Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6630 dokumen yang sesuai dengan query
cover
"This book is a compendium of the ICCMIA 2018 proceedings, which provides an ideal reference for all medical imaging researchers and professionals to explore innovative methods and analyses on imaging technologies for better prospective patient care.
This work serves as an exclusive source for new computer assisted clinical and medical developments in imaging diagnosis, intervention and analysis. It includes articles on computer assisted medical scanning techniques, computer-aided diagnosis, robotic surgery and imaging, imaging genomics, clinically-oriented imaging physics and informatics, augmented-reality medical visualization, imaging modalities, computerized radiology, oncology, and surgery. Moreover, information on non-medical imaging that has medical applications such as multi-photon microscopy and confocal, photoacoustic imaging, optical microendoscope, infra-red radiation, and other imaging modalities is also represented."
Switzerland: Springer Nature, 2019
e20507551
eBooks  Universitas Indonesia Library
cover
Wini Sri Wahyuni
"Kanker liver pada citra hasil CT-Scan memiliki bentuk, lokasi serta tekstur yang berbeda – beda disetiap citra. Perbedaan contrast antara abnormalitas dan liver sehat sering kali tidak dapat terlihat jelas, sehingga menyulitkan dalam evaluasi. Abnormalitas liver antara lain pembengkakan, fibrosis, kehadiran tumor jinak atau tumor ganas. Perbedaan contrast rendah dengan ukuran lebar dalam citra mudah dikenali sebagai abnormalitas, namun untuk massa kecil dan contrast rendah sulit dievaluasi. Dalam penelitian ini telah dilakukan CAD dengan tujuan untuk membantu evaluasi abnormalitas liver utamanya abnormalitas dengan ukuran kecil. Metode penelitian yang digunakan dalam penelitian ini adalah metode segmentasi berdasarkan active contour. Data yang digunakan merupakan data sekunder citra abdomen yang dihasilkan dari modalitas Computed Tomography Scanner (CT-Scan) RSUD Cibinong Bogor. Teknik pengumpulan data yang digunakan dengan melakukan observasi pada data pasien citra liver abnormal dari pasien-pasien kanker liver dan citra liver normal dari pasien-pasien penyakit lainnya sesuai dengan diagnosis dokter. Sedangkan untuk olah data digunakan proses ekstraksi fitur menggunakan analisis tekstur Gray-Level Co-occurrence Matrix (GLCM) dengan machine learning berupa Artificial Neural Network (ANN) untuk deteksi abnormalitas citra. Hasil penelitian menyatakan bahwa ANN dapat digunakan untuk mengelompokkan citra kedalam grup normal dan abnormal dengan akurasi sebesar 89% sensitivitas 86%, spesifisitas 92%, presisi 91%, error keseluruhan 10%.

Liver abnormalities in CT image commonly have different shape, location and texture. The contrast between abnormalities and healthy liver often cannot be clearly seen, making it difficult to evaluate. Liver abnormalities include swelling, fibrosis, the presence of benign tumors or malignant tumors. Low contrast differences with width measurements in images are easily recognized as abnormalities, but for small masses and low contrast it is difficult to evaluate. In this study CAD was carried out with the aim to help evaluate liver abnormalities, especially small size abnormalities. The segmentation method based on active contour is the method was employed in this research. The data which used was secondary data resulting abdomen image  from modalities of Computed Tomography Scanner (CT-Scan) of Cibinong Hospital, Bogor. The data collection techniques was used in this research were data abnormal liver image from patients liver cancer and normal liver image from patients other diseases according to the doctor's diagnosis. Meanwhile, the technique used to processing data was extraction feature process with analysis Gray-Level Co-occurrence Matrix (GLCM) texture and machine learning of Artificial Neural Network (ANN) for detection abnormality image. Results of this research stated that ANN can used for classify image to normal and abnormal group with accuracy of 89%, sensitivity of 86%, specificity of 92%, precision of 91%, and error of 10%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T53457
UI - Tesis Membership  Universitas Indonesia Library
cover
Ahmad Novian Rahman Hakim
"Kanker payudara adalah salah satu kanker paling umum terjadi di kalangan wanita dan tingkat kelangsungan hidupnya cenderung rendah ketika stadiumnya ditemukan sudah tinggi. Untuk meningkatkan kelangsungan hidup kanker payudara, deteksi dini sangat penting. Ada dua cara untuk mendeteksi kanker payudara: diagnosis dini dan skrining. Untuk membuat diagnosa yang akurat pada stadium awal kanker payudara, munculnya massa dan mikro-kalsifikasi pada citra mamografi merupakan dua indikator penting. Beberapa Computer-Aided Detection (CADe) telah dikembangkan untuk mendukung ahli radiologi karena pendeteksian mikro-kalsifikasi penting dalam menegakkan diagnosis dan perawatan yang direkomendasikan berikutnya. Sebagian besar sistem CADe yang ada saat ini mulai menggunakan Convolutional Neural Network (CNN) untuk mengimplementasikan deteksi mikro-kalsifikasi pada mammogram dan hasil kuantitatifnya sangat memuaskan, rata-rata tingkat akurasinya lebih dari 90%. Penelitian ini melakukan pendekatan otomatis untuk mendeteksi lokasi setiap mikro-kalsifikasi pada citra mammogram yang lengkap dan secara sederhana. Total lebih dari 350 gambar dari dataset INbreast digunakan dalam studi penelitian ini serta implementasi menggunakan data lokal Rumah Sakit (RS) sebanyak 23 citra. Proses ini dapat membantu ahli radiologi untuk melakukan diagnosis dini dan meningkatkan akurasi deteksi wilayah mikro-kalsifikasi. Performa sistem yang diusulkan diukur berdasarkan nilai error Mean Squared Logarithmic Error (MSLE) sebagai teknik untuk mengetahui perbedaan antara nilai yang diprediksi oleh model yang diusulkan dan nilai sebenarnya, didapat nilai loss terbaik yang diperoleh adalah 0,05. Hasil validasi daring mendapatkan nilai sensitivitas sebesar 88.14%, presisi 91.6% dan akurasi sebesar 90.3%. Hasil implementasi pada data lokal RS menunjukkan model CADe dapat mendeteksi mikro-kalsifikasi dengan cukup baik.

Breast cancer is one of the most common cancer among women and the survival rate tends to be low when its stage found high when treated. To improve breast cancer survival, early detection is critical. There are two ways of detection for breast cancer: early diagnosis and screening. To make an accurate diagnosis in the early stage of breast cancer, the appearance of masses and micro-calcifications on the mammography image are two important indicators. Several Computer-Aided Detection (CADe) have been developed to support radiologists because the automatic detection of micro-calcification is important for diagnosis and the next recommended treatment. Most of the current CADe systems at this time started using Convolutional Neural Network (CNN) to implement the micro-calcification detection in mammograms and their quantitative results are very satisfying, the average level of accuracy is more than 90%. This research conducts an automated approach to detect the location of any micro-calcification in the mammogram images with the complete image and in a simple way. A total more than 350 images from INbreast dataset were used in this research study and for implementation used 23 images from local hospital data. This process can help as an assistant to the radiologist for early diagnosis and increase the detection accuracy of the microcalcification regions. The proposed system performance is measured according to the error values of Mean Squared Logarithmic Error (MSLE) as the technique to find out the difference between the values predicted by the proposed model and the actual values, the best loss value obtained by the training model was achieved in 0.05. The results for data online validation for sensitivity is 88.14%, precision is 91.6% and accuracy is 90.3%. The CADe model can detect micro-calcification quite well using local hospital data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Wessel, Andrew E.
Los Angeles: California Melville Publishing , 1975
029.7 WES c
Buku Teks SO  Universitas Indonesia Library
cover
Chang, Tien Chien, 1954-
Upper Saddle River, NJ: Prentice-Hall, 1998
338.454 CHA c
Buku Teks  Universitas Indonesia Library
cover
Chang, Tien Chien, 1954-
"Using a strong science-based and analytical approach, this book provides a modern description of CAM from an engineering perspective to include design specification, process engineering, and production. The Third Edition of Computer Integrated Manufacturing includes new material on CAD drafting, 3D CAD, surface modeling, solid modeling, feature-based modeling, variational and parametric modeling, tools for PLC logic design, and kinematics of NC machines"
Upper Saddle River, New Jersey: Prentice-Hall, 2006
670.285 CHA c
Buku Teks SO  Universitas Indonesia Library
cover
Eisner, Howard
Englewood Cliffs, NJ: Prentice-Hall, 1988
620.004 2 EIS c
Buku Teks SO  Universitas Indonesia Library
cover
Chang, Tien Chien, 1954-
Englewood Cliffs, New Jersey: Prentice Hall International, 1991
670.285 CHA c
Buku Teks SO  Universitas Indonesia Library
cover
Berkshire: Pregamon Press, 1985
658.505 COM (1);658.505 COM (2)
Buku Teks SO  Universitas Indonesia Library
cover
London: UCL Press, 1993
620.004 202 PRI
Buku Teks SO  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>