Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 64210 dokumen yang sesuai dengan query
cover
Oon Septa
"Tantangan komputasi dibutuhkan pada analisis data microarray dikarenakan karakteristik data tersebut yang memiliki ukuran yang sangat besar dan memiliki ekspresi gen yang bervariasi di setiap kondisi, seperti contohnya data microarray Human Immunodeficiency Virus-1. Penelitian sebelumnya telah menggunakan ukuran Multi Slope Measure pada algoritma Triclustering Genetic Based tetapi algoritma tersebut belum tersedia secara luas dan belum dapat digunakan semua orang. Penelitian ini bertujuan untuk membangun program Multi Slope Measure pada algoritma Triclustering Genetic Based menggunakan perangkat lunak R berbasis open source pada data microarray ekspresi gen Human Immunodeficiency Virus-1. Pada simulasi program yang dibangun digunakan pada data microarray ekspresi gen untuk melihat kesuksesan program yang telah dibangun. Teknik triclustering diperlukan untuk mengelompokkan data 3 Dimensi berdasarkan data yang memiliki kesamaan pola. Algoritma Triclustering Genetic Based merupakan algoritma yang berdasarkan teori evolusi yang dapat mengelompokkan data dengan ukuran kualitas yang  maksimum. Penelitian ini menargetkan mencari 10 tricluster dan berhasil didapatkan semua 10 tricluster nya. Dari 10 tricluster tersebut didapatkan 6 gen yang berkaitan dengan Human Immunodeficiency Virus-1 yaitu HLA-C, JUN, CCR5, ELF1, CX3CR1, dan GATA-3.

Computational challenges are needed in microarray data analysis because the characteristics of the data are very large and have gene expressions that vary in each condition, such as the microarray data for Human Immunodeficiency Virus-1 disease. Previous research used the Multi Slope Measure on the Genetic Based Triclustering algorithm, but the algorithm is not yet globally available and cannot be used by everyone. This study aims to build a Multi Slope Measure program on the Triclustering Genetic Based algorithm using open source-based R software on the microarray data of Human Immunodeficiency Virus-1 disease gene expression. In the simulation of the program that has been built, the program is tested on gene expression microarray data to see its success. The triclustering technique is needed to group 3-dimensional data based on data that has the same pattern. Genetic Based Triclustering Algorithm is an algorithm based on the theory of evolution that can classify data with maximum quality measure. This study aimed to find 10 triclusters and has successfully obtained all 10 triclusters. From the 10 triclusters, 6 genes were found related to Human Immunodeficiency Virus-1, namely HLA-C, JUN, CCR5, ELF1, CX3CR1, and GATA-3."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Moh. Abdul Latief
"

Human Immunodeficiency Virus-1 (HIV-1) merupakan virus yang merusak sel CD4+ dalam imun tubuh sehingga menyebabkan sistem kekebalan tubuh menurun drastis. Analisis data ekspresi gen HIV-1 sangat dibutuhkan. Teknologi yang digunakan untuk menganalisis data ekspresi gen yaitu microarray. Teknologi microarray digunakan untuk mengukur nilai ekspresi dari ribuan gen diberbagai macam kondisi. Clustering merupakan teknik untuk memperlajari pola data ekspresi gen kelompok observasi yang memiliki kemiripan berdasarkan kriteria tertentu. Clustering menemukan kelompok observasi pada semua atribut. Untuk menemukan kelompok observasi pada beberapa atribut digunakan analisis biclustering. Dalam data ekspesi gen series yang dibentuk dalam tiga dimensi, analisis yang digunakan adalah triclustering. Pendekatan yang dilakukan dalam membangun triclustering yaitu pendekatan biclustering melalui teknik pencarian bicluster menggunakan Multi-Objective Evolutionary Algorithm (MOEA). Metode evaluasi yang digunakan MOEA adalah Mean Square Residue (MSR) dan kebaruan dalam penelitian ini adalah memodifikasi MOEA dengan metode evaluasi Transpose Virtual Error yang mendeteksi pergeseran (shifting) dan penskalaan (scaling) sekaligus. Hasil dari bicluster terbaik digunakan sebagai input dalam THD-Tricluster. Data tricluster yang diperoleh mengandung probe ID-gen 208812_x_at, 209602_s_at, dan 201465_s_at dengan nama gen HLA-C, GATA-3 dan JUN yang berhubungan dengan HIV-1.

 


Human Immunodeficiency Virus-1 (HIV-1) is a virus that kills CD4 + cells in the bodys immune system, causing a drastic decline in the immune system. Analysis of HIV-1 gene expression data is urgently needed. The technology used to analyze gene expression data is microarray. Microarray technology is used to measure the expression value of thousands of genes in various conditions. Clustering is a technique for studying the gene expression data patterns of the observation groups that are similar based on certain criteria. Clustering finds groups of observations on all attributes. Biclustering analysis is used to find the group of observations on several attributes. In the gene expression series data which is formed in three dimensions, the analysis used is triclustering. The approach taken in building triclustering is the biclustering approach through the bicluster search technique using the Multi-Objective Evolutionary Algorithm (MOEA). The evaluation method used by MOEA is Mean Square Residue (MSR) and the novelty in this study is to modify the MOEA with the Transpose Virtual Error evaluation method which detects shifting and scaling at the same time. The results from the best bicluster are used as input in the THD-Tricluster. The tricluster data obtained contained the gene ID probes 208812xat, 209602s_at, and 201465sat with the gene names HLA-C, GATA-3 and JUN associated with HIV-1.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Elke Annisa Octaria
"

Triclustering merupakan teknik analisis pada data 3D yang bertujuan untuk mengelompokkan data secara bersamaan pada baris dan kolom di sepanjang waktu/kondisi yang berbeda. Hasil dari teknik ini disebut dengan tricluster. Tricluster merupakan subruang berupa subset dari baris, kolom, dan waktu/kondisi. Triclustering biasanya digunakan untuk menganalisis data ekspresi gen. Studi dan analisis data ekspresi gen selama perkembangan suatu penyakit merupakan masalah penelitian yang penting dalam bioinformatika dan aspek klinis. Oleh karena itu, penelitian ini mengimplementasikan metode THD-Tricluster dengan new residue score pada data ekspresi gen perkembangan penyakit HIV-1 yang terdiri dari 22283 probe id, 40 observasi, dan 4 kondisi. Pada tahap pertama dilakukan pencarian bicluster dengan lift algorithm berdasarkan nilai new residue score dengan threshold . Pada tahap kedua dilakukan pencarian tricluster dengan menentukan minimum probe dan minimum observasi  sehingga memperoleh 33 tricluster. Hasil evaluasi tricluster menggunakan Inter-temporal Homogeneity dengan threshold  diperoleh 32 tricluster yang menunjukkan 3 gen yang terkait dengan HIV-1 yaitu HLA-C, ELF-1, dan JUN.


Triclustering is an analysis technique on 3D data that aims to group data simultaneously on rows and columns across different times/conditions. The result of this technique is called a tricluster. Triclusters are a subspace consisting of a subset of rows, columns, and time/conditions. Triclustering is commonly used to analyze gene expression data. The study and analysis of gene expression data during disease progression is an important issue in the research of bioinformatics and clinical aspects. Therefore, this study implements the THD-Tricluster method with a new residue score on the gene expression data for HIV-1 disease progression consisting of 22283 probe id, 40 observations, and 4 conditions. In the first stage, a bicluster search was carried out with a lift algorithm based on the new residue score with a threshold of I = 0.08. In the second stage, the tricluster search was carried out by determining the minimum probe = 5 and the minimum observation = 2 to obtain 33 triclusters. The results of the tricluster evaluations using Inter-temporal Homogeneity with a threshold of Ï? = 0.8 obtained 32 triclusters which shows 3 genes related to HIV-1, namely HLA-C, ELF-1, and JUN.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sanjung Maharani
"Triclustering merupakan salah satu teknik data mining pada data tiga dimensi untuk mengelompokkan data secara bersamaan pada baris dan kolom di titik waktu yang berbeda menjadi tricluster. Metode ini umumnya diterapkan pada bidang bioinformatika, khususnya data ekspresi gen tiga dimensi. Salah satu triclustering dengan pendekatan biclustering-based adalah THD-Tricluster. Langkah utama dari algoritma ini ialah generate bicluster dan genereate tricluster. Algoritma THD-Tricluster menggunakan pola pergeseran dan penskalaan dengan nilai Shifting-and-Scaling-Similarity (SSSim) untuk mengelompokkan gen dan menghasilkan tricluster. Hasil dari THD-Tricluster dievaluasi dengan Multi Slope Measure (MSL) yaitu sebuah pengukuran kualitas melalui representasi grafik dari tricluster. Dalam penelitian ini, data yang digunakan adalah data respon tiga sel individu terhadap pemberian sitokin berupa interleukin-1-beta pada sel mesenkim amnion manusia atau sel pada membran janin. Sitokin memicu regulasi gen inflamasi yang berkontribusi pada kelahiran prematur. Metode THD-Tricluster diimplementasikan pada 15 skenario dengan nilai threshold berbeda. Skenario yang optimal dipilih menggunakan nilai validasi coverage. Pada skenario optimal, diperoleh delapan tricluster yang kemudian dievaluasi menggunakan Multi Slope Measure (MSL). Tricluster 2 yang memiliki nilai MSL paling kecil dan dipilih sebagai tricluster optimal terdiri atas kumpulan gen dari sel yang responsif terhadap pemberian sitokin berupa interleukin-1-beta. Gen-gen pada Tricluster 2 inilah yang dapat digunakan sebagai bahan pertimbangan bagi para peneliti di bidang biologis dan medis untuk untuk penelitian lebih lanjut terkait kelahiran prematur.

Triclustering is one of the data mining techniques on three-dimensional data to cluster data simultaneously in rows and columns at different time points into triclusters. This method is generally applied to the field of bioinformatics, especially three-dimensional gene expression data. One of the triclustering methods with a biclustering-based approach is THD-Tricluster. The main steps of this algorithm are generate bicluster and generate tricluster. THD-Tricluster algorithm uses shifting and scaling patterns with Shifting-and-Scaling-Similarity (SSSim) values to cluster genes and generate tricluster. The result of THD-Tricluster is evaluated by Multi Slope Measure (MSL), a measurement of tricluster quality through graphical representation. In this study, the data used is the response data of three individual cells to cytokine in the form of interleukin-1-beta in human amniotic mesenchymal cells or cells in the fetal membrane. Cytokines stimulate the regulation of inflammatory genes that contribute to preterm birth. The THD-Tricluster method was implemented on 15 scenarios with different threshold values. The optimal scenario was selected using the coverage validation value. In the optimal scenario, eight triclusters were obtained which were then evaluated using Multi Slope Measure (MSL). Tricluster 2 which has the smallest MSL value and selected as the optimal consists of a collection of genes from cells that are responsive to cytokine administration in the form of interleukin-1-beta. The genes in Tricluster 2 can be used by biological and medical researchers to develop treatments to prevent premature birth."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Luthfi Zahiya
"

Triclustering merupakan metode unsupervised learning yang bekerja pada data tiga dimensi dengan dimensi-dimensi berupa observasi, atribut, dan konteks. Tujuan dari triclustering adalah untuk membentuk himpunan submatriks yang disebut sebagai tricluster berdasarkan ketiga dimensi pada data yang diberikan. Data tiga dimensi banyak ditemukan dalam bidang biomedis, di mana hal tersebut turut mendorong penggunaan dan pengembangan triclustering untuk keperluan analisis data ekspresi gen di mana salah satu alternatif dimensi-dimensinya adalah gen, sampel, dan waktu (gene, sample, time) dan biasa juga disebut sebagai data GST. Salah satu metode triclustering yang dikembangkan untuk menganalisis data tiga dimensi short time-series adalah Order Preserving Tricluster (OPTricluster). OPTricluster mempertahankan sifat natural dimensi waktu yang berurutan dan mengelompokkan data ke dalam tricluster berdasarkan pola. Penelitian ini mengimplementasikan metode OPTricluster pada data GST biopsi otot rangka pria sehat yang berpuasa selama 24 jam. Tricluster-tricluster yang terbentuk dievaluasi menggunakan nilai Multi Slope Measure (MSL) untuk mengetahui kualitas grafis tricluster. MSL dikembangkan untuk mengevaluasi tricluster berisi data GST dan nilai MSL yang rendah menandakan kualitas tricluster yang baik. Berdasarkan analisis data GST, ditemukan bahwa penggunaan δ=1,7 menghasilkan tricluster pola constant dan divergent terbaik dan penggunaan δ=1,5 menghasilkan tricluster pola conserved terbaik. Namun, tricluster yang terbentuk mengindikasikan bahwa puasa selama 24 jam tidak menyebabkan banyak perubahan nilai ekspresi gen pada otot rangka manusia.


Triclustering is a method of unsupervised learning that runs on three-dimensional data where the dimensions are observation, attribute, and context. The objective of triclustering is to create a set of triclusters based on the three dimensions within the provided data. The abundance of three-dimensional data in the biomedical field is a big factor on the utilization and improvement of triclustering, particularly in the analysis of gene expression data which in it are the dimensions gene, sample, and time or abbreviated as GST data. One of the triclustering method developed to analyze three-dimensional short time-series data is Order Preserving Tricluster (OPTricluster). OPTricluster preserves the natural sequiential properties of the time dimension and organizes data into triclusters based on patterns. This study applies the OPTricluster method on the GST data from muscle biopsies from fasting healthy men. The formed triclusters are evaluated graphically using the Multi Slope Measure (MSL). A small MSL score indicates a good tricluster. Based on the analysis of GST data, δ=1,7 produces the best constant and divergent triclusters and δ=1,5 produces the best conserved triclusters. However, the triclusters formed suggest that fasting for 24 hours doesn’t have a lot of effect on gene expressions in human muscle.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siregar, Anggrainy Togi Marito
"Data tiga dimensi banyak ditemukan terutama dalam bidang biomedical dan sosial. Contoh data tiga dimensi adalah data gen-sampel-waktu, individual-fitur-waktu, atau node-node-time,yang umumnya disebut sebagai data konteks-atribut-observasi. Salah satu teknik dalam mengelola data tiga dimensi yaitu triclustering. Penelitian ini menggunakan metode THD-Tricluster untuk mendapatkan hasil triclustering pada data 3 dimensi penyakit AIDS yang disebabkan oleh virus Human Immunodeficiency Virus Tipe 1 (HIV-1). Pencarian triclustering tersebut dilakukan melalui tahap biclustering yang dilakukan pada setiap kondisi. Penelitian ini dengan memodifikasi algoritma Cheng & Church (CC) untuk menghasilkan biclustering dengan ukuran yang digunakan yaitu transposed virtual error ) yang mampu mengelompokkan data berdasarkan pola pergeseran (shifting) dan penskalaan (scaling). Hasil bicluster tersebut yang kemudian diiriskan pada masing-masing kondisi sehingga menghasilkan triclustering. Keseluruhan penelitian ini dilakukan pada program RStudio. Setiap tricluster memiliki suatu kedalaman yang dapat ditentukan bergantung pada banyak kondisi yang diiriskan. Implementasi ukuran transposed virtual error pada triclustering ini menghasilkan 4 tricluster pada kedalaman empat. Evaluasi tricluster tersebut dilakukan dengan menggunakan inter temporal homogeneity dan diperoleh nilai korelasi tricluster antar kondisi di atas 0.9. Dari hasil triclustering tersebut dianalisis probe id gen yang berpengaruh pada penyakit AIDS. Dari analisis tersebut ditemukan 2 simbol gen yang berhubungan dengan penyakit AIDS yang disebabkan oleh HIV-1 yang ada pada setiap kondisi penderita HIV-1 normal, akut, kronis, dan nonprogressor yaitu HLA-C dan ELF-1.
Three-dimensional data are mainly found in biomedical and social fields. Examples of three-dimensional data are gene-sample-time, individual-feature-time, or node-node-time Data, commonly referred to as context-attribute-observation data. One of the techniques in managing three-dimensional data is triclustering. This study uses the THD Tricluster method to obtain triclustering results in 3-dimensional data on AIDS caused by the HIV-1 virus. The Triclustering search is carried out through biclustering stages carried out in each condition. This study modifies the Cheng & Church (CC) algorithm to produce a bicluster using the measure called transposed virtual error ( which is able to group data based on shifting and scaling patterns. The biclustering results are then sliced under each condition to produce a tricluster. This research was conducted in the RStudio program. Each tricluster has a depth that can be determined depending on the many overlapping conditions. The implementation of the transposed virtual error size on biclustering results in 4 triclusters with a depth of four. The tricluster evaluation was carried out using inter temporal homogeneity and obtained a tricluster correlation value between conditions that was above 0.9. Then, the probe id genes that affect AIDS were analyzed from the results of the triclustering. From this analysis, 2 symbol genes associated with AIDS caused by HIV-1 were found in every condition of HIV-1 sufferers, which are normal, acute, chronic, and non-progressor HIV-1 sufferers, namely HLA-C and ELF-1."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dea Siska
"Metode triclustering merupakan pengembangan dari metode clustering dan biclustering. Berbeda dengan  metode clustering dan biclustering yang bekerja pada data dua dimensi, triclustering bekerja pada data tiga dimensi yang disusun dalam bentuk matriks. Matriks ini terdiri dari dimensi observasi, atribut, dan konteks. Triclustering mampu mengelompokkan ketiga dimensi tersebut secara simultan dan membentuk kelompok berupa subruang yang disebut tricluster. Metode ini umumnya diimplementasikan dalam bidang bioinformatika, terkhususnya dalam analisis data ekspresi gen tiga dimensi untuk menemukan profil ekspresi gen. Data atau matriks ini terdiri dari dimensi gen, kondisi eksperimen, dan waktu eksperimen (time point).
Salah satu algoritma triclustering, yaitu Order Preserving Triclustering (OPTricluster), adalah algoritma yang menggunakan pendekatan pattern based dan digunakan untuk menganalisis data ekspresi gen tiga dimensi yang merupakan short time series 3-8 time point). OPTricluster membentuk tricluster dengan mengidentifikasi gen-gen yang memiliki perubahan ekspresi yang sama di sepanjang time points pada sejumlah kondisi eksperimen.
Dalam penelitian ini, OPTricluster diimplementasikan pada data ekspresi gen sejumlah pasien yellow fever pasca vaksinasi dengan beberapa skenario yang menggunakan threshold yang berbeda-beda. Skenario dengan threshold yang optimum ditunjukkan oleh rata-rata skor Tricluster Diffusion terendah. Tricluster-tricluster yang dihasilkan berhasil menunjukkan hubungan biologis di antara pasien-pasien tersebut, di mana vaksin cenderung memberikan reaksi yang lebih signifikan pada pasien pria dibandingkan pasien wanita. Selain itu, ditemukan anomali pada pasien-pasien tersebut.

Triclustering method is the development of clustering method and biclustering method. Unlike clustering and biclustering that works on two-dimensional data, triclustering works on three-dimensional data that arranged in the form of a matrix consisting of observations, attributes, and contexts dimensions. Triclustering is able to group these dimensions simultaneously and form a subspace called a tricluster. This method is generally implemented in analysis of three-dimensional gene expression data to find profiles of gene expression. This data or matrix consists of genes, experimental conditions and time points dimensions.
One of the triclustering algorithms, Order Preserving Triclustering (OPTricluster), is an algorithm that uses a pattern-based approach and used to analyze short time series data (3-8 time points). The OPTricluster forms the tricluster by identifying genes that have the same expression change across time points under a number of experimental conditions. The change in expression is expressed in a rank pattern which is divided based on three types of patterns, namely constant, conserved and divergent patterns.
In this study, OPTricluster was implemented in gene expression data of yellow fever patients after vaccination using several scenarios with different thresholds. The scenario with the optimum threshold is indicated by the lowest average Tricluster Diffusion score. The resulting triclusters were successful in showing biological relationships among these patients, where the vaccine tending to have a more significant reaction in male patients than in female patients. In addition, anomalies were found in these patients.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akira Andriani
"Analisis clustering merupakan proses pengelompokan yang bertujuan untuk menemukan kelompok atau cluster yang didalamnya memiliki karakteristik yang serupa. Seiring berjalannya waktu, teknik clustering berkembang menjadi biclustering dan triclustering, di mana dalam triclustering data yang digunakan adalah data tiga dimensi. Triclustering mampu mengelompokkan ketiga dimensi tersebut secara bersamaan yang nantinya kelompok yang dihasilkan disebut dengan tricluster. Pada penelitian ini, digunakan metode Fuzzy Cuckoo Search (FCS) untuk mengimplementasikan triclustering pada data ekspresi gen tiga dimensi. FCS mengaplikasikan konsep Fuzzy C-Means (FCM) ke dalam algoritma cuckoo search. Penggunaan fungsi objektif FCM dalam FCS dapat mengatasi ketidakjelasan (uncertainty) dalam data, khususnya pada data ekspresi gen. Dalam metode cuckoo search, pencarian ‘solusi’ tricluster digambarkan dengan spesies cuckoo yang meletakkan telur di sarang burung lain. Berbeda dengan cuckoo search pada umumnya yang menggunakan metode random walk levy flight untuk pencarian solusi, pada penelitian ini, digunakan metode lain, yaitu metode random walk distribusi gaussian, di mana hal tersebut merupakan sebuah kebaruan dalam penelitian ini. Cuckoo search dalam metode FCS merupakan metode metaheuristik, sehingga dapat digunakan dalam berbagai masalah analisis data, termasuk data ekspresi gen. Metode FCS berdasarkan distribusi gaussian diimplementasikan pada data ekspresi gen tiga dimensi dari gen otot rangka yang diberi infus IL-6, di mana ekspresi gen diamati pada 3 subjek dan 3 titik waktu yang berbeda. Metode ini dievaluasi menggunakan ukuran evaluasi Triclustering Quality Index (TQI). Dari skenario yang dilakukan, metode FCS memberikan hasil terbaik dengan rata-rata TQI terendah ketika menggunakan nilai gaussian dan probabilitas . Hasil implementasi metode FCS menunjukkan 4 tricluster yang diduga sebagai kumpulan gen yang berekspresi atas respon dari IL-6. Kelompok gen yang diperoleh dari tricluster dapat digunakan sebagai target oleh ahli medis dalam pengembangan di bidang pengobatan penyakit seperti kanker, diabetes, paru-paru, atau gagal jantung yang menargetkan gen-gen dalam kelompok tricluster tersebut.

Clustering analysis is a grouping process that aims to find clusters such that objects in the same clusters have similar characteristics. Over time, clustering developed into biclustering and triclustering, wherein triclustering use three-dimensional dataset. Triclustering is able to group these three dimensions simultaneously and form groups called tricluster. This study used the Fuzzy Cuckoo Search (FCS) method to implement triclustering on three-dimensional gene expression data. FCS applies the Fuzzy C-means (FCM) concept to the cuckoo search algorithm. The use of the objective function of FCM in FCS can overcome the uncertainty in the data, especially in gene expression data. In the cuckoo search, finding the tricluster is described with cuckoo species laying their egg in the nests of other birds. The egg laid on the nest represents a 'solution' which is an update of the tricluster from the previous tricluster. Unlike cuckoo search in general, in this study, to find the tricluster solutions, it use gaussian random walk instead of levy flight random walk. Cuckoo search in the FCS method is a metaheuristic method, so it can be used in various data analysis problems, including gene expression data. FCS based on Gaussian distribution was implemented on three-dimensional gene expression data of skeletal muscle genes given IL-6 infusion, where the gene expression was observed in 3 subjects and 3 different time points. Of the 36 simulations performed, the FCS method gives the best results with the lowest average TQI when using gaussian values and probability . This method was evaluated using the Triclustering Quality Index (TQI) evaluation measure. The result of the implementation of FCS shows 4 triclusters which were suspected to be a collection of genes that change in response to IL-6. The gene groups obtained from the tricluster can be used as a consideration by medical professionals in the development of the treatment of diseases such as cancer, diabetes, pulmonary disease, or heart failure that target the genes in the tricluster group."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwi Aji Apriana
"Triclustering merupakan salah satu metode data mining yang juga merupakan pengembangan dari metode biclustering dan clustering. Metode tersebut mengelompokkan set data berupa matriks tiga dimensi (gen, kondisi, dan waktu) menjadi kelompok-kelompok submatriks yang memiliki kesamaan satu sama lain. Salah satu algoritma dari analisis triclustering adalah Extended Dimension Iterative Signature Algorithm (EDISA). Algoritma ini mempertimbangkan jarak Pearson antara tiap gen dan kondisi terhadap vektor rata-rata sebagai ukuran kemiripan. Proses pertama dari EDISA adalah langkah preprocessing yaitu menghapus gen yang memiliki nilai ekspresi gen yang berbeda sangat signifikan dengan nilai ekspresi gen lainnya. Lalu langkah selanjutnya yaitu memilih sebanyak s sampel gen dengan cara memilih satu gen secara random untuk menjadi seed gen, lalu mencari sebanyak s-1 gen yang memiliki jarak Pearson terdekat dengan seed gen tersebut. Tahap berikutnya membuat vektor bobot gen dan kondisi, lalu memasangkannya dengan sampel gen yang telah terpilih, kemudian menghitung vektor rata-ratanya. Proses selanjutnya yaitu proses iterasi di mana setiap gen dan kondisi yang memiliki jarak Pearson terhadap vektor rata-rata di atas ambang batas tertentu (TG dan TG, keduanya merupakan ukuran seberapa baik keselarasan suatu gen dan kondisi terhadap rata-rata kandidat tricluster) harus dihapus karena dianggap tidak memiliki kemiripan yang cukup dengan anggota tricluster lain pada setiap iterasinya. Proses selanjutnya adalah postprocessing yang bertujuan untuk menggabungkan tricluster yang memiliki kemiripan untuk dijadikan tricluster yang lebih besar dan dijadikan sebagai kumpulan tricluster final. Algoritma ini diterapkan pada data ekspresi gen penyakit paru-paru. Penerapan algoritma tersebut menggunakan beberapa skenario dengan nilai Tg dan TG yang berbeda. Hasil dari penerapan pada data ekspresi gen penyakit paru-paru diperoleh bahwa semakin besar nilai TG, maka jumlah gen yang dapat masuk ke dalam tricluster makin banyak, dan semakin besar nilai TG, maka jumlah kondisi yang dapat masuk ke dalam tricluster juga makin banyak. Selain itu, dilakukan evaluasi dari tricluster menggunakan nilai Tricluster Diffusion Score (TD Score) untuk mencari skenario terbaik. Didapat bahwa skenario terbaik merupakan skenario dengan nilai Tg=0,3 dan nilai TG=0,2. Melalui algoritma ini dapat dideteksi gen-gen yang dapat membedakan karakteristik pasien yang berpenyakit paru-paru dan pasien yang sehat."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Latif Raditya Rusdi
"Triclustering merupakan salah satu teknik data mining yang bertujuan untuk mengelompokkan data berbentuk tiga dimensi secara simultan. Salah satu pendekatan yang digunakan dalam triclustering adalah pendekatan pattern-based, contohnya Timesvector. Metode timesvector dirancang khusus untuk pengelompokan data deret waktu tiga dimensi yang bertujuan menangkap pola ekspresi gen yang sama atau berbeda antara dua atau lebih kondisi eksperimen. Implementasi metode timesvector dilakukan pada data ekspresi gen human embryonic stem cell (H1-hESC) yang diberi protein morfogenetik tulang (BMP4) dan dikondisikan di dalam ruang dengan tingkat oksigen 4% dan 20, serta diamati pada 6 titik waktu berbeda selama 120 jam. Triclustering dilakukan dengan lima skenario menggunakan cluster sejumlah 257 dan threshold yang berbeda. Berdasarkan skenario tersebut, metode timesvector menghasilkan skenario terbaik pada skenario dengan threshold 1,5 yang menggunakan validasi berdasarkan nilai coverage. Berdasarkan hasil skenario terbaik, dihasilkan 9 pola DEP, 24 pola ODEP, dan 37 pola SEP dan dari pola tersebut dilakukan analisis Gene Ontology (GO) untuk mengukur kualitas tricluster dalam penggambaran konsep GO. Analisis GO menggunakan Database for Annotation, Visualization, and Integrated Discovery (DAVID) tools untuk menghitung nilai p-value. Pada analisis GO dipilih p-value terkecil pada pola DEP, ODEP, dan SEP sebagai tricluster terbaik, yaitu DEP pada tricluster ke 8, ODEP pada tricluster ke-1, dan SEP pada tricluster ke-26. Berdasarkan tricluster terbaik pada pola DEP dan ODEP dapat dikatakan bahwa kondisi oksigen tingkat fisiologis 4 % dan tingkat atmosfer 20 % memiliki perbedaan dalam mengidentifikasi gen kandidat pada H1-hESC yang mampu berdiferensiasi menjadi trofoblas, sedangkan SEP tidak memiliki perbedaan dalam mengidentifikasi gen kandidat pada H1-hESC dengan dua kondisi berbeda.

Triclustering is one of the data mining techniques that aims to cluster three-dimensional data simultaneously. One of the approaches used in triclustering is a pattern-based approach, such as Timesvector. The timesvector method is specifically designed for clustering three-dimensional time series data that aims to capture gene expression patterns that are the same or different between two or more experimental conditions. The implementation of the timesvector method was performed on human embryonic stem cell (H1-hESC) gene expression data treated with bone morphogenetic protein (BMP4) and conditioned in a chamber with 4% and 20 oxygen levels and observed at 6 different time points for 120 hours. Triclustering was performed with five scenarios using 257 clusters and different thresholds. Based on these scenarios, the timesvector method produces the best scenario in the scenario with a threshold of 1.5 which uses validation based on the coverage value. Based on the results of the best scenario, 9 DEP patterns, 24 ODEP patterns, and 37 SEP patterns were generated from these patterns. Gene Ontology (GO) analysis was carried out to measure the quality of the tricluster in describing the GO concept. GO analysis uses Database for Annotation, Visualization, and Integrated Discovery (DAVID) tools to calculate the p-value. In the GO analysis, the smallest p value in the DEP, ODEP, and SEP patterns was selected as the best tricluster, namely DEP in the 8th tricluster, ODEP in the 1st tricluster, and SEP in the 26th tricluster. Based on the best tricluster in the DEP and ODEP patterns, it can be said that the oxygen conditions of 4% physiological level and 20% atmospheric level have differences in identifying candidate genes in H1-hESC that are able to differentiate into trophoblasts, while SEP has no difference in identifying candidate genes in H1-hESC with two different conditions."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>