pelanggan ke layanan/produk yang disediakan oleh perusahaan kompetitor.
Program mempertahankan pelanggan ('customer retention') tersebut tentunya juga diimplementasikan oleh PT Telekomunikasi Indonesia, Tbk (Telkom) sebagai perusahaan telekomunikasi terbesar di Indonesia. Program tersebut diterapkan pada berbagai produk Telkom, salah satunya Indihome yang merupakan 'home services' berbasis 'subscriber' berupa layanan internet, telepon, dan TV interaktif. Melalui kajian ini, penulis akan menganalisa penyebab 'churn' pelanggan potensial produk Indihome tersebut, sehingga Telkom dapat meminimalisir angka 'churn' dengan melakukan program 'customer retention' melalui 'caring' yang tepat.
Mengingat ukuran 'database' pelanggan Indihome yang sangat besar, penulis akan menganalisis data pelanggan tersebut menggunakan metoda 'Big Data Analytics'. 'Big Data' merupakan salah satu metode pengelolaan data yang sangat besar dengan pemetaan dan 'processing' data. Melalui berbagai bentuk 'output', implementasi 'big data' pada perusahaan akan memberikan 'value' yang lebih baik dalam pengambilan keputusan berbasis data.

Nowadays, telecommunication industry is very competitive. Telecommunication companies that can make a lot of profit is the one who can attract and retain customers in this highly competitive and increasingly saturated market. This causes change of the strategy of telecommunication companies from growth strategy toward value added services. Therefore, customer retention program is becoming very important in telecommunication companies strategy. This program hopefully can reduce churn rate or loss of potential customers due to the shift of customers to other similar products.
Customer retention program also implemented by PT Telekomunikasi Indonesia, Tbk (Telkom) as the leading telecommunication company in Indonesia. Customer retention program implemented for many Telkom products, including Indihome, a home services based on subscriber which provide internet, phone, and interactive TV. Through this study, the authors will analyze the cause of churn potential customers Indihome product, so that Telkom can minimize the churn number by doing customer retention program through the efficient caring.
Given by huge customer database the author will analyze using Big Data analytics method. Big Data is one method in data management that contain huge data, by mapping and data processing. Through various forms of output, big data implementation on the organization will provide better value in data-based decision making.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2018
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
"Big data analytics will assist managers in providing an overview of the drivers for introducing big data technology into the organization and for understanding the types of business problems best suited to big data analytics solutions, understanding the value drivers and benefits, strategic planning, developing a pilot, and eventually planning to integrate back into production within the enterprise."
Waltham, MA: Elsevier, 2013
e20426807
eBooks  Universitas Indonesia Library
cover
Krishnan, Krish
Burlington: Elsevier Science, 2013
005.745 KRI d
Buku Teks  Universitas Indonesia Library
cover
cover
Eka Kurnia Sari
"Perkembangan sistem teknologi telekomunikasi yang semakin canggih dan kompleks memicu meningkatnya kegagalan ataupun kesalahan sistem dalam sistem jaringan utama dan sistem pendukung layanan telekomunikasi, serta kesalahan yang terjadi pada bisnis proses dan sumber daya manusia yang terkait. Kegagalan dan kesalahan ini menyembabkan kerugian yang ditanggung perusahaan, kerugian yang ditimbulkan dengan istilah revenue leakage atau kebocoran pendapatan. Revenue Assurance memegang peranan penting dalam pengendalian terhadap resiko revenue leakage dengan membuat kontrol dalam mendeteksi dan mencegah terjadinya kebocoran agar mampu meminimalkan biaya dan memaksimalkan potensi pendapatan. Dalam tesis ini dikembangkan metode untuk menganalisis Big data CDR untuk mengoptimalkan proses analisis pada revenue assurance control dengan menggunakan algoritma K-means Clustering. Algortima ini mengelompokkan obyek pengamatan dalam beberapa kategori yang diindikasikan sebagai titik kebocoran. Hasil kelompok yang dihasilkan dengan kategori yang beresiko tinggi memiliki anggota yang sedikit dengan tingkat nilai evaluasi akurasi cluster, R-Squared, sekitar 90%.

In the telco industry, Revenue Assurance plays an important role to assure the company revenue from leakage. the revenue chain is established across the process and whole sophisticated system that technologically complex to provide the unstoppable services. This case increasing the probability of system or process failure leads to the leakage. Hence necessary the revenue assurance control to detect and prevent it then it can help to minimize cost and maximize revenue. In this thesis, developed the analysis method in big data CDR to optimize analysis process at revenue assurance control using K-means Clustering algorithm. The use of the K-means clustering algorithm method able to group the object areas with high risk indications of leakage. The cluster result of high risk of leakage is having low amount of member, and the cluster evaluation result of R-Squared giving the good value about 90%."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hwang, Kai
"The definitive guide to successfully integrating social, mobile, Big-Data analytics, cloud and IoT principles and technologies The main goal of this book is to spur the development of effective big-data computing operations on smart clouds that are fully supported by IoT sensing, machine learning and analytics systems"
Hoboken: John Wiley & Sons, 2017
004.678 2 HWA b
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>