Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 112038 dokumen yang sesuai dengan query
cover
Purba, Jusup Roni Pardamean
"Demam Berdarah Dengue (DBD) merupakan salah satu virus yang menginfeksi
manusia melalui gigitan nyamuk Aedes aegypti dan Aedes albopictus. Menurut laporan
CDC, Indonesia yang masuk dalam level 1 dari 3 yaitu level tertinggi, frequent or
continuous kasus DBD. Perkiraan lebih awal dan akurat dari persebaran insiden DBD
dapat meminimalkan ancaman dan membantu pihak yang berwenang untuk menerapkan
langkah-langkah pengendalian yang efektif. Pada penelitian ini, prediksi angka insiden
DBD menggunakan faktor-faktor cuaca yang mempengaruhi perkembangan nyamuk itu
sendiri, yaitu temperatur, kelembapan, dan curah hujan sebagai variabel prediktor.
Variabel prediktor ditentukan berdasarkan nilai korelasi silang dari time lag variabel
prediktor terhadap jumlah insiden DBD. Penelitian dilakukan dengan memanfaatkan
salah satu metode dalam machine learning, yaitu gated recurrent unit dalam
membangun model prediksi insiden DBD tersebut. Performa model yang digunakan
dievaluasi dengan Root Mean Squared Error dan Mean Absolute Error. Hasil penelitian
ini menunjukkan bahwa prediksi angka insiden DBD terbaik, diperoleh dengan
menggunakan proporsi data training-test: 90%-10%.

Dengue Fever (DF) is a virus that infects humans through the bite of Aedes aegypti and
Aedes albopictus mosquitoes. According to the CDC report, Indonesia is included in
level 1 of 3, namely the highest level, frequent or continuous cases of DF. Early and
accurate estimates of the spread of dengue incidents can minimize threats and help the
authorities to implement effective control measures. In this study, the prediction of DF
incidence uses weather factors that influence the development of mosquitoes
themselves, namely temperature, humidity, and rainfall as predictor variables. Predictor
variables are determined based on the value of the cross correlation of the time lag
predictor variable to the number of DF incidents. The study was conducted by utilizing
one method in machine learning, namely the gated recurrent unit in building the DF
incident prediction model. The performance of the model are evaluated by Root Mean
Squared Error and Mean Absolute Error. The results of this study shows that the best
prediction model of DF incidence rate, obtained using the proportion of training-test
data: 90% -10%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andrew Nilsen
"Investasi di saham bukanlah tanpa risiko. Harga saham selalu mengalami fluktuasi, dapat naik dan dapat turun. Ketidakpastian tersebut tidak dapat diabaikan, karena dapat menyebabkan kerugian jika salah dalam memprediksi arah pergerakan dari harga saham. Prediksi arah pergerakan harga saham yang lebih akurat dapat mengurangi risiko kerugian. Pada penelitian ini, prediksi arah pergerakan harga saham menggunakan faktor yang mempengaruhi arah pergerakan saham itu sendiri, yaitu harga saham sebagai variabel prediktor. Penelitian dilakukan dengan memanfaatkan salah satu metode dalam jaringan syaraf tiruan, yaitu gated recurrent unit dalam membangun model prediksi arah pergerakan harga saham tersebut. Data harga saham yang digunakan pada penelitian ini adalah data harga saham PT. Bank Central Asia Tbk (kode saham: BBCA) dan PT. Pabrik Kertas Tjiwi Kimia Tbk (kode saham: TKIM). Performa model yang digunakan dievaluasi dengan Root Mean Squared Error dan Mean Absolute Error. Pada penelitian ini didapatkan hasil bahwa hyperparameter prediksi harga saham BBCA terbaik diperoleh dengan menggunakan {epoch=500, batch size=32, dan units=24} dan hyperparameter prediksi harga saham TKIM terbaik diperoleh dengan menggunakan {epoch=250, batch size=128, dan unit=24}. Kemudian, dari RMSE dan MAE yang dihasilkan dari kedua saham disimpulkan bahwa model GRU merupakan model yang mampu memprediksi saham dengan baik.

Investing in stocks is not without risk. The stock price always fluctuates, can go up and can go down. This uncertainty cannot be ignored, because it can cause losses if it is wrong in predicting the direction of movement of the stock price. A more accurate prediction of the direction of stock price movements can reduce the risk of loss. In this study, the prediction of the direction of stock price movements uses factor that influence the direction of stock movement itself, namely the stock price as a predictor variable. The research was conducted by utilizing one of the methods in artificial neural networks, namely the gated recurrent unit in building a predictive model for the direction of the stock price movement. The share price data used in this research is the share price data of PT Bank Central Asia (stock code: BBCA) and PT. Pabrik Kertas Tjiwi Kimia Tbk (stock code: TKIM). The model performance is evaluated by using Root Mean Squared Error and Mean Absolute Error. The results of this study indicate that the best prediction of the direction of BBCA's stock price movement is obtained by using {epoch=500, batch size=32, and units=24} and the best prediction of the direction of TKIM's stock price movement, is obtained by using {epoch=250, batch size=128, and units=24}. Then, from the RMSE and MAE generated from the two stocks, it can be concluded that the GRU model is a model capable of predicting stocks."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ivan Noverlianto Tanawi
"Demam Berdarah Dengue (DBD) disebabkan oleh virus dengue yang disebarkan oleh nyamuk Aedes aegypti dan Aedes albopictus. Menurut WHO, sebagai negara yang berada di daerah tropis, Indonesia adalah negara yang berisiko DBD tinggi. DBD dapat menyebar dari penderita DBD ke orang yang sehat melalui gigitan nyamuk yang telah terinfeksi virus dengue. Faktor cuaca yang terdiri dari temperatur, kelembaban, dan curah hujan mempunyai pengaruh terhadap jumlah insiden DBD. Dengan memprediksi jumlah insiden DBD, diharapkan pemerintah dan masyarakat lebih siap menangani DBD ketika jumlah insiden DBD diprediksi tinggi jumlahnya.
Pada tugas akhir ini, jumlah insiden DBD diprediksi dengan support vector regression, dengan jumlah insiden dan faktor cuaca sebelumnya yang terdiri dari temperatur, kelembaban, dan curah hujan sebagai variabel prediktor. Fungsi kernel yang digunakan adalah kernel linear dan kernel gaussian radial basis function (radial). Variabel prediktor ditentukan dengan mencari time lag dari masing-masing variabel prediktor terhadap jumlah insiden menggunakan korelasi silang. Model yang dibentuk dievaluasi dengan Root Mean Squared Error dan Mean Absolute Error. Pada tugas akhir ini, support vector regression dengan kernel linear memberikan performa yang lebih baik daripada kernel radial.

Dengue fever is a disease caused by dengue virus, which is spread by Aedes aegypti and Aedes albopictus mosquitoes. According to WHO, as a tropical country, Indonesia is a country at risk for dengue. Dengue can spread to other people by mosquitoes bite. Weather factors, such as temperature, humidity, and rainfall have effects on the number of dengue incidences. It is important to predict the number of incidences so that the government and people will be ready to prevent a dengue outbreak when the number of incidences is predicted high.
In this final paper, number of dengue incidences in DKI Jakarta is predicted using support vector regression, with weather and the previous number of incidences as predictor variables. Linear and gaussian radial basis function kernel are used. These predictor variables are determined by analyzing the time lag between each predictor variables and the number of incidences by using cross correlation. Models for prediction are evaluated by Root Mean Squared Error and Mean Absolute Error. The result shows that support vector regression with linear kernel have better performance than support vector regression with gaussian radial basis function kernel for predicting dengue incidences number.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shafira Leandra
"

Di tengah maraknya wabah virus Corona, penyakit lain yang menjadi salah satu masalah kesehatan utama masyarakat Indonesia dan tidak dapat diabaikan adalah penyakit Demam Berdarah Dengue (DBD). DBD merupakan penyakit infeksi yang disebabkan oleh virus dengue dan ditularkan melalui gigitan nyamuk Aedes aegypti betina. Faktor lain yang berpengaruh dalam penyebaran DBD adalah faktor cuaca, seperti curah hujan yang tinggi, perubahan suhu dan iklim, serta kelembaban udara. Di Indonesia sendiri, peningkatan kasus DBD banyak terjadi pada masa pancaroba. Oleh karena itu, seiring dengan banyaknya kasus DBD yang terjadi saat ini, dibutuhkan upaya pencegahan dan penanganan dini untuk menanggulangi risiko persebarannya. Upaya yang dapat dilakukan antara lain dengan melakukan prediksi jumlah insiden DBD. Pada tugas akhir ini, jumlah insiden DBD diprediksi menggunakan salah satu metode dalam machine learning, yaitu metode Artificial Neural Network - Particle Swarm Optimization (ANN-PSO), di mana yang menjadi variabel prediktornya adalah jumlah insiden DBD dan faktor cuaca (temperatur, curah hujan, dan kelembaan relatif). Fungsi aktivasi yang digunakan pada tugas akhir ini adalah fungsi Tanh (pada hidden layer) dan fungsi ReLU (pada output layer), dengan memperhitungkan parameter jumlah hidden neuron dan ukuran populasi. Kinerja model ANN-PSO yang dibentuk kemudian dievaluasi berdasarkan Mean Squared Error (MSE). Pada tugas akhir ini, model ANN-PSO terbaik yang dihasilkan untuk masing-masing kotamadya di DKI Jakarta memiliki hasil yang berbeda-beda sesuai dengan parameter yang digunakannya, dengan MSE testing paling kecil bernilai 0,0215026 untuk wilayah Jakarta Pusat, sedangkan MSE testing paling besar bernilai 0,0438962 untuk wilayah Jakarta Utara.


During the Coronavirus outbreak, another disease that is also one of the main health problems for the Indonesian people and hence cannot be ignored is Dengue Hemorrhagic Fever (DHF). DHF is an infectious disease caused by dengue virus and is transmitted through the bite of female Aedes aegypti mosquitoes. Another factor that influences the spread of DHF is weather factors, such as high rainfall, changes in temperature and climate, and humidity. In Indonesia, the increase in dengue cases occurred during the transition period. Therefore, in line with the number of dengue cases currently occurring, prevention and early management are needed to mitigate the risk of its spread. Efforts that can be made include predicting the number of dengue incidents. In this final project, the number of dengue incidents is predicted using one of the methods in machine learning, namely the Artificial Neural Network - Particle Swarm Optimization (ANN-PSO) method, where the predictor variables are the number of dengue incidents and weather factors (temperature, rainfall, and relative humidity). The activation functions used in this final project are the Tanh Function (on the hidden layer) and the ReLU Function (on the output layer), and the tuning parameters are the number of hidden neurons and population size. The performance of the ANN-PSO model that was formed evaluated using the Mean Squared Error. In this final project, the best ANN-PSO model produced for each municipality in DKI Jakarta has different results according to the parameters it uses, with the smallest MSE testing value of 0,0215026 for the Central Jakarta area, while the largest MSE testing value was 0,0438962 for the North Jakarta area.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yuda Sukama
"Demam Berdarah Dengue (DBD) adalah penyakit yang disebabkan oleh virus dengue dan tersebar melalui gigitan vektor nyamuk betina Aedes Aegepty dan Aedes Albopictus yang terinfeksi. Menurut penelitian Luz et al. (2008), machine learning dapat melakukan prediksi insiden DBD secara akurat menggunakan data historis insiden DBD. Pada skripsi ini, salah satu metode machine learning yaitu Recurrent Neural Network (RNN) digunakan untuk memprediksi insiden DBD di DKI Jakarta dengan menggunakan data historis kasus DBD dari tahun 2009 hingga 2017. RNN adalah salah satu neural network yang memiliki recurrent hidden state yang diaktivasi menggunakan data masa kini dengan data masa lampau. RNN cukup sesuai untuk prediksi data yang bersifat timeseries. Sebelum diimplementasikan pada model RNN, data insiden DBD di lima Kotamadya di DKI Jakarta akan dinormalisasi terlebih dahulu. Dalam implementasi model RNN tersebut digunakan beberapa fungsi aktivasi seperti fungsi sigmoid, tanh, dan ReLU. Selanjutnya dibandingkan hasil prediksi dari fungsi-fungsi aktivasi tersebut untuk menentukan fungsi aktivasi apa yang dapat menghasilkan tingkat akurasi terbaik. Berdasarkan data dan model yang digunakan, diperoleh hasil bahwa fungsi aktivasi sigmoid dapat memberikan hasil yang lebih baik pada model RNN dibandingkan dengan fungsi aktivasi tanh dan ReLU. Diharapkan, hasil penelitian ini dapat memberikan prediksi insiden DBD di DKI Jakarta yang dapat digunakan sebagai masukkan yang bermanfaat bagi pihak yang berwenang dalam penanganan penyebaran DBD di DKI Jakarta.

Dengue Hemorrhagic Fever (DHF) is a disease caused by the dengue virus and is spread through the bites of infected female mosquito vectors Aedes Aegepty and Aedes Albopictus. According to research by Luz et al in 2008, machine learning can accurately predict dengue incidence using historical data on dengue incidents. In this thesis, one of the machine learning methods, namely the Recurrent Neural Network (RNN) is used to predict the incidence of dengue fever in DKI Jakarta by using historical data on dengue cases from 2009 to 2017. RNN is a neural network that has a recurrent hidden state that is activated using present data with past data. RNN is quite suitable for prediction of timeseries data. Before being implemented in the RNN model, dengue incidence data in five municipalities in DKI Jakarta will be normalized first. In implementing the RNN model, several activation functions are used, such as the sigmoid function, tanh, and ReLU. Furthermore, the predicted results of the activation functions are compared to determine what activation function can produce the best level of accuracy. Based on the data and models used, the results show that the sigmoid activation function can give better results in the RNN model compared to the tanh and ReLU activation functions. Hopefully, the results of this study can provide predictions of dengue incidence in DKI Jakarta which can be used as useful input for the authorities in handling the spread of DHF in DKI Jakarta."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdullah Hasan
"Penyakit Demam Berdarah Dengue (DBD) merupakan salah satu penyakit yang penyebarannya sangat cepat. Dengan memprediksi angka insiden penyakit tersebut, diharapkan dapat membantu pemerintah dalam mengatasi penyakit ini. Seiring berkembangnya ilmu pengetahuan, salah satu metode untuk memprediksi penyakit DBD adalah machine learning. Penelitian dilakukan dengan memanfaatkan salah satu metode dalam machine learning yaitu Long Short-Term Memory (LSTM) dalam membangun model prediksi insiden DBD. Pada penelitian sebelumnya, LSTM telah digunakan dalam memprediksi angka insiden DBD di 20 kota di negara China. Pada skripsi ini model LSTM diterapkan untuk memprediksi angka insiden DBD di DKI Jakarta dengan menggunakan data cuaca dan insiden DBD. Hasil implementasi LSTM dalam memprediksi angka insiden DBD menunjukkan bahwa model terbaik diperoleh dengan menggunakan proporsi data training-testing 90%-10% dengan RMSE dan MAE berdasarkan data test. Nilai RMSE pada wilayah Jakarta Pusat, Jakarta Timur, Jakarta Barat, Jakarta Utara, dan Jakarta Selatan adalah 5,218412, 9,570137, 10,527401, 6,496117, dan 5,952310. Nilai MAE pada wilayah yang sama secara berturut-turut adalah 4,016646, 7,791134, 8,405053, 5,279802, dan 4,416999.

Dengue Hemorrhagic Fever (DHF) is a disease that spreads very fast. By predicting the incidence of the disease, it is expected to help the government in overcoming this disease. As the development of science, one method to predict DHF is machine learning. The study was conducted by utilizing one method in machine learning that is Long Short Term-Memory (LSTM) in building a DHF incident prediction model. In previous studies, LSTM has been used in predicting the incidence of DHF in 20 cities in China. In this thesis the LSTM model is applied to predict the number of DHF incidents in DKI Jakarta by using weather data and DHF incidents. The results of LSTM implementation in predicting the number of DHF incidents showed that the best model was obtained using the proportion of training data-testing 90% -10% with RMSE and MAE based on test data. The RMSE values in the Central Jakarta, East Jakarta, West Jakarta, North Jakarta and South Jakarta areas are 5.218412, 9.570137, 10.527401, 6.496117, and 5.952310. MAE values in the same region are 4,016646, 7.791134, 8.405053, 5.279802, and 4.416999."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dewi Wulandari
"Menurut WHO, Demam Berdarah Dengue (DBD) adalah salah satu penyakit yang paling umum terjadi di negara tropis seperti Indonesia dan sering berakibat fatal dalam kesehatan. DBD juga termasuk penyakit menular dengan nyamuk Aedes aegypti sebagai vektor penyebar utama. Faktor cuaca seperti temperatur, curah hujan dan kelembapan secara tidak langsung mempengaruhi penyebaran DBD. Memprediksi angka insiden Demam Berdarah dapat membantu pihak-pihak yang terkait seperti Dinas Kesehatan Daerah dalam membuat kebijakan dan rencana pencegahan sehingga menekan penyebaran DBD di masyarakat. Pada tugas akhir ini, angka insiden Demam Berdarah Dengue diprediksi dengan salah satu metode machine learning yaitu Restricted Boltzmann Machine - Backpropagation Neural Network (RBM-BPNN). RBM digunakan untuk mengatasi masalah dari BPNN, yaitu untuk menginisialisasi nilai awal bobot koneksi dan bias. Fungsi aktivasi yang digunakan adalah fungsi sigmoid. Terdapat 12 kombinasi hyperparameter yaitu kombinasi jumlah neuron hidden 3, 4, dan 5 dengan nilai learning rate 0,1; 0,05; 0,025; dan 0,01. Data yang digunakan adalah data temperatur, curah hujan, kelembapan serta angka insiden DBD sebelumnya untuk 5 kota madya di DKI Jakarta yang telah disesuaikan dengan time lag berdasarkan korelasinya dengan angka insiden. Kinerja model-model tersebut dibandingkan berdasarkan Root Mean Squared Error (RMSE). Pada tugas akhir ini, model terbaik untuk setiap kota madya memiliki hyperparameter yang berbeda. Model terbaik dari Jakarta Utara, Jakarta Selatan, Jakarta Barat, Jakarta Timur, dan Jakarta Pusat berturut-turut adalah 5 hidden neurons (HN) dengan learning rate (LR) 0,05; 4 HN dengan LN 0,025; 3 HN dengan LR 0,1; 5 HN dengan LR 0,1; dan 4 HN dengan LR 0,05. Nilai RMSE testing sebelum dan setelah denormalisasi dari Jakarta Utara, Jakarta Selatan, Jakarta Barat, Jakarta Timur, dan Jakarta Pusat yang dihasilkan dari model terbaik masing-masing adalah 0,16489 dan 8,739212; 0,11142 dan 14,14996; 0,13482 dan 17,25659; 0,1375318 dan 13,75318; serta 0,1278963 dan 8,313258

According to the WHO, Dengue Hemorrhagic Fever (DHF) is one of the most common diseases occurring in tropical countries such as Indonesia and is often fatal in health. DHF is also an infectious disease with Aedes aegypti mosquitoes as the primary vector. Weather factors such as temperature, rainfall, and humidity indirectly affect the spread of DHF. Predicting the incidence of dengue fever can help related parties such as the regional health department in making policies and prevention plans to suppress the spread of DHF in the community. In this final assignment, the DHF incident number is predicted by a machine learning method that is Restricted Boltzmann Machine-Backpropagation Neural Network (RBM-BPNN). RBM is used to overcome BPNNs problem of initializing values of connection weights and biases. The activation function used is the sigmoid function. There are 12 combinations of hyperparameter, namely the combination of the number of hidden neurons 3, 4, and 5 with the values of learning rate 0.1; 0.05; 0.025; and 0.01. The data used are temperature, rainfall, humidity, and previous DHF incident numbers for five regions in DKI Jakarta that have been adjusted with time lag based on their correlation with the incident number. The performances of these models are compared based on their Root Mean Squared Error (RMSE) training and RMSE testing. On this final assignment, the best model for each region has different hyperparameters. The best models of North Jakarta, South Jakarta, West Jakarta, East Jakarta, and Central Jakarta are 5 hidden neurons with learning rate 0.05, 4 hidden neurons with learning rate 0.025, 3 hidden neurons with learning rate 0.1, 5 hidden neurons with learning rate 0.1, and 4 hidden neurons with learning rate 0.05, respectively. The RMSE testing results before and after denormalizing data for North Jakarta, South Jakarta, West Jakarta, East Jakarta, and Central Jakarta given by the best model of each cities are 0.16489 and 8.739212, 0.11142 and 14.14996, 0.13482 and 17.25659, 0.1375318 and 13.75318, and 0.1278963 and 8.313258."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naufal Alfarisi
"Demam Berdarah Dengue (DBD) masih menjadi masalah kesehatan yang utama di Indonesia.  Berdasarkan data dari Kemenkes RI, pada tahun 2022 jumlah insiden DBD dicatat sebanyak 131.265 yang mana sekitar 40% adalah anak-anak usia 0 sampai 14 tahun dengan jumlah kasus kematian mencapai 1.135 jiwa dengan 73% terjadi pada anak-anak usia 0 sampai 14 tahun. DBD disebabkan oleh virus dengue yang disebarkan melalui gigitan nyamuk Aedes aegypti  dan Aedes albopictus.. Selain faktor kebersihan lingkungan dan kebiasaan masyarakat, tingginya insiden DBD di Indonesia juga dipengaruhi oleh beberapa faktor iklim seperti curah hujan, temperatur, dan kelembapan. Memaksimalkan proses pencegahan DBD oleh pemerintah dan masyarakat dapat menekan tingginya kasus DBD di Indonesia. Salah satu cara untuk memaksimalkan proses pencegahan DBD adalah dengan melakukan prediksi jumlah insiden DBD yang akan terjadi kedepannya. Dengan mengetahui hasil prediksi jumlah insiden DBD, diharapkan masyarakat dan pemerintah dapat memaksimalkan proses pencegahan DBD. Pada tugas akhir ini, dilakukan prediksi jumlah insiden DBD menggunakan convolutional neural network dan extreme gradient boosting, dengan jumlah insiden sebelumnya dan faktor cuaca sebelumnya yang terdiri dari temperatur, curah hujan, dan kelembapan relatif sebagai variabel prediktor. Variabel prediktor yang digunakan ditentukan berdasarkan time lag dari masing-masing variabel prediktor terhadap jumlah insiden DBD menggunakan korelasi silang. Model convolutinal neural network dan extreme gradient boosting yang dibentuk dievaluasi dan dibandingkan berdasarkan nilai Root Mean Square Error (RMSE), Mean Absolute Error (MAE), dan waktu simulasi. Pada tugas akhir ini, convolutional neural network memberikan performa yang lebih baik dibandingkan dengan extreme gradient boosting berdasarkan nilai RMSE dan MAE dengan rata-rata 13,3586 untuk RMSE dan 9,2249 untuk MAE. Berdasarkan waktu simulasi, extreme gradient boosting memberikan performa yang lebih cepat dibandingkan convolutional neural network.

Dengue Hemorrhagic Fever (DHF) remains a major health problem in Indonesia. Based on data from the Ministry of Health of Indonesia, in 2022, the number of DHF incidents recorded was 131,265, of which approximately 40% were children aged 0 to 14 years, with a total of 1,135 deaths, 73% of which occurred in children aged 0 to 14 years. DHF is caused by the dengue virus, which is transmitted through the bites of Aedes aegypti and Aedes albopictus mosquitoes. In addition to environmental cleanliness and societal habits, the high incidence of DHF in Indonesia is also influenced by several climate factors such as rainfall, temperature, and humidity. Maximizing the DHF prevention process by the government and the community can help reduce the number of DHF cases in Indonesia. One way to maximize the DHF prevention process is by predicting the future number of DHF incidents. By knowing the predicted number of DHF incidents, it is hoped that the community and the government can maximize the DHF prevention process. In this final project, the prediction of the number of DHF incidents is carried out using convolutional neural network and extreme gradient boosting, with the previous incident counts and previous weather factors consisting of temperature, rainfall, and relative humidity as predictor variables. The predictor variables used are determined based on the time lag of each predictor variable on the number of DHF incidents using cross-correlation. In this final project, the convolutional neural network outperforms extreme gradient boosting based on the RMSE and MAE values, with an average of 13.3586 for RMSE and 9.2249 for MAE. However, in terms of simulation time, extreme gradient boosting demonstrates faster performance compared to the convolutional neural network."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Azizah Zuhriya Nurmadina
"Model deep learning adalah model dengan banyak lapisan jaringan saraf tiruan. Model Bidirectional Gated Recurrent Unit (BiGRU) adalah salah satu jenis model deep learning yang memproses urutan data dalam dua arah, yaitu arah maju dan arah mundur. Hal tersebut memungkinkan model BiGRU untuk mengakses informasi masa depan dan masa lalu dari setiap titik dalam urutan data untuk pemahaman konteks yang lebih baik. Model BiGRU dapat digunakan untuk analisis sentimen, yaitu proses mengategorikan sentimen opini dalam teks menjadi negatif, netral, atau positif. Representasi teks yang digunakan pada penelitian ini adalah Bidirectional Encoder Representations from Transformers (BERT) karena kemampuannya memahami kata secara kontekstual sehingga meningkatkan akurasi. Salah satu masalah umum pada analisis sentimen adalah ketidakseimbangan data Penggunaan data tidak seimbang mempengaruhi kinerja model dalam melakukan klasifikasi sentimen karena bias terhadap kelas mayoritas. Oleh karena itu, penggunaan Synthetic Minority Oversampling Technique (SMOTE) dalam mengatasi ketidakseimbangan kelas pada data dilakukan pada penelitian ini. SMOTE digunakan untuk melakukan oversampling pada data kelas minoritas dan dipasangkan dengan model BiGRU yang menggunakan fungsi kerugian categorical cross entropy menghasilkan kinerja dengan nilai akurasi sebesar 85,52% yang merupakan akurasi tertinggi dibandingkan dengan daripadamodel BiGRU dengan fungsi kerugian categorical cross entropy tanpa penanganan SMOTE (model standar dalam penelitian ini) dan model BiGRU dengan fungsi kerugian weighted cross entropy yang dibangun untuk memperkuat bukti bahwa model yang diajukan adalah model terbaik.

Deep learning models are models with multiple layers of artificial neural networks. The Bidirectional Gated Recurrent Unit (BiGRU) model is one type of deep learning model that processes data sequences in two directions, the forward direction and the backward direction. This allows the BiGRU model to access future and past information from each point in the data sequence for better context understanding. The BiGRU model can be used for sentiment analysis, which is the process of categorizing the sentiment of opinions in text into negative, neutral, or positive. The text representation used in this research is Bidirectional Encoder Representations from Transformers (BERT) because of its ability to understand words contextually to increase accuracy. One of the common problems in sentiment analysis is data imbalance. The use of unbalanced data affects the performance of the model in performing sentiment classification due to bias towards the majority class. Therefore, the use of Synthetic Minority Oversampling Technique (SMOTE) in overcoming class imbalance in the data is done in this study. SMOTE is used to perform oversampling on minority class data and paired with the BiGRU model using the categorical cross entropy loss function results in performance with an accuracy value of 85.52% which is the highest accuracy compared to the BiGRU model with the categorical cross entropy loss function without SMOTE handling (the standard model in this study) and the BiGRU model with the weighted cross entropy loss function built to strengthen the evidence that the proposed model is the best model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Theresia Gowandi
"Analisis sentimen adalah salah satu bidang dari Pemrosesan Bahasa Alami yang membangun sistem untuk mengenal opini dalam teks dan mengelompokkan ke dalam sentimen positif atau negatif. Banyak peneliti telah membangun model yang menghasilkan akurasi terbaik dalam melakukan analisis sentimen. Tiga diantaranya adalah Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), dan Gated Recurrent Unit (GRU), yang merupakan bagian dari deep learning. CNN digunakan karena kemampuannya dalam mengekstrak fitur penting dalam penggalan kalimat, sedangkan LSTM dan GRU digunakan karena kemampuannya yang memiliki memori akan input yang telah diproses sebelumnya. GRU memiliki struktur yang lebih sederhana dibandingkan dengan LSTM. Ketiga model tersebut dapat digabungkan menjadi model gabungan LSTM-CNN, CNN-LSTM, GRU-CNN, dan CNN-GRU. Penelitian sebelumnya telah membuktikan bahwa model gabungan tersebut memiliki akurasi yang lebih baik dibandingkan dengan model dasar LSTM, GRU, dan CNN. Implementasi model dilakukan pada data ulasan aplikasi berbahasa Indonesia. Hasilnya, didapatkan bahwa hampir seluruh model gabungan memiliki akurasi yang lebih baik dibandingkan dengan model dasar.

Sentiment analysis is one of the fields of Natural Language Processing that builds a system to recognize and extract opinion in the form of text into positive or negative sentiment. Nowadays, many researchers have developed methods that yield the best accuracy in performing analysis sentiment. Three particular models are Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), which are part of deep learning architectures. CNN is used because of its ability to extract important features from each sentence fragment, while LSTM and GRU are used because of their ability to have a memory of prior inputs. GRU has a simpler and more practical structure compared to LSTM. These models can be combined into combined LSTM-CNN, CNN-LSTM, GRU-CNN, and CNN-GRU model. Former researches have proved that these models have better accuracy compared to standard models. This research is focused on the performance of all the combined LSTM-CNN, CNN-LSTM, GRU-CNN, CNN-GRU models and will be compared to the standard LSTM, GRU, CNN models. Implementation of the model is performed on a collection of application review data in Indonesian text. As a result, almost all of the combined models have better accuracy than the standard models."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>