Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 166873 dokumen yang sesuai dengan query
cover
Kezia Megagita Gerby Langie
"Aktivitas katalitik yang tinggi dan selektifitas yang baik untuk menghasilkan produk tertentu merupakan tantangan untuk elektrokatalis dalam elektroreduksi karbon dioksida. Elektrokatalis bismuth mampu menghasilkan kinerja yang baik saat dideposisikan pada elektroda dengan selektifitas yang tinggi untuk menghasilkan asam format. Pada penelitian ini dilakukan sintesis elektroda bismuth pada carbon foam dilakukan dengan teknik elektrokimia selama 600 menit menggunakan berbagai elektrolit dan potensial deposisi. Selain itu penambahan zat aditif kalium bromide (KBr) dan hexadecyltrimethylammonium bromide (CTAB) juga dilakukan. Diharapkan perlakuan yang diberikan selama proses elektrodeposisi mempengaruhi bentuk dan morfologi elektroda bismuth yang terbentuk di elektroda. Penambahan KBr pada elektrolit deposisi mengarahkan pertumbuhan menjadi bentuk nanosheet dengan batang diameter yang lebih tegas dengan ukuran panjang mencapai 7,481 µm. Sedangkan penambahan CTAB menghasilkan morfologi nanoflower dengan ukuran diameter sekitar 1.993 µm sampai 3.778 µm dan tersusun berkelompok. Potensial deposisi yang diterapkan pada proses elektrodeposisi adalah -0,15 V, -0,3 V, dan -0,5 V. Morfologi paling baik ditunjukkan oleh elektroda yang elektrodeposisi berlangsung pada -0,5 V. Morfologi yang terbentuk berpengaruh pada kinerja elektroda pada proses dan hasil reaksi konversi karbon dioksida.

High catalytic activity and good selectivity to produce certain products are a challenge for electrocatalysts in electroreduction of carbon dioxide. Bismuth electrocatalyst is capable of producing good performance when deposited on electrodes with high selectivity to produce formic acid. In this research the synthesis of bismuth electrodes on carbon foam was carried out by electrochemical techniques for 600 minutes using various electrolytes and deposition potentials. In addition the addition of potassium bromide (KBr) and hexadecyltrimethylammonium bromide (CTAB) additives was also carried out. It is expected that the treatment given during the electrodeposition process affects the shape and morphology of the bismuth electrodes formed at the electrodes. The addition of KBr to the deposition electrolyte directs growth into a nanosheet shape with a firmer diameter rod with a length reaching 7.481 µm. While the addition of CTAB produces nanoflower morphology with a diameter of about 1,993 µm to 3,778 µm and arranged in groups. The deposition potential applied to the electrodeposition process is -0.15 V, -0.3 V, and -0.5 V. Morphology is best shown by electrodeposition which takes place at -0.5 V. The morphology that is formed influences the electrode performance in the process and results of carbon dioxide conversion reactions."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putu Udiyani Prayika Putri
"Pada penelitian ini, konversi CO2 dilakukan melalui metode elektrokimia dengan proses elektrodeposisi katalis paduan logam (alloy) Cu dan Zn pada elektroda emas pada potensial -0,5 V, kemudian dilakukan dealloying Zn dengan larutan NaOH dan HCl sehingga terbentuklah material Cu berpori dengan selular terbuka yang dapat memperbesar luas permukaan dengan mengatur porositasnya. Dilakukan tiga variasi volume Zn pada masing-masing elektroda, yaitu 1,25 mL; 2,5 mL; dan 3,75 mL serta dihasilkan struktur morfologi yang beragam, dimana Cu mewakili bentuk globular dan Zn mewakili bentuk heksagonal. Elektroda emas berdeposit Cu digunakan untuk mengkonversi CO2 dalam cairan ionik [BMIM][NTf2] melalui proses reduksi pada potensial -2,1 V disertai penambahan CH3OH dan CH3I untuk membentuk dimetil karbonat. Untuk elektroda yang mengandung 1,25 mL; 2,5 mL; dan 3,75 mL Zn masing-masingnya menghasilkan 63,314%, 16,380%, dan 13,379% produk hasil proses reduksi CO2, sehingga diperoleh kondisi optimum dengan elektroda yang mengandung 1,25 mL Zn yang menghasilkan produk dimetil karbonat terbanyak.

In this research, conversion of CO2 was done by electrochemical method with the electrodeposition process of the catalyst metal alloys Cu and Zn on the gold electrodes at -0.5 V, then performed with a solution of NaOH and HCl in dealloying Zn so that it formed a material with an open cellular porous Cu that can enlarge the surface area by setting its porous. Three variations of volume of Zn in respective electrodes were done, named 1.25 mL; 2.5 mL; and 3.75 mL, resulting diverse morphology that Cu structures represented the globular shape and Zn represented the hexagonal shape. Gold electrode with Cu deposit was used for converting CO2 in ionic liquid [BMIM] [NTf2] through the process of the reduction potential at -2.1 V with the addition of CH3OH and CH3I to form dimethyl carbonate. For each electrode containing 1.25 mL; 2.5 mL; and 3.75 mL Zn has 63,314%, 16,380%, and 13,379% of products from CO2 reduction process. Therefore, the optimum condition was obtained using electrode containing 1,25 mL Zn, resulting the most dimethyl carbonate products."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S55445
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tejo Bawono
"Dari penelitian ini diharapkan diketahui pengaruh variabel komposisi persen berat Mg dari 3% hingga 9% serta perlakuan perlarytan dan proses penuaan buatan terhadap kekuatan mekanis, dengan pengamatan struktur mikro sebagai penghubung.Komposisi luangan paduan dihasilkan dengan peleburan menggunakan dapur krusibel tipe ciduk. Sedangkan cetakan yang digunakan adalah cetakan logam, menggunakan standar JIS Z 2201 yang mana hasilnya sudah merupakan sampel uji tarik. Hasil pengujian tarik dan kekerasan as-cost kemudian dibandingkan dengan sampel yang dilakukan pelarutan pada temperatur 430' C selama 12 jam, juga dengan hasil proses penuaan buatan yang dilakukan setelah lakupanas pelarutan pada temperatur 150' C selama panahanan 2, 4, 6, 8, dan 10 jam."
Depok: Fakultas Teknik Universitas Indonesia, 1996
S41202
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kevin
"SARS-CoV-2 merupakan virus RNA envelop dengan rantai untai tunggal positif yang menyebabkan COVID-19. Sejak awal teridentifikasi, SARS-CoV-2 menyebar secara luas dan cepat di seluruh dunia, sehingga WHO pada 11 Maret 2020 menyatakan COVID-19 sebagai suatu pandemi. SARS-CoV-2 mampu menginfeksi sel inang melalui proses pengikatan spike glikoprotein terhadap ACE2. Hingga saat ini, metode deteksi RT-PCR menjadi metode terbaik dalam deteksi COVID-19, namun penggunaannya dibatasi oleh reagen dan instrumentasi yang mahal. Oleh karena itu metode alternatif deteksi COVID-19 dapat menjadi solusi, salah satunya adalah sensor elektrokimia. Umifenovir (arbidol) merupakan senyawa elektroaktif yang dapat berinteraksi dengan spike glikoprotein SARS-CoV-2. Simulasi penambatan molekul menggunakan Molecular Operating Environment (MOE) memprediksi interaksi umifenovir-spike glikoprotein S2 SARS-CoV-2 terjadi secara optimum pada pH 7.4 dan temperatur 300K dengan △G binding -7.8414 kcal mol-1. Interaksi dimediasi oleh residu asam amino asam glutamat (Glu780) pada chain A. Uji interferensi menunjukkan kompleks umifenovir-HA H1N1 memberikan nilai △G binding -7.5822 kcal mol-1, namun tidak cukup kompetitif untuk mengganggu kompleks umifenovir-spike glikoprotein S2 SARS-CoV-2. Hasil studi komputasi kemudian menjadi acuan dalam pengukuran elektrokimia. Pada penelitian ini, perilaku elektrokimia umifenovir dipelajari menggunakan elektroda carbon foam (CF) yang dipreparasi secara hidrotermal-karbonisasi dan dikarakterisasi menggunakan instrumentasi XRD, FTIR, Raman, dan SEM-EDS. Elektroda carbon foam memiliki struktur berpori 3D dengan luas permukaan besar yang menyediakan situs reaksi reduksi-oksidasi bagi umifenovir. Melalui teknik cyclic voltammetry (CV) dan amperometri, ditemukan bahwa keberadaan spike glikoprotein S2 SARS-COV-2 menyebabkan penurunan respon arus umifenovir dengan waktu kontak optimum yaitu 5 menit. Pada konsentrasi yang sama, HA H1N1 dan spike glikoprotein S2 SARS-CoV-2 menyebabkan munculnya efek gabungan yang menurunkan respon arus umifenovir secara signifikan. Hasil tersebut mengindikasikan sensor elektrokimia umifenovir bersifat kurang selektif terhadap senyawa interferensi.

SARS-CoV-2 is a positive single-stranded RNA envelope virus that causes COVID-19. Since its initial identification, SARS-CoV-2 has spread widely and rapidly throughout the world, so the WHO on March 11, 2020 declared COVID-19 as a pandemic. SARS-CoV-2 is able to infect host cells through the binding process of spike glycoprotein to ACE2. Until now, the RT-PCR detection method has been the best method for detecting COVID-19, but its use is limited by expensive reagents and instrumentation. Therefore, an alternative method of detecting COVID-19 can be a solution, one of which is an electrochemical sensor. Umifenovir (arbidol) is an electroactive compound that can interact with the SARS-CoV-2 spike glycoprotein. Molecular docking simulation using Molecular Operating Environment (MOE) predicts the umifenovir-spike glycoprotein S2 SARS-CoV-2 interaction will occur optimally at pH 7.4 and temperature 300K with △G binding -7.8414 kcal mol-1. The interaction is mediated by the amino acid residue of glutamic acid (Glu780) in chain A. The interference test showed the umifenovir-HA H1N1 complex gave △G binding value of -7.5822 kcal mol-1, but was not competitive enough to interfere with the umifenovir-spike glycoprotein S2 complex of SARS-CoV. -2. The results of computational studies then become a reference in electrochemical measurements. In this study, the electrochemical behavior of umifenovir was studied using carbon foam (CF) electrodes prepared by hydrothermal carbonization and characterized using XRD, FTIR, Raman, and SEM-EDS instrumentation. The carbon foam electrode has a 3D porous structure with a large surface area that provides an oxidation-reduction reaction site for umifenovir. Through cyclic voltammetry (CV) and amperometry techniques, it was found that the presence of the SARS-COV-2 spike glycoprotein S2 caused a decrease in the current response of umifenovir with an optimum contact time of 5 minutes. At the same concentration, HA H1N1 and spike glycoprotein S2 SARS-CoV-2 caused a combined effect that significantly decreased the current response of umifenovir. These results indicate that the umifenovir electrochemical sensor is less selective for interfering compounds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Rizki Nugroho
"This research focuses on developing a characterization method to observe changes in the optical properties of metal oxide materials, particularly BiVO4, during real-time electrochemical processes. This spectroelectrochemical method combines absorbance measurements of the material using UV-vis spectroscopy with electrochemical measurements using cyclic voltammetry simultaneously. The study successfully identified changes in the optical properties of BiVO4 within the potential sweep range of -0.4 VRHE to 2.1 VRHE, due to the electrochromic properties of vanadium in BiVO4. Correlation analysis of optical and electrochemical measurements showed that these optical changes result from oxidation and reduction reactions occurring during cyclic voltammetry. Electron injection into BiVO4 reduces V5+ to V4+, and the oxidation reaction proceeds in the reverse direction. This reaction explains the color change of the sample from yellow to black as vanadium is reduced and oxidized. These changes in oxidation state also result in localized electrons in the material during the electrochemical process. The spectroelectrochemical measurements provide significant insights into the processes affecting the optical properties of BiVO4 during electrochemical processes. This fundamental knowledge is essential for making new advancements in enhancing the performance of electrochemical cells to optimize electrochemical reactions for various applications.

Penelitian ini berfokus untuk membuat metode karakterisasi yang dapat melihat perubahan sifat optik pada material metal oksida, terutama pada BiVO4, ketika sedang menjalani proses elektrokimia secara real time. Metode spektroelektrokimia ini menggabungkan antara pengukuran absorbansi material menggunakan spektroskopi UV-vis dengan pengukuran elektrokimia secara voltametri siklik secara simultan. Studi ini berhasil mendapatkan perubahan sifat optik pada BiVO4 dalam rentang potential sweep -0.4 VRHE hingga 2.1 VRHE akibat dari sifat elektrokromik unsur vanadium pada BiVO4. Hasil analisis korelasi pengukuran optik dan pengukuran elektromia menunjukkan bahwa perubahan sifat optik ini akibat adanya reaksi oksidasi dan reduksi yang terjadi dalam proses voltametri siklik. Injeksi elektron ke BiVO4 mereduksi V5+ menjadi V4+ dan reaksi oksidasi akan berjalan sebaliknya. Reaksi ini menjelaskan perubahan warna sampel dari warna kuning ke hitam saat vanadium tereduksi dan teroksidasi. Perubahan keadaan oksidasi ini juga mengakibatkan adanya elektron yang terlokalisasi pada material saat menjalani proses elektrokimia. Elektron terlokalisasi ini menciptakan adanya elektron polaron yang mengakibatkan adanya keadaan donor sementara di antara pita valensi dan pita konduksi. Studi ini memperlihatkan bagaimana pengaruh dari potensial dan densitas arus terhadap perubahan sifat penyerapan cahaya dari sampel BiVO4. Hasil pengukuran spektroelektrokimia ini memberikan banyak pengetahuan terkait proses yang terjadi pada sifat optik BiVO4 dalam proses elektrokimia. Pengetahuan fundamental ini dibutuhkan untuk membuat langkah baru dalam meningkatkan performa dari sel elektrokimia untuk mengoptimalkan reaksi elektrokimia yang terjadi untuk berbagai macam aplikasi.
"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nikensashi Arumaninggar
"Paduan La1-xBixMnO3 (x= 0,05; 0,15; 0,2; 0,25 dan 0,35) telah berhasil dibuat melalui proses paduan mekanik. Penilitian ini bertujuan untuk mengetahui bagaimana pengaruh substitusi Bismuth (Bi) terhadap sifat magnetoresistansi bahan. Substitusi Bi pada site La diharapkan dapat terbentuk karena jari-jari ion yang hampir sama. Hasil karakterisasi XRD menunjukkan bahwa paduan La1- xBixMnO3 memiliki struktur kristal perovskite orthorombic. Secara umum hasil pengujian Four Point Probe pada suhu ruang menunjukkan penambahan Bi meningkatkan resistansi bahan. Rasio MR optimum mencapai -1,7% pada komposisi La0,95Bi0,05MnO3, paduan tersebut tidak mengalami transisi fasa magnetik, melainkan hanya diakibatkan oleh perubahan orientasi spin yang menjadi teratur karena medan magnet luar. Untuk komposisi Bi diatas 0,2, resistansi meningkat dengan penambahan medan magnet luar yang menyebabkan terjadinya fenomena Positive Magnetoresistance (PMR).

La1-xBixMnO3 compounds (x= 0,05; 0,15; 0,2; 0,25 and 0,35) has been made by mechanical alloying method. The objective of this research is to understand the Bi-substitution effects on the magnetoresistance properties. Bi is expected to substitute the La site due to their ionic radii similarity and it?s isovalence. The XRD characterization shows that La1-xBixMnO3 compound has perovskite orthorhombic crystal structure. The main finding of Four Point Probe characterization at the room temperature is that the Bi substitution increases the resistance of the material. The optimum value of magnetoresistance is up to - 1,7% (Negative Magnetoresistance) found at La0,95Bi0,05MnO3 compound and it does not involve the magnetic phase transition but only caused by the change of spin orientation under the influence of magnetic field. Positive Magnetoresistance are observed for the Bi composition above 0,2 which exhibits the enhancement of resistance by increasing of magnetic field."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S43289
UI - Skripsi Open  Universitas Indonesia Library
cover
Elang Barruna Altofan Ghaniwijaya
"Peningkatannya penggunaan energi fosil di dunia sangat berpengaruh terhadap tingginya efek gas rumah kaca. Penggunaan energi baru terbarukan merupakan salah satu solusi dalam mengatasi masalah tersebut, namun beberapa energi baru terbarukan memiliki kekurangan pada sisi intermittent sehingga dibutuhkannya penyimpanan energi dalam upaya menstabilkan output tersebut. Meningkatnya pengaplikasian penyimpanan energi di berbagai sektor mendorong perkembangan peranti penyimpanan energi untuk dapat memiliki perfoma energi dan daya yang tinggi, sehingga banyak sekali peneliti yang mencoba membuat suatu penyimpanan energi hibrida dengan kombinasi elektroda superkapasitor dan baterai lithium ion untuk memperoleh kelebihan dari kedua sisinya. Peranti ini disebut juga Kapasitor Lithium Ion. Katoda Kapasitor Lithium Ion terbuat dari material karbon aktif berbahan dasar ampas tebu yang dilakukan aktivasi fisika pada suhu tetap 800oC selama 90 menit dengan nilai rasio KOH terhadap karbon yang bervariasi. Besar rasio aktivator KOH terhadap karbon pada proses aktivasi sebanding dengan susut massa yang dihasilkan. Karbon aktif ampas tebu (SBAC) menghasilkan nilai luas permukan spesifik yang sangat tinggi, yaitu 3554,820m2/g yang didapatkan dari uji Brunauer-Emmet-Teller. Selain BET, SBAC dilakukan karakterisasi komposisi unsur dengan pengujian Energy Dispersive X ray yang menghasilkan informasi berupa persentase atom karbon sebesar 80%. Nilai rasio ID/IG dan La diperoleh dari uji Raman Spectroscopy untuk melihat struktur karbon dan besar ukuran kristalit. Pembuatan model persamaan dalam memprediksi hasil estimasi performa elektrokimia menghasilkan nilai kapasitansi spesifik sebesar 265,361 F/g.

The increasing use of fossil energy in the world is very influential in the high effect of greenhouse gases. The use of renewable energy is one solution to overcome this problem. Still, some renewable energy has shortcomings on the intermittent side so that energy storage is needed to stabilize the output. The increasing application of energy storage in various sectors encourages the development of energy storage devices to be able to have high energy and high power so that many researchers try to make hybrid energy storage with a combination of supercapacitor electrodes and lithium-ion batteries to obtain advantages from both sides. This device is also called a Lithium-Ion Capacitor. Lithium-Ion capacitor cathode is made of activated carbon material based on sugarcane bagasse, which is carried out in physical activation at a fixed temperature of 800oC for 90 minutes with the variation of the ratio KOH to carbon. The ratio of KOH to carbon activator in the activation process is proportional to the mass loss produced. Sugarcane bagasse activated carbon (SBAC) produces very high specific surface area values, ie, 3554,820m2/g obtained from the Brunauer-Emmet-Teller test. In addition to BET, SBAC characterization of elemental composition was done by testing Energy Dispersive X-ray, which produced information in the form of a carbon atom percentage of 80%. ID/IG and La ratio values were obtained from the Raman Spectroscopy test to see the carbon structure and crystallite size. Making an equation model in predicting the results of the estimated electrochemical performance produces a specific capacitance value of 265,361 F/g."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dede Nurhalimah
"Asam hipoklorit (HOCl) merupakan salah satu agen pengoksidasi kuat yang biasa digunakan sebagai desinfeksi air. Pada penelitian ini, pengembangan metode deteksi HOCl dengan teknik elektrokimia menggunakan elektroda carbon foam akan dilakukan. Carbon foam yang digunakan adalah carbon-coated nickel foam yang disintesis menggunakan metode hidrotermal-karbonisasi. Karakterisasi dilakukan dengan menggunakan FTIR, XRD, Raman, TGA, dan SEM-EDS. Sintesis carbon-coated nickel foam optimum pada pelapisan ke-4 (C@NF4) dan memiliki struktur berpori dan karakteristik D band dan G band dari material grafitik, yaitu pada 1352 cm-1 dan 1597 cm-1 dengan rasio ID/IG sebesar 0,74. Dengan bentuk kristal FCC dan luas permukaan aktif sebesar 0,02361 cm2, C@NF4 menunjukkan nilai respon arus puncak reduksi HClO terbaik pada potensial +0,7 V (vs. Ag/AgCl) pada kondisi optimum pH 6,0 dengan respon arus terbaik sebesar 0,67. Pengukuran ion hipoklorit pada rentang konsentrasi 200-2 μg/mL dengan teknik voltametri siklik menunjukan linearitas yang baik dengan sensitivitas sebesar 7,6828 μA/ μg/mL hipoklorit dan batas deteksi 3,2 μg/mL; sedangkan pengukuran dengan amperometri menunjukkan sensitivitas 9,112 μA/μg/mL hipoklorit dan batas deteksi 1,96 μg/mL. Keberulangan yang baik ditunjukkan dengan dengan nilai %RSD sebesar 9,08% pada 10 kali pengulangan. Sensor ini juga menunjukkan selektivitas yang baik dengan keberadaan senyawa interferensi seperti NaCl, FeCl2 dan CuSO4. Hasil pengukuran ion hipoklorit dalam air keran menggunakan sensor yang telah dikembangkan menunjukkan kesesuaian antara teknik voltametri siklik-amperometri dengan metode UV-VIS (2,95 μg/mL hipoklorit).

Hypochlorous acid (HOCl) is one of the strong oxidizing agents which is commonly used as water disinfection. In this study, the development of the HOCl detection method with electrochemical techniques using carbon foam electrodes will be carried out. The carbon foam used is carbon-coated nickel foam which is synthesized using the hydrothermal-carbonization method. Characterization was carried out using FTIR, XRD, Raman, TGA, and SEM-EDS. The optimum synthesis of carbon-coated nickel foam in the 4th coating (C@NF4) and has a porous structure and the characteristics of the D band and G band of the graphitic material, namely at 1352 cm-1 and 1597 cm-1 with an ID/IG ratio of 0 ,74. With a crystal form of FCC and an active surface area of 0.02361 cm2, C@NF4 shows the best peak current response value for HClO reduction at a potential of +0.7 V (vs. Ag/AgCl) at an optimum condition of pH 6.0 with the best current response. of 0.67. Measurement of hypochlorite ion in the concentration range of 200-2 g/mL with cyclic voltammetry technique showed good linearity with sensitivity of 7.6828 A/μg/mL of hypochlorite and detection limit of 3.2 μg/mL; while the amperometric measurements showed a sensitivity of 9.112 A/μg/mL hypochlorite and a detection limit of 1.96 g/mL. Good repetition is indicated by the %RSD value of 9.08% in 10 repetitions. This sensor also shows good selectivity in the presence of interference compounds such as NaCl, FeCl2 and CuSO4. The results of the measurement of hypochlorite ions in tap water using a sensor that has been developed indicate the suitability of the cyclic-amperometric voltammetry technique with the UV-VIS method (2.95 g/mL hypochlorite)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Heru Kuntoro Ashadi
"Dengan kemajuan teknologi, peningkatan penggunaan penyimpanan energi yang begerak juga semakin bertambah. Salah satu bahan aktif yang digunakan dalam katoda baterai ion litium adalah LiFePO4. Dalam penelitian ini, telah dilakukan sintesis dan proses pemberian doping Na pada material katoda LiFePO4/C menjadi material komposit Li1-xNaxFePO4/C dengan (x = 0, 0,01, 0,02, 0,03, 0,04 dan 0,05) dilakukan dengan kombinasi proses reaksi kimia basah (wet chemical) dan padatan (solid state) pada temperatur kalsinasi 350oC selama 1 jam proses sintering 750oC selama 4 jam. Karakterisasi morfologi, struktur mikro dan komposisi dilakukan dengan menggunakan difraksi sinar-X (XRD) dan mikroskop elektron yang dilengkapi dengan pemindai komposisi (SEM/EDX), sedangkan karakterisasi elektrokimia dalam bentuk sel koin R2032 dilakukan dengan menggunakan voltametri siklik (CV), spektroskopi impedansi elektrokimia (EIS) dan pengisian dan pengosongan (Charge-Discharge). Hasil XRD menunjukkan bahwa semua sampel sesuai dengan LiFePO4/C standar dengan struktur olivine pada kondisi x = 0, sedangkan hasil SEM menunjukan bahwa ukuran partikel semua sampel adalah berkisar antara sekitar 1 sampai dengan 3 µm. Hasil uji CV menunjukkan bahwa doping Na jelas meningkatkan reversibilitas dan perilaku dinamis interkalasi dan deinterkalasi ion lithium. Hasil EIS menunjukkan bahwa doping Na mengurangi resistensi transfer pada material katoda LiFePO4/C dengan meningkatkan koefisien difusi ion lithium. Dapat disimpulkan dari semua karakteriasi material sampel dan sel koin bahwa doping Na dapat meningkatkan kinerja elektrokimia material katoda dengan hasil yang optimal pada x = 0,02 sampai 0,03.

With the advancement of technology, there is an increase use of mobile energy storage. One of the active materials used in lithium ion battery cathode is LiFePO4. In this work, synthesis and characterization of Li1-xNaxFePO4/C (x = 0, 0.01, 0.02, 0.03, 0.04 dan 0.05) composite has been carried out. The synthesis was performed via combination of wet chemical reaction processes to obtain FePO4 and continued with the process of mixing through solid state reaction method to form Li1-xNaxFePO4/C. In this work, nominal x ratio of sodium to lithium was varied from 0 to 5 wt.%. The calcination was carried out for 1 hour at 350 °C and continued with sintering at 750 °C for 4 hours under nitrogen environment. Morphological characterization and microstructure observation were performed using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD), respectively. The XRD results showed that the obtained active material has uniformity in comparison to the LiFePO4 standard with olivine structure for x = 0. With the addition of sodium, there is an indication that the peak shifted to the lower at the optimum angle. Observation on the morphology showed that the particle size of the obtained active material ranges from about 1 to 3 µm, whereas analysis on the composition showed consistent results. This is as an indication that the synthesis of Li1-xNaxFePO4/C composite has been carried out successfully. The CV test results show that Na doping increases the reversibility and dynamic behavior of lithium ion intercalation and deintercalation. The EIS results show that Na doping reduces transfer resistance in the LiFePO4/C cathode material by increasing the diffusion coefficient of lithium ions. It can be concluded from all the characteristics of the sample material and coin cell that Na doping can improve the electrochemical performance of the cathode material with optimal results at x = 0.02 to 0.03."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nabila Jasmine
"Nanofluida memiliki nilai konduktivitas termal yang baik sehingga baik untuk digunakan sebagai media pendingin bagi perlakuan panas baja. Nanofluida pada penelitian ini akan menggunakan nanopartikel carbon nanotube dan akan ditambahkan surfafktan berupa Sodium Dodecyl Benzene Sulphonate atau SDBS untuk membantu menstabilkan nanofluida. Untuk mengkarakterisasi nanopartikel dilakukan pengujian Field-Emission Scanning Electron (FE-SEM) dan Energy Dispersive X-Ray Spectroscopy (EDS) untuk melihat bentuk struktur carbon nanotube serta mengetahui komposisi dari carbon nanotube dan didapatkan hasil berupa 100% Wt% C. Nanofluida lalu difabrikasi dengan cara menimbang serbuk carbon nanotube as-received dengan variabel konsentrasi 0,01%, 0,03%, dan 0,05% dan dimasukkan ke dalam beaker 100 mL. Variabel dari konsentrasi surfaktan SDBS yang digunakan adalah 0%, 10%, 20%, dan 30%. Dispersi dari nanopartikel lalu dilakukan dengan mencampurkan bahan-bahan berupa nanopartikel dan surfaktan serta air distilasi lalu diultrasonifikasi selama 15 menit untuk melarutkan fluida. Setelah itu dilakukan pengujian konduktivitas termal sebanyak 10 kali menggunakan alat pengukur konduktivitas termal KD2 pada masing-masing variabel lalu dirata-rata. Selain itu dilakukan juga pengujian Zeta Potensial untuk melihat nilai potensial zeta dari nanofluida yang menujukkan kestabilan dari nanofluida sendiri. Semakin stabil suatu nanofluida, semakin baik ia dalam menghantarkan atau mengkonduksi panas.

Nanofluids have good thermal conductivity, so they are good for use as a cooling medium for steel heat treatment. Nanofluids in this research will use carbon nanotube nanoparticles and surfafktan in the form of Sodium Dodecyl Benzene Sulphonate or SDBS will be added to help stabilize the nanofluids. To characterize nanoparticles, Field-Emission Scanning Electron (FE-SEM) and Energy Dispersive X-Ray Spectroscopy (EDS) tests were performed to see the structure of carbon nanotubes and to determine the composition of carbon nanotubes and the results were 100% Wt% C. Nanofluids then fabricated by weighing as-received carbon nanotube powder with variable concentrations of 0.01%, 0.03%, and 0.05% and put into a 100 mL beaker. Variables of SDBS surfactant concentrations used were 0%, 10%, 20%, and 30%. The dispersion of the nanoparticles is then carried out by mixing the materials in the form of nanoparticles and surfactants and distilled water and then ultrasonification for 15 minutes to dissolve the fluid. After that the thermal conductivity test was conducted 10 times using a KD2 thermal conductivity meter on each variable then averaged. Potential Zeta testing is also carried out to see the zeta potential value of the nanofluid that shows the stability of the nanofluid itself. The more stable a nanofluid is, the better it is at delivering or conducting heat."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>