Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 34678 dokumen yang sesuai dengan query
cover
Haryo Bimo Cokrokusumo
"Dalam penelitian ini, algoritma in-house berbasis RED-CNN disusun dan dilatih menggunakan citra fantom PMMA silinder berdiameter 26 cm pada lima nilai fluks simulasi noise berbeda (5,00 x 104, 7,50 x 104, 1,00 x 105, 1,50 x 105, dan 2,00 x 105). Model diuji pada citra fantom PMMA berbentuk ellips dengan ukuran 21 x 26 cm pada lima nilai fluks simulasi noise berbeda (5,00 x 104, 1,00 x 105, 1,50 x 105, 2,50 x 105, dan 5,00 x 105) untuk mengevaluasi kemampuan denoising dari model dengan menggunakan nilai signal to noise ratio (SNR), peak signal to noise ratio-desibel (PSNR-dB), structural similarity (SSIM) index, dan noise power spectrum (NPS) sebagai parameter. Evaluasi terhadap kemungkinan penurunan kualitas citra juga dilakukan dengan menguji model menggunakan citra fantom homogen dan citra fantom kawat yang diperoleh menggunakan lima nilai mAs berbeda (155 mAs, 200 mAs, 250 mAs, 275 mAs, dan 300 mAs). Hasil menunjukkan bahwa model dapat secara konsisten meningkatkan nilai SNR, PSNR-dB, SSIM dan spektrum noise yang terukur. Hasil yang diperoleh juga menunjukkan adanya kemungkinan citra mengalami over-smoothing apabila model diaplikasikan pada citra dengan tingkat noise lebih rendah, ditandai dengan adanya pergeseran puncak kurva NPS menuju frekuensi spasial rendah dan peningkatan nilai SNR, PSNR-dB, dan SSIM secara terus-menerus. Selain itu, tingkat noise dari data latih yang digunakan dalam proses pelatihan juga mempengaruhi performa akhir dari model. Pada penggunaan data latih dengan tingkat noise lebih rendah, penurunan nilai SNR, PSNR-dB, dan SSIM dan kenaikan kurva NPS yang terukur mengindikasikan tingkat noise lebih tinggi pada citra hasil supresi. Sementara itu, penggunaan data latih dengan tingkat noise lebih tinggi menyebabkan penurunan pada ketajaman citra yang ditandai dengan penurunan nilai frekuensi cut-off dari modulation transfer function (MTF 10%) hingga 45,41% dari citra awal.

In this study, an in-house RED-CNN-based algorithm was composed and trained using cylindrical PMMA phantom images with a diameter of 26 cm on five different noise simulation flux values (5,00 x 104, 7,50 x 104, 1,00 x 105, 1,50 x 105, and 2,00 x 105). The model was tested on 21 x 26 cm elliptical PMMA phantom images on five different simulated noise flux values (5,00 x 104, 1,00 x 105, 1,50 x 105, 2,50 x 105, and 5,00 x 105) to evaluate its denoising capability using signal to noise ratio (SNR), peak signal to noise ratio-decibel (PSNR-dB), structural similarity (SSIM) index, and noise power spectra (NPS) values as parameters. Evaluation on possible decrease of image quality was also performed by testing the model using homogenous phantom and wire phantom images acquired using five different mAs values (155 mAs, 200 mAs, 250 mAs, 275 mAs, and 300 mAs). Results show that the model was able to consistently increase SNR, PSNR-dB, SSIM values and the measured noise spectra. It is also shown that there exists a possibility of image over-smoothing when the model was applied on images with less noise, marked by the shift of the NPS curves towards lower spatial frequencies and the continuous increase of SNR, PSNR-dB, and SSIM. Moreover, the noise level of training data used in model training is shown to affect the final performance of the model. On the use of training data with lower noise level, the decrease of SNR, PSNR-dB, and SSIM, and the increase of NPS curves indicate higher noise level in suppressed images. Meanwhile, the use of training data with higher noise resulted on the decrease of denoised images sharpness, as indicated by an up to 45,41% decrease of modulation transfer function cut-off frequency (MTF 10%) from the original images."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rezika Damayanti
"Jagung (Zea mays L.) merupakan salah satu tanaman serelia atau tanaman biji-bijian yang menjadi bahan pangan utama terpenting setelah padi dan gandum di dunia. Komoditas jagung dinilai sangat penting karena memiliki fungsi multiguna sebagai bahan pangan, bahan baku industri, bahan pakan ternak dan bahan bakar nabati. Seiring dengan kebutuhan jagung yang kian naik dari tahun ke tahunnya, kekurangan produksi dalam pasokan jagung global dan kenaikan harga input jagung menjadi hal yang harus diperhatikan karena memiliki dampak yang serius. Salah satu ancaman utama bagi produksi jagung adalah penyakit daun jagung yang disebabkan oleh jamur, beberapa diantaranya adalah Gray leaf spot, Northern leaf blight, dan Common rust. Gray leaf spot, Northern leaf blight, dan Common rust dapat menyebabkan hilangnya hasil panen sekitar 50%-70% di beberapa daerah penghasil jagung di dunia. Oleh karena itu, salah satu cara yang dapat dilakukan untuk mengurangi resiko kegagalan produksi jagung adalah mengambil langkah-langkah pencegahan dengan pendeteksian dini pada penyakit daun jagung melalui citra digital. Pada penelitian ini, digunakan pendekatan deep learning dengan metode Convolutional Neural Network (CNN) arsitektur ResNet-50 yang merupakan salah satu metode yang paling baik dalam mengolah citra digital. Data yang digunakan adalah Maize or Corn Dataset oleh Smaranjit Ghose dan diambil dari Kaggle yang merupakan online database. Setelah itu, dilakukan tahapan mengolah data citra dengan melakukan preprocessing data yang bertujuan agar meningkatkan akurasi seperti mengubah ukuran dan melakukan flip horizontal kemudian rotasi. Hasil penelitian menunjukkan bahwa Convolutional Neural Network ResNet-50 dengan menggunakan fungsi optimasi Adam dapat mendeteksi penyakit daun jagung dengan sangat baik. Hasil tersebut diperoleh dari 5 kali percobaan simulasi pada setiap skenario kasus yang menghasilkan rata-rata nilai training dan validation accuracy sebesar 98,68% dan 97,86%. Kemudian, rata-rata hasil accuracy testing, recall macro, recall micro, precision macro dan precision micro terbaik diperoleh dengan hasil masing-masing sebesar sebesar 97,49%, 97,13%, 97,53%, 96,69% dan 97,87%.

Maize (Zea Mays L.) is one of the cereal plants or grain crops that become an important food ingredient after rice and wheat in the world. Maize is also considered very important because it has a multi-purpose function as food, industrial raw materials, animal feed ingredients, and biofuels. Along with increasing demand for maize from year to year, lack of production for global maize supply and increase of maize price is one thing that needs more attention because it has a serious impact. One of the main threats to maize production is maize leaf disease that is caused by fungi, some of them are Gray leaf spot, Northern leaf blight, and Common rust. Gray leaf spot, Northern leaf blight, and Common rust can lead to reduced yields of about 50%-70% in some maize-producing areas. Therefore, one method that can be done to reduce the failure of maize production is taking preventive measures by detecting disease using digital images. This study uses deep learning methods by Convolutional Neural Network (CNN) ResNet-50 architecture, which is one of the best methods in processing digital images. The data used in this study is Maize or Corn Dataset by Smaranjit Ghose and taken from Kaggle which is an online database. After that, the stages of processing image data are carried out by preprocessing data to increase accuracies such as resizing and doing horizontal flips and rotations. The results showed that the Convolutional Neural Network ResNet-50 using the Adam optimization function could detect maize leaf disease very well. These results were obtained from 5 simulations experiments in each case scenario which resulted in an average value of training and validation accuracy of 98.68% and 97.86. Then, the average results of the best accuracy testing, recall macro, recall micro, precision macro, and precision micro were obtained with results of 97.49%, 97.13%, 97.53%, 96.69%, and 97,87%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hasbullah
"Survei Kesehatan Indonesia (SKI) tahun 2023 yang dilakukan oleh Kementerian Kesehatan (Kemenkes) ada sekitar 70 juta perokok aktif di Indonesia. Apabila dihitung dari populasi penduduk Indonesia ada 28,62% penduduk yang merokok di tahun 2023 dan persentase ini meningkat dari tahun sebelumnya sebanyak 0,36%. Perilaku merokok ini menyebabkan berbagai penyakit seperti penyakit paru-paru kronis, kerusakan gigi, penyakit mulut, stroke, serangan jantung, kanker rahim, gangguan mata, dan kerusakan pada rambut. Untuk menekan jumlah perokok di Indonesia, diperlukan sistem untuk deteksi perokok. Deteksi perokok saat ini memakan biaya yang mahal, bantuan ahli, dan sistem yang kompleks. Oleh karena itu, deep learning dengan algoritma Convolutional Neural Network hadir sebagai solusi untuk mengatasi masalah tersebut. Skripsi ini membahas bagaimana merancang sistem deep learning dengan Convolutional Neural Network (CNN) untuk keperluan deteksi wajah perokok. Skripsi ini juga membahas bagaimana pengaruh berbagai skenario jumlah data pelatihan dan data pengujian serta penambahan ekstraksi fitur wajah terhadap metrik evaluasi . Hasil dari rancangan dievaluasi dengan metrik evaluasi kalkulasi loss function, akurasi, dan F1 score. Hasil simulasi menunjukan skenario data pelatihan 70% dan data pengujian 30% adalah skenario terbaik dengan nilai metrik evaluasi pengujian pada skenario ini sebesar 2.236 untuk loss, 54.5% untuk akurasi, dan 34.9% untuk F1 score. Skenario ini diimprovisasi dengan adanya penambahan ekstraksi fitur perokok pada awal preprocessing yang ditandai dari penurunan loss sebesar 65.65%, peningkatan akurasi sebesar 19%, dan peningkatan F1 score sebesar 24.08%.

The 2023 Indonesian Health Survey (SKI) conducted by the Ministry of Health (Kemenkes) reported that there are approximately 70 million active smokers in Indonesia. This accounts for 28.62% of the Indonesian population in 2023, representing a 0.36% increase from the previous year. Smoking behavior leads to various diseases such as chronic lung disease, tooth damage, oral diseases, stroke, heart attacks, uterine cancer, eye disorders, and hair damage. To reduce the number of smokers in Indonesia, a smoker detection system is necessary. Current smoker detection methods are expensive, require expert assistance, and involve complex systems. Therefore, deep learning with Convolutional Neural Network (CNN) algorithms presents a solution to address these issues. This thesis discusses how to design a deep learning system using Convolutional Neural Networks (CNN) for smoker face detection. It also examines the impact of different training and testing data scenarios and the addition of facial feature extraction on evaluation metrics. The designed system is evaluated using metrics such as loss function calculation, accuracy, and F1 score. The simulation results show that a scenario with 70% training data and 30% testing data is the best scenario, yielding evaluation metric values of 2.236 for loss, 54.5% for accuracy, and 34.9% for F1 score. This scenario was improved with the addition of smoker feature extraction in the preprocessing stage, resulting in a 65.65% reduction in loss, a 19% increase in accuracy, and a 24.08% increase in F1 score."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ida Bagus Krishna Yoga Utama
"Convolutional Neural Network (CNN) banyak digunakan untuk menyelesaikan masalah klasifikasi gambar karena kinerjanya yang baik, namun untuk masalah klasifikasi berbasis vektor yang menggunakan jaringan saraf convolutional jarang digunakan. Para peneliti cenderung menggunakan metode lain dari jaringan saraf tiruan, seperti jaringan saraf Backpropagation (BPNN), probabilitas jaringan saraf (PNN), sebagai pengklasifikasi untuk masalah klasifikasi berbasis vektor.
Dalam penelitian ini, digunakan Vector-based CNN untuk mengklasifikasi masalah 6 kelas, 12 kelas, dan 18 kelas dari tiga campuran aroma menggunakan 4, 6, 8, dan 16 buah sensor. Untuk membandingkan kinerja Vector-based CNN, Backpropagation Neural Network juga digunakan untuk mengklasifikasikan masalah klasifikasi aroma yang sama.
Hasil percobaan menunjukkan bahwa Vector-based CNN menghasilkan tingkat pengenalan yang cukup tinggi dibandingkan dengan Backpropagation neural network.

Convolutional Neural Network (CNN) is widely used in image classification problems because of its good performance, however, Vector-based classification using a convolutional neural network is rarely utilized. Researchers tend to use another method of artificial neural networks, such as Backpropagation neural network, probability neural networks, as the classifier for Vector-based classification problems.
In this paper, we would like to use a CNN classifier in the problems of 6,12, and 18 classes of three mixture of odor using 4, 6, 8, and 16 channels of sensors. In order to compare the performance of the Vector-based Convolutional Neural Network, Backpropagation Neural Network is also used to classify the same Vector-based odor classification problems.
The Experiment results show that Vector-based convolutional neural network yields a quite high recognition rate compare with that of Backpropagation neural network.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adinda Maharani Dwi Yuan Syah
"ABSTRAK
Daerah perbatasan perairan Indonesia merupakan salah satu wilayah yang rentan akan kegiatan ilegal yang dapat merugikan negara. Oleh karena itu, perlu adanya pengawasan untuk setiap objek yang melewati perbatasan perairan tersebut. Pengawasan dapat dilakukan dengan pendeteksian jenis kapal yang melewati area perbatasan antar negara. Saat ini di Indonesia sudah terdapat pendeteksian khusus untuk mendeteksi adanya kapal perang asing. Selain kapal perang, kapal nelayan juga perlu dilakukan pengawasan untuk mencegah adanya illegal fishing. Pendeteksian kapal perang dan kapal nelayan dapat dilakukan dengan menggunakan mesin. Mesin dapat diprogram untuk menjalani perintah secara berulang kali, hal tersebut disebut sebagai Machine Learning, yang merupakan salah satu bidang dari Artificial Intelligence. Metode untuk memprogram pembelajaran mesin tersebut disebut dengan Deep Learning. Deep learning bekerja dengan membentuk hubungan antara neuron seperti layaknya cara kerja otak manusia atau biasa disebut dengan neural network.Salah satu jenis dari neural network yang terkenal adalah Convolutional Neural Network(CNN). CNN digunakan untuk simulasi pendeteksian kapal nelayan dan kapal militer dengan hasil keluaran berupa nilai akurasi training, akurasi validasi, dan juga prediksi. CNN juga ditambahkan additional layer, yaitu dropout dan batch normalization untuk meningkatkan ketepatan prediksi. Hasil yang didapatkan adalah pengaruh dari parameter layer dan dataset yang digunakan terhadap nilai akurasi pada pelatihan program. Dari simulasi didapatkan nilai akurasi yang paling baik dengan penggunaan pooling layer jenis max pooling dengan penggunaan layer tambahan berupa batch normalization dan dropout.

ABSTRACT
Indonesia's waters border is one of the areas that are vulnerable to illegal activities that can disserve the country. Detecting types of ships that cross border areas between countries is needed. Controlling can use machine thats automatically detect the object can do detection of warships and fishing boats. The concept is called machine learning. Machine learning is one of the types of Artificial Intelligence. The method for programming the machine learning is called Deep Learning. Deep learning works by forming relationships between neurons like the way the human brain works or commonly called a neural network. Convolutional Neural Network (CNN) is the famous method for deep learning. CNN is used to simulate the detection of fishing vessels and military vessels with the output in the form of training accuracy, validation accuracy, and the final prediction. CNN can also added an additional layer, namely dropout and batch normalization to improve the accuracy of predictions. The results obtained are the effect of the layer and dataset parameters used on the accuracy value in the training program. The best accuracy is obtained by using max pooling for pooling layer with additional layers of batch normalization and dropout."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Saragih, Glori Stephani
"Di Indonesia, stroke merupakan penyakit dengan angka kematian tertinggi yaitu menempati urutan pertama selama
lebih dari dua dekade, 1990-2017. Stroke dibagi menjadi dua jenis, iskemik dan hemoragik, namun 87% penderita
stroke adalah stroke iskemik. Sementara itu, jika pasien menderita stroke iskemik dan hal tersebut baru pertama kali
terjadi, maka penderita harus segera mungkin mendapatkan penanganan. Hal ini dikarenakan adanya golden period
pada penanganan stroke yaitu selama 4.5 jam, agar penderita dapat tertolong dan mengurangi risiko kematian atau
kecacatan permanen. Oleh karena itu, penting adanya deteksi dini, sehingga banyak penelitian yang dilakukan
khususnya di bidang teknologi untuk melakukan diagnosis otomatis guna membantu dokter. Machine learning dan
deep learning adalah metode yang sering digunakan karena kemampuannya memberikan hasil prediksi dengan akurasi tinggi. Pada penelitian ini penulis akan memberikan pembaruan dalam pendeteksian stroke iskemik berdasarkan CT scan pasien dengan mengganti peran neural networks untuk klasifikasi pada CNN dengan random forest, support vector machines and k-nearest neighbors. Berdasarkan metode yang dirancang, akurasi pada data training didapatkan 100% untuk RF dan SVM. Dalam validasi data, RF (94,07%) menghasilkan akurasi yang lebih tinggi pada nilai rata-rata dibandingkan dengan SVM (93,20%) dan kNN (79,01%).

In Indonesia, stroke is a disease with the highest mortality rate, which ranks first for more than two decades, 1990-
2017. Stroke is divided into two types, ischemic and hemorrhagic, but 87% of stroke patients are ischemic stroke.
Meanwhile, if the patient suffers from an ischemic stroke and this is the first time it has happened, then the patient
should get treatment as soon as possible. This is because there is a golden period in stroke treatment, which is 4.5
hours, so that patients can be helped and reduce the risk of death or permanent disability. Therefore, early detection is important, so that a lot of research has been carried out, especially in the field of technology to carry out automatic diagnosis to help doctors. Machine learning and deep learning are methods that are often used because of their ability to provide predictive results with high accuracy. In this study, the authors will provide an update in the detection of ischemic stroke based on CT scans of patients by replacing the role of neural networks for classification on CNN with random forests, support vector machines and k-nearest neighbors. Based on the designed method, the accuracy of the training data is 100% for RF and SVM. In data validation, RF (94.07%) resulted in higher accuracy in the average value compared to SVM (93.20%) and kNN (79.01%).
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Yahya Muhammad
"Pada beberapa orang difabel mengalami kesulitan pada saat bergerak dalam aktivitas sehari-harinya. Penggunaan prostetik dapat mengurangi keterbatasan tersebut. Pada penggunaan prostetik dapat dimodifikasi dengan alat bantu gerak (aktuator) yang dikendalikan oleh brain computer interface (BCI) guna mengontrol prostetik dengan gelombang otak. Aktivitas membayangkan melakukan gerak motorik yang disebut motor imagery (MI) apabila dapat di-recognition dapat memudahkan pada difabel untuk mengendalikan prostetik miliknya. Tulisan ini bertujuan untuk menjelaskan bagaimana me-recognition sinyal elektroensefalografi (EEG) dengan mencoba mengklasifikasikan sinyal MI EEG. Simulasi dilakukan pada bahasa Python pada framework Tensorflow, Keras. Jenis machine learning yang dipilih adalah Convolutional Neural Network (CNN). Dataset diperoleh dari PhysioNet.org, diolah dengan metode Continuous Wavelet Transformation (CWT) dengan library MNE.

Some people with disabilities have trouble doing their daily activities. Prosthetics could reduce the difficulties to some degree. The use of a prosthetic can be modified by the addition of an actuator (generate of motion) driven by BCI (brain computer interface) to control prosthetic by brain waves. If we could make the recognition of the brain wave in imaginary activities of motoric movement called motor imagery (MI), it would help people with disabilities to better control their prosthetics. This article’s aim to describe how to do the recognition of EEG signals (electroencephalography) by trying to classify the MI EEG signals. The simulation was run in Phyton on a Tensorflow framework, with a keras wrapper. Convolutional Neutral Network (CNN) was chosen in this research as the machine learning. The datasets gathered from PhysioNet.org were transformed using the library MNE with the Continuous Wavelet Transformation (CWT) method."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Durrabida Zahras
"Untuk memenuhi tantangan dalam hal meningkatnya jenis penyakit di era modern ini, teknologi memainkan peran yang sangat penting dalam penelitian kesehatan. Kesehatan wanita telah menjadi perhatian utama karena meningkatnya angka kanker serviks yang  dapat menjadi penyakit mematikan. Dalam studi ini, kami akan menggunakan Deep Convolutional Neural Network untuk menemukan akurasi dalam mengklasifikasikan data kanker serviks pada empat jenis metode. Data kanker serviks diwakili oleh 32 faktor risiko dan empat variabel target: Hinselmann, Schiller, Cytology, dan Biopsy. Presentase akurasi metode Deep Convolutional Neural Network cukup baik jika dibandingkan dengan Neural Network dalam hal pengklasifikasian data faktor risiko kanker serviks, kita dapat melihat bahwa setiap data diklasifikasikan dengan benar dengan total akurasi mencapai hampir 90% untuk setiap target.

To meet the challenge of the increasing types of disease in this modern era, technology plays a very important role in health research. Womens health has become a major concern because of the increasing rates of cervical cancer because it can be a deadly disease. In this study, we will use deep Convolutional Neural Networks to find the accuracy in classifying cervical cancer data on four different types of methods. The cervical cancer data are represented by 32 risk factors and four target variables: Hinselmann, Schiller, Cytology, and Biopsy. The result with deep learning method is quite encouraging compare to the original neural network in classyfying cervical risk dataset, we can see that each data were correctly classified with the total accuracy reach almost 90% for each target.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldi Hilman Ramadhani
"Penelitian ini memiliki tujuan untuk mencari model machine learning yang dapat mengenali kegiatan yang dilakukan pengguna ATM, serta mencari algoritma terbaik untuk mengetahui kapan suatu kegiatan pengguna ATM dimulai dan selesai pada suatu video. Terdapat sembilan jenis aktivitas berbeda yang ingin dideteksi. Penelitian ini dapat dibagi dalam dua fase, yaitu fase mencari rentang waktu aktivitas pada video yang disebut fase deteksi aktivitas, dan fase mengenali aktivitas tersebut yang disebut fase pengenalan aktivitas. Pada fase pengenalan aktivitas, penulis mengajukan suatu rancangan arsitektur 3D CNN, serta melakukan eksperimen terhadap parameter pada arsitektur tersebut. Setelah melakukan beberapa eksperimen, didapatkan model terbaik dengan kernel berukuran 3 x 3 x 3, menggunakan input video dengan piksel berukuran 20 x 20 per frame, dan menggunakan dua lapis layer ekstraksi fitur. Pada fase deteksi aktivitas, penulis mengajukan suatu rancangan fungsi deteksi aktivitas, yang mengikuti framework ‘classification lalu post-processing’ yang merupakan salah satu framework untuk deteksi aktivitas (Yao et al., 2018), serta melakukan eksperimen terhadap parameter pada fungsi tersebut. Setelah melakukan beberapa eksperimen, didapatkan performa terbaik dengan parameter teta sebesar 20, dan konstanta C sebesar 365. Pada kedua eksperimen tersebut, terdapat beberapa kesalahan yang dilakukan, sehingga diperlukan eksperimen lanjutan dimana kesalahan tersebut tidak dilakukan. Kesalahan tersebut adalah model kemungkinan besar masih underfit, dan terdapat permasalahan pada pemotongan video manual pada dataset. Setelah menyelesaikan kesalahan tersebut, model untuk fase pengenalan aktivitas mendapatkan akurasi sebesar 93.94%, presisi sebesar 96.36%, recall sebesar 93.94%, dan f-score sebesar 93.69%. Pada sisi lain, dalam fase deteksi aktivitas didapatkan akurasi sebesar 94.44%, presisi sebesar 96.30%, recall sebesar 96.30%, dan f-score sebesar 94.07%.

This research aims to find a machine learning model that can recognize the activities of ATM users, and find the best algorithm to find when each ATM user activity starts and finishes on a video. There are nine different types of activities that this study want to detect. This research can be divided into two phases, namely the phase of detecting for a time span of activity on a video that is called the activity detection phase, and the phase of recognizing that activity that is called the activity recognition phase. In the activity recognition phase, I propose a 3D CNN architecture design, and conduct experiments on the parameters of the architecture. After carrying out several experiments, the best model is obtained with a kernel with dimensions of 3 x 3 x 3, using video input with pixels measuring 20 x 20 per frame, and using two layers of feature extraction layer. In the activity detection phase, I propose an activity detection function, which follows the ‘classification then post-processing’ framework, which is one of the frameworks for activity detection (Yao et al., 2018), and conducts experiments on the parameters of the function. After carrying out several experiments, the best performance was obtained with a theta parameter of 20, and a constant C of 365. In both experiments, there were some errors made, so that further experiments were needed to be done, where the errors were not carried out. The error is that the model is most likely still in underfit phase, and there are problems with manual video clipping on the dataset. After resolving these errors, the model for the activity recognition phase gained an accuracy of 93.94%, a precision of 96.36%, a recall of 93.94%, and an f-score of 93.69%. On the other hand, in the activity detection phase an accuracy of 94.44% is obtained, a precision of 96.30%, a recall of 94.44%, and an f-score of 94.07%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia , 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ashari
"ABSTRACT
Tugas akhir ini membahas mengenai Neural Network yang diaplikasikan dalam simulasi pengendalian plant. Plant yang digunakan adalah Pressure Process Rig 38-714. Pengendali yang digunakan adalah pengendali yang bekerja dengan nilai masukan berupa nilai eror dari nilai keluaran plant yang dibandingkan dengan nilai keluaran referensi. Kesuksesan percobaan ditinjau dari seberapa bagus keluaran plant yang dipasang pengendali ketika dibandingkan dengan sinyal referensinya dan ketahanannya terhadap gangguan. Hasil percobaan menunjukkan NN dengan metode Backpropagation memberikan performa yang baik walaupun diberi gangguan dengan batasan nilai tertentu.

ABSTRACT
This project discuss about the application of Neural Network in a simulation as a controller of a plant. Pressure Process Rig 38-714 is used as the plant. Error based NN is used as the controller. The controller’s input is the error signal from the output signal of plant compared to reference signal. The success rate is viewed by the similarity of the output of plant compared to the reference signal amd their robustness against noise. The testing result shows that NN based on backpropagation method has a great performance and robustness when there is noise."
2014
S57664
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>