Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 146060 dokumen yang sesuai dengan query
cover
Zaid Abdurrahman
"Kemajuan teknologi memicu pertumbuhan industri teknologi dan mendorong masyarakat untuk menggunakan smartphone, terutama untuk berkomunikasi di media sosial. Media sosial merupakan tempat yang efektif untuk mencari berbagai informasi. Oleh karena itu, media sosial menyimpan banyak data, terutama data tekstual. Data tersebut muncul dari para pengguna yang jumlahnya meningkat pesat. Data tekstual bisa digunakan untuk analisis sentimen. Skripsi ini membahas analisis sentimen untuk melihat kecenderungan suatu informasi dari penulisnya. Analisis sentimen mengklasifikasikan data tekstual menjadi kelas sentimen positif dan negatif. CNN merupakan salah satu algoritma deep learning yang dapat mengklasifikasi data tekstual. Model dari algoritma CNN menunjukkan hasil yang cukup baik dalam mengkalsifikasi permasalahan analisis sentimen dengan bantuan lifelong learning. Lifelong learning merupakan machine learning yang menyerupai proses belajar pada otak manusia. Proses yang dijalankan yaitu dengan memanfaatkan hasil pembelajaran dari masa lalu untuk membantu pembelajaran pada masa depan. 4 dataset dengan domain yang berbeda, dijalankan menggunakan model CNN pada proses Lifelong learning dan menghasilkan akurasi yang meningkat, seiring dengan penambahan dataset pada proses training.

Technological advances are fueling the growth of the technology industry and encouraging people to use smartphones, especially for surfing on social media. Social media is an effective tool to find information. Therefore, social media stores a lot of data, especially textual data. The data came from users whose numbers had increased rapidly. Textual data can be used for sentiment analysis. Sentiment analysis is conducted in this study to obtain the tendency of the authors about an article. Sentiment analysis classifies textual data into a class of positive and negative sentiments. CNN is one of the deep learning algorithms that can classify textual data into positive, negative and natural classes. The model of the CNN algorithm shows good results in classifying the problem of sentiment analysis with the help of lifelong learning. Lifelong learning is a machine learning that resembles the learning process in the human brain. The process that is carried out is by utilizing learning outcomes from the past to help learning in the future. 4 datasets with different domains had ran using the CNN model in the Lifelong learning process, and produced increased accuracy along with the addition of datasets in the training process."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gita Kartika Suriah
"Analisis sentimen merupakan suatu proses untuk menentukan sikap atau sentimen dari penulis mengenai hal tertentu. Proses pengelompokan sentimen secara manual membutuhkan waktu cukup lama, sehingga diusulkan untuk menggunakan machine learning. Pada penelitian ini, model machine learning yang digunakan merupakan model CNN-BiLSTM (Convolutional Neural Network - Bidirectional Long Short-Term Memory) dan BiLSTM-CNN (Bidirectional Long Short-Term Memory - Convolutional Neural Network) yang menghasilkan kinerja yang lebih baik dibandingkan model CNN dan BiLSTM pada permasalahan analisis sentimen. Supaya model dapat belajar secara berkelanjutan dari beberapa domain data, model tersebut juga diimplementasikan lifelong learning. Hasilnya, model CNN-BiLSTM menunjukkan kinerja transfer of knowledge yang lebih baik dibandingkan oleh model BiLSTM-CNN maupun model dasarnya. Di sisi lain, model BiLSTM-CNN menunjukkan kinerja yang lebih buruk dibandingkan model dasarnya. Sedangkan, hasil loss of knowledge menunjukkan bahwa kinerja model CNN- BiLSTM lebih buruk dari BiLSTM-CNN. Selain itu, kedua model gabungan tersebut menunjukkan kinerja yang lebih baik dibandingkan model CNN, tetapi lebih buruk dibandingkan model BiLSTM. Untuk pengembangan lebih lanjut, diimplementasikan pula lifelong learning dengan pembaruan vocabulary. Dengan implementasi tersebut, model mampu mempelajari vocabulary dari domain data 2, 3, 4, dan 5. Pembaruan vocabulary ternyata meningkatkan kinerja model pada transfer of knowledge dan loss of knowledge.

Sentiment analysis is a process to determine the attitude or sentiment of the author regarding certain matters. The process of classifying sentiments manually takes a long time, so it is proposed to use machine learning. In this study, the machine learning model used is the CNN-BiLSTM (Convolutional Neural Network - Bidirectional Long Short-Term Memory) and BiLSTM-CNN (Bidirectional Long Short-Term Memory - Convolutional Neural Network) models which produce better performance than the CNN and BiLSTM models on the problem of sentiment analysis. In order for the model to learn continuously from several data domains, the model is also implemented lifelong learning. As a result, the CNN-BiLSTM model shows better transfer of knowledge performance compared to the BiLSTM-CNN model and its base model. On the other hand, the BiLSTM-CNN model shows a worse performance than its base model. Meanwhile, the results of loss of knowledge show that the performance of the CNN-BiLSTM model is worse than the BiLSTM-CNN model. In addition, the two combined models show better performance than the CNN model, but worse than the BiLSTM model. For further development, lifelong learning is also implemented with an update to vocabulary. With this implementation, the model is able to learn vocabulary from data domain 2, 3, 4, and 5. In fact, the vocabulary update has an effect in increasing the performances of transfer of knowledge and loss of knowledge.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farhatun Nurhaniifah
"Analisis sentimen dilakukan untuk menganalisis pendapat atau pandangan seseorang terhadap suatu masalah tertentu. Analisis sentimen dapat dilakukan secara manual, tetapi jika menggunakan data berskala besar akan lebih mudah dilakukan secara otomatis yaitu dengan menggunakan machine learning. Namun, machine learning hanya efektif digunakan pada satu domain saja sehingga dikembangkanlah lifelong learning. Lifelong learning merupakan machine learning yang dapat melakukan pembelajaran secara berkelanjutan. Pada penelitian ini, model yang digunakan adalah model CNN-LSTM dan LSTM-CNN. Pada kinerja transfer of knowledge, model CNN-LSTM dan LSTM-CNN menunjukkan hasil lebih baik dibanding model LSTM, tetapi kedua model gabungan tersebut kinerjanya lebih buruk dibanding model CNN. Sedangkan, pada kinerja loss of knowledge, model model CNN-LSTM dan LSTM-CNN menunjukkan hasil lebih baik dibanding model CNN, tetapi lebih buruk dibanding model LSTM. Pada penelitian ini, diimplementasikan juga lifelong learning dengan pembaruan vocabulary. Penambahan pembaruan vocabulary pada lifelong learning meningkatkan kinerja model CNN, LSTM, CNN-LSTM, dan LSTM-CNN pada transfer of knowledge dan loss of knowledge

Sentiment analysis is done to analyze a person's opinion or views on a particular problem. Sentiment analysis can be done manually, but if you use large-scale data it will be easier to do it automatically by using machine learning. However, machine learning is only effective in one domain, so lifelong learning is developed. Lifelong learning is machine learning that can carry out continuous learning. In this study, the models used are the CNN-LSTM and LSTM-CNN models. In the transfer of knowledge performance, the CNN-LSTM and LSTM-CNN models showed better results than the LSTM model, but the two combined models performed worse than the CNN model. Meanwhile, for the loss of knowledge performance, the CNN-LSTM and LSTM-CNN models showed better results than the CNN model, but worse than the LSTM model. In this study, lifelong learning with vocabulary updates was also implemented. The addition of vocabulary updates to lifelong learning improves the performance of the CNN, LSTM, CNN-LSTM, and LSTM-CNN models on transfer of knowledge and loss of knowledge"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Chris Solontio
"Analisis sentimen merupakan permasalahan klasifikasi data mining dengan proses memahami, mengekstrak dan mengolah data teks secara otomatis untuk mendapatkan informasi. Dalam menganalisis pendapat di media sosial digunakan machine learning untuk mendapatkan hasil klasifikasi. Banyak metode machine learning untuk melakukan klasifikasi, dalam penelitian ini akan digunakan convolutional neural network. Dalam machine learning, data dibagi menjadi data training dan data test dengan domain data yang sama.
Permasalahan utama skripsi ini adalah data yang digunakan memiliki dua domain berbeda, sehingga metode machine learning tradisional tidak dapat diterapkan. Sehingga agar dapat menerapkan convolutional neural network untuk dua data berbeda diperkenalkan suatu cara yaitu transfer learning. Transfer learning merupakan suatu proses pembelajaran model yang didapatkan dari training data A oleh data B dengan domain berbeda. Simulasi dalam penelitian ini menghasilkan suatu akurasi transfer learning dengan metode convolutional neural network.

Sentiment analysis is classification problem in data mining with process of understanding, extracting and processing text data to obtain information. Machine learning is needed in analyzing sentiment of the people to get the result of classification. There are many methods in machine learning to do classification, this research will use convolutional neural network. In machine learning, data is divided into train and test data with the same domain.
The main problem of this research is the data has a different domain, so the traditional machine learning method can not be applied. In order to apply convolutional neural network into data with different domain, it will be introduced transfer learning method. Transfer learning is learning model process obtained from training data A then tested by data B. In this research, the simulations result is accuracy of transfer learning with convolutional neural network.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maranatha Florensia Wijaya
"Analisis sentimen merupakan bidang studi yang menganalisis pendapat seseorang terhadap suatu entitas untuk mencari polaritas sentimennya. Potensi manfaat yang besar didukung dengan ketersediaan data teks beropini yang melimpah di internet memicu dikembangkannya model yang mampu melakukan analisis sentimen secara otomatis dan seakurat mungkin. Dua diantaranya adalah Long Short-Term Memory (LSTM) dan Convolutional Neural Network (CNN) yang merupakan arsitektur deep learning. LSTM digunakan karena dapat menangkap aliran informasi pada kalimat, sedangkan CNN digunakan karena kemampuannya dalam mengekstrak fitur penting dari tiap penggalan kalimat atau region. Kedua model ini dapat digabungkan menjadi model gabungan LSTM-CNN yang telah terbukti mampu meningkatkan akurasi model. Penelitian ini kemudian akan mengajukan modifikasi pada model gabungan LSTM-CNN dengan mengganti LSTM menjadi Bidirectional LSTM (BiLSTM) dan CNN menjadi CNN Multi Region Size CNNMRS sehingga terbentuk tiga model modifikasi yaitu BiLSTM-CNN, LSTM-CNNMRS, dan BiLSTM-CNNMRS. Implementasi model, baik untuk model gabungan LSTM-CNN standar maupun model modifikasi, dilakukan pada data tweets berbahasa Indonesia. Hasilnya, didapatkan kesimpulan bahwa penggunaan BiLSTM untuk menggantikan LSTM pada model gabungan LSTM CNN tidak meningkatkan akurasi dari model. Hal berbeda didapatkan dari penggunaan CNNMRS untuk menggantikan CNN yang memberikan peningkatan akurasi pada model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Oki Saputra Jaya
"ABSTRAK
Analisis sentimen adalah kegiatan untuk mengklasifikasikan opini publik tentang entitas dalam data tekstual menjadi positif atau negatif. Salah satu metode otomatis untuk analisis sentimen adalah convolution neural network CNN. CNN terdiri dari banyak lapisan dengan banyak parameter yang dapat disesuaikan sesuai kebutuhan untuk membentuk arsitektur tertentu. CNN terbukti efektif untuk penggunaan satu domain data. Namun, CNN kurang akurat jika digunakan dalam domain yang berbeda. Oleh karena itu, digunakan transfer learning untuk mentransfer pengetahuan dari source domain ke target domain yang berbeda namun terkait. Dalam penelitian ini, diuji sensitivitas parameter dan akurasi CNN untuk transfer learning pada analisis sentimen tweet berbahasa Indonesia. Simulasi pada penelitian ini menunjukkan bahwa parameter CNN sangat sensitif dan akurasi transfer learning mendapatkan hasil yang berbeda tergantung pada skenario transfer learning yang digunakan.

ABSTRACT
Sentiment analysis is an activity to classify public opinion about entities in textual data into positive or negative. One of the automatic methods for sentiment analysis is convolution neural network CNN. CNN consists of many layers with many parameters that can be adjusted as needed to form a specific architecture. CNN works well for the use of a single data domain. However, CNN is less accurate if used in different domains. Therefore, transfer learning is used to transfers knowledge from source domains to different but related target domains. In this reserach, examined parameter sensitivity and accuracy of CNN for transfer learning of sentiment analysis in Indonesian tweets. Simulations in this paper show that CNN parameters are very sensitive and the accuracy of learning transfer gets different results depending on the scenario of transfer learning. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amanda Nydia Augustizhafira
"Analisis sentimen merupakan bagian dari data mining text mining , yaitu proses memahami, mengekstrak, dan mengolah data tekstual secara otomatis untuk mendapatkan informasi. Pada penelitian ini, analisis sentimen diterapkan pada salah satu media sosial, yaitu Twitter. Analisis sentimen tergolong sebagai masalah klasifikasi yang dapat diselesaikan menggunakan salah satu metode machine learning, yaitu Neural Network. Pada machine learning, data dibagi menjadi data pelatihan dan data pengujian yang berasal dari domain yang sama.
Permasalahan utama pada penelitian ini adalah data pelatihan dan data pengujian berasal dari dua domain yang berbeda, sehingga perlu diterapkan pembelajaran lain selain machine learning. Masalah tersebut dapat diselesaikan dengan menggunakan transfer learning. Transfer learning merupakan suatu pembelajaran model yang dibangun oleh suatu data pelatihan dari suatu domain dan diuji oleh suatu data pengujian dari domain yang berbeda dari domain data pelatihan. Simulasi dalam penelitian ini menghasilkan suatu akurasi transfer learning dengan metode Neural Network yang nantinya akan diuji dengan fitur n-gram bi-gram dan tri-gram serta satu metode seleksi fitur, yaitu Extra-Trees Classifier.
Dalam penelitian ini, nilai akurasi transfer learning tertinggi didapat saat hidden layer berjumlah satu. Sebagian besar nilai akurasi tertinggi didapat saat penggunaan 250 neuron pada hidden layer. Fungsi aktivasi ReLU dan tanh menghasilkan nilai akurasi yang lebih tinggi dibandingkan fungsi aktivasi logistic sigmoid. Penggunakan metode seleksi fitur dapat meningkatkan kinerja transfer learning sehingga nilai akurasinya lebih tinggi dibandingkan simulasi tanpa penggunaan metode seleksi fitur.

Sentiment analysis is a part of data mining text mining , which is the process of understanding, extracting, and processing textual data automatically to obtain information. In this research, sentiment analysis is applied to one social media called Twitter. Sentiment analysis is categorized as a classification problem that can be solved using one of machine learning methods, namely Neural Network. In machine learning, data is divided into training data and test data from the same domain.
The main problem in this research is training data and test data come from two different domains, so it is necessary to apply other learning beside machine learning. The problem can be solved by using transfer learning. Transfer learning is a model learning constructed by a training data from a domain and tested by a test data from a different domain from the training data domain. The simulation in this research resulted in an accuracy of learning transfer with Neural Network method which will be tested using n grams bi grams and tri grams and one feature selection method called Extra Trees Classifier.
In this research, the highest value of transfer learning accuracy is obtained when one hidden layer is used. Most of the highest accuracy values are obtained from the use of 250 neurons on the hidden layer. The activation function of ReLU and tanh yield a higher accuracy value than the logical activation function sigmoid . The use of feature selection method can improve the transfer learning performance so that the accuracy value is higher than simulation without the use of feature selection method.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Theresia Gowandi
"Analisis sentimen adalah salah satu bidang dari Pemrosesan Bahasa Alami yang membangun sistem untuk mengenal opini dalam teks dan mengelompokkan ke dalam sentimen positif atau negatif. Banyak peneliti telah membangun model yang menghasilkan akurasi terbaik dalam melakukan analisis sentimen. Tiga diantaranya adalah Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), dan Gated Recurrent Unit (GRU), yang merupakan bagian dari deep learning. CNN digunakan karena kemampuannya dalam mengekstrak fitur penting dalam penggalan kalimat, sedangkan LSTM dan GRU digunakan karena kemampuannya yang memiliki memori akan input yang telah diproses sebelumnya. GRU memiliki struktur yang lebih sederhana dibandingkan dengan LSTM. Ketiga model tersebut dapat digabungkan menjadi model gabungan LSTM-CNN, CNN-LSTM, GRU-CNN, dan CNN-GRU. Penelitian sebelumnya telah membuktikan bahwa model gabungan tersebut memiliki akurasi yang lebih baik dibandingkan dengan model dasar LSTM, GRU, dan CNN. Implementasi model dilakukan pada data ulasan aplikasi berbahasa Indonesia. Hasilnya, didapatkan bahwa hampir seluruh model gabungan memiliki akurasi yang lebih baik dibandingkan dengan model dasar.

Sentiment analysis is one of the fields of Natural Language Processing that builds a system to recognize and extract opinion in the form of text into positive or negative sentiment. Nowadays, many researchers have developed methods that yield the best accuracy in performing analysis sentiment. Three particular models are Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), which are part of deep learning architectures. CNN is used because of its ability to extract important features from each sentence fragment, while LSTM and GRU are used because of their ability to have a memory of prior inputs. GRU has a simpler and more practical structure compared to LSTM. These models can be combined into combined LSTM-CNN, CNN-LSTM, GRU-CNN, and CNN-GRU model. Former researches have proved that these models have better accuracy compared to standard models. This research is focused on the performance of all the combined LSTM-CNN, CNN-LSTM, GRU-CNN, CNN-GRU models and will be compared to the standard LSTM, GRU, CNN models. Implementation of the model is performed on a collection of application review data in Indonesian text. As a result, almost all of the combined models have better accuracy than the standard models."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sandyka Gunnisyah Putra
"Machine Learning (ML) dan Deep Learning merupakan bidang yang populer pada masa kini. Salah satu ranah tersebut yang menantang untuk diteliti adalah tentang mendeteksi emosi pada teks. Interaksi antara komputer dan manusia dapat menjadi lebih baik apabila komputer dapat mendeteksi emosi, menginterpretasikan emosi tersebut, dan memberikan umpan balik yang sesuai dengan apa yang manusia inginkan. Oleh karena itu, penelitian ini bertujuan untuk membuat sistem pendeteksi emosi pada teks Bahasa Indonesia. Pada penelitian ini, terdapat 2 macam algoritma Deep Learning yang digunakan, yaitu Convolutional Neural Network (CNN) dan Long Short-Term Memory (LSTM). Convolutional Neural Network merupakan salah satu algoritma Deep Learning dimana karakteristik utamanya menggunakan operasi matriks konvolusi. Long ShortTerm Memory merupakan salah satu algoritma Deep Learning dimana merupakan perkembangan dari algoritma Recurrent Neural Network (RNN). Kedua algoritma tersebut akan didukung dengan Word Embedding Bahasa Indonesia dari fastText dan Polyglot. Package text2emotion akan digunakan sebagai data tambahan untuk evaluasi. Input dataset yang digunakan untuk Deep Learning adalah dataset cerita dongeng yang memiliki emosi "Senang", "Sedih", "Marah", "Takut", "Terkejut", dan "Jijik". Input dataset tersebut akan melalui tahap preprocessing berupa Case Normalization, Stopword Removal, Stemming, Tokenizer, dan Padding. Setelah itu, proses training dijalankan dengan menggunakan RandomizedSearchCV sebagai hyperparameter tuning. Hasil akan dibandingkan dan dianalisis berdasarkan nilai Evaluation Metrics Accuracy, Precision, Recall, dan F1-Score. Sistem berhasil dirancang dengan mencapai hasil Accuracy sebesar 91,60%, Precision sebesar 92,48%, Recall sebesar 91,60%, dan F1- Score sebesar 91,68%.

Machine Learning (ML) and Deep Learning is a popular region to be used right now. One of the scopes that challenging to research is about emotion recognition on text. Interaction between computer and human can be better if the computer can recognize the emotion, interpret it, and giving a suitable feedback with the human’s need. Therefore, this research has goal to make an emotion recognition on Indonesian text language. On this research, there’s 2 kind of Deep Learning algorithm that used, that is Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). Convolutional Neural Network is one of Deep Learning algorithm that its main characteristic is using convolution matrix operation. Long Short-Term Memory is one of Deep Learning algorithm which is an improvement from Recurrent Neural Network (RNN) algorithm. Both algorithms will be supported with Indonesian Word Embedding from fastText and Polyglot. Text2emotion package is used for additional data for evaluation. The input dataset that will be used on this Deep Learning is a fairy tale dataset which have “Happy”, “Sad”, “Anger”, “Fear”, “Surprised”, and “Disgust” emotion. That input dataset will be passed to preprocessing stage that consist of Case Normalization, Stop-word Removal, Stemming, Tokenizer, and Padding. After that, training process started with using RandomizedSearchCV as hyperparameter tuning. The result will be compared and analyzed based on Accuracy, Precision, Recall, and F1- Score Evaluation Metrics. System is made with reaching 91.60% Accuracy, 92,48% Precision, 91,60% Recall, and 91,68% F1-Score."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Taqiyuddin
"Penggunaan analisis sentimen semakin umum digunakan. Dalam pengembangan analisis sentimen ini banyak tantangan yang perlu dihadapi. Karena analisis ini termasuk Natural Language Processing NLP, hal yang perlu dimengerti adalah kompleksitas bahasa. Dengan berkembangnya teknologi Artificial Neural Network, ANN semakin banyak permasalahan yang bisa diselesaikan.
Ada banyak contoh struktur ANN dan untuk penelitian ini yang digunakan adalah Convolutional Neural Network CNN dan Recurrent Neural Network RNN. Kedua jenis ANN tersebut sudah menunjukkan performa yang baik untuk beberapa tugas NLP. Maka akan dilakukan analisis sentimen dengan menggunakan kedua jenis ANN tersebut dan dibandingkan kedua performa ANN tersebut. Untuk data yang akan digunakan diambil dari publikasi stanford dan untuk mengubah data tersebut bisa digunakan pada ANN digunakan word2vec.
Hasil dari analisis menunjukkan bahwa RNN menunjukkan hasil yang lebih baik dari CNN. Walaupun akurasi tidak terlalu terlihat perbedaan yaitu pada RNN yang mencapai 88.35 0.07 dan CNN 87.11 0.50, tetapi waktu pelatihan RNN hanya membutuhkan waktu 8.256 detik sedangkan CNN membutuhkan waktu 544.366 detik.

Term of sentiment analysis become popular lately. There are many challenges developing sentiment analysis that need to be addressed. Because this kind analysis is including Natural Language Processing, the thing need to understand is the complexity of the language. With the current development of Artificial Neural Network ANN, more problems can be solved.
There are many type of ANN and for this research Convolutional Neural Network CNN and Recurrent Neural Network will be used. Both already showing great result for several NLP tasks. Data taken from stanford publication and transform it with word2vec so could be used for ANN.
The result shows that RNN is better than CNN. Even the difference of accuracy is not significant with 88.35 0.07 for RNN and 87.11 0.50 for CNN, the training time for RNN only need 8.256 secods while CNN need 544.366 seconds.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68746
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>