Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 116139 dokumen yang sesuai dengan query
cover
Egira Adhani Khairunnisa
"

Saat ini tidak ada keraguan bagi siswa-siswi sekolah menengah untuk melanjutkan pendidikannya ke jenjang universitas. Namun, transisi dari sekolah menengah ke pendidikan tinggi adalah tantangan besar bagi mahasiswa tahun pertama. Kinerja mahasiswa pada tahun pertama cenderung menentukan kinerja mahasiswa tersebut di tahun-tahun akademik berikutnya. Penting untuk mencari karakteristik-karakteristik mahasiswa berdasarkan kinerjanya pada awal tahun semester akademik, sehingga dapat dilakukan pendeteksian awal untuk mencegah penurunan kinerja dan meningkatkan prestasi akademik mahasiswa. Penelitian ini bertujuan untuk mengelompokkan 140 mahasiswa semester pertama. Fitur-fitur diseleksi menggunakan Chi-Square lalu digunakan Fuzzy C-Means clustering untuk mengelompokkan mahasiswa. Dari hasil simulasi, mahasiswa dikelompokkan ke dalam dua cluster dengan kinerja cluster kedua lebih baik dibanding kinerja cluster pertama.


Currently there is no doubt for high school students to continue their education at the university level. However, the transition from high school to university is a major challenge for the first-year students. Moreover, student performance during the first year tends to determine their performance in the following academic years. It is important to find student's characteristics based on their performance at the beginning of the academic semester so that early detection can be done to prevent performance degradation and increase student academic achievement. This study aims to cluster 140 first year students. Features are selected using the Chi-Square feature selection method and then using Fuzzy C-Means clustering to group the students. From simulation result, students are grouped into two clusters with the second cluster's performance is better than the first cluster's performance.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hendy Fergus Atheri Hura
"ABSTRAK
Penelitian ini mengimplementasikan metode spectral clustering-Fuzzy C-Means pada tiga microarray data ekspresi gen, dengan tujuan untuk mengelompokkan gen-gen yang memiliki tingkat ekspresi yang similar. Spectral clustering secara teoritis terdiri dari tiga tahap utama yaitu: membangun matriks jarak, membentuk matriks Laplacian, dan proses partisi, khususnya dalam tesis ini menggunakan algoritma partisi Fuzzy C-Means. Oleh karena itu, implementasi dari spectral clustering-FCM lebih sederhana dan intuitif pada pelaksanaannya. Analisis cluster singkat juga akan dipaparkan untuk masing-masing microarray data yang digunakan yaitu: Carcinoma, Leukemia, dan Lymphoma. Hasil cluster yang sangat baik didapatkan, sehingga metode yang diusulkan memiliki potensi besar ke depannya dalam penelitan pada bidang medis.

ABSTRACT
This research implements the spectral clustering FCM method on three microarray gene expression data, with the aim of grouping genes with similar expression levels. Spectral clustering is theoretically composed of three main stages building distance matrix, forming Laplacian matrix, and partitioning process, especially in this thesis using Fuzzy C Means partition algorithm. Therefore, the implementation of spectral clustering FCM is simpler and more intuitive in its implementation. Brief cluster analysis will also be presented for each microarray data used Carcinoma, Leukemia, and Lymphoma. Excellent cluster results are obtained, so the proposed method has great potential for future research in the medical field. "
2017
T48274
UI - Tesis Membership  Universitas Indonesia Library
cover
Nedya Shandri
"Penyakit kronis adalah penyakit yang diderita dalam waktu panjang dan dapat berkembang secara cepat, salah satunya adalah penyakit kanker dan diabetes. Oleh karena itu, dengan melakukan pendeteksian dini maka perkembangan penyakit kanker dan diabetes akan menurun. Salah satu cara pendektesian dini dapat dilakukan oleh machine learning. Teknik machine learning banyak digunakan dalam berbagai bidang khususnya untuk analisa data medis.  Clustering merupakan salah satu metode dari machine learning yang bertujuan untuk mengelompokkan suatu dataset ke dalam subset berdasarkan ukuran jarak. Salah satu contoh metode clustering adalah metode Entropi Fuzzy C-Means yang dapat mengidentifikasi entropi disetiap titik data dan memilih pusat kluster terdekat dengan entropi minimum. Pada penelitian akan digunakan data kanker dan diabetes dari UCI Repository dengan menggunakan metode Entropi Fuzzy C-Means yang akan dimodifikasi dengan kernel RBF. Sebelum dilakukan klasifikasi, dilakukan pemilihan fitur menggunakan Chi-Square. Tujuan dari penelitian ini adalah untuk mendapatkan fitur-fitur yang optimal dan mengetahui hasil akurasi menggunakan untuk klasifikasi data diabetes dan kanker. Diperoleh hasil akurasi tertinggi pada klasifikasi data medis menggunakan metode Entropi Fuzzy C-Means berbasis kernel dengan pemilihan fitur Chi-Square yaitu sebesar 83.33% untuk data diabetes dan 77.77-100% untuk data kanker.

Chronic disease is a disease that occur for a long time and can develop quickly, one of them is cancer and diabetes. The early detection is very helpful to reduce the development of the disease. One of the ways to detect cancer and diabetes disease is using machine learning technic. Machine learning technic is widely use in many aspects especially in medical data analysis. Clustering is part of machine learning technic that is used to group a dataset into subset based on space size. Entropy Fuzzy C-Means is one of the methods which can identify entropy in every data and can choose the cluster center similar with minimum entropy. In this paper we will use cancer and diabetes medical data from UCI Repository using Entropy Fuzzy C-Means method which is modified by kernel RBF. Before classification, we will select the feature using Chi-Square  to get the optimal subset feature. The purpose of this study was to obtain optimal features and find out the results of accuracy using for the classification of diabetes and cancer data. The medical data classification using Entropy Fuzzy C-Means based on kernel with Chi-Square feature selection gives the 100% highest accuration result for cancer data and 83,33% for diabetes data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alifah
"Diabetes Melitus (DM) merupakan gangguan sistem metabolik akibat pankreas tidak memproduksi cukup insulin atau tubuh tidak mampu menggunakan insulin yang ada secara efektif. Menderita diabetes dalam jangka waktu panjang dapat mengakibatkan berbagai macam komplikasi salah satu di antaranya adalah Retinopati diabetik. Retinopati diabetik  adalah kelainan pada bagian mata yang disebabkan oleh adanya kerusakan dan penyumbatan pada pembuluh darah di bagian belakang mata (retina). Pada penelitian kali ini akan di gunakan data retinopati diabetik dengan menggunakan metode seleksi fitur Recursive Feature Elimination (RFE) dan Chi-Square dan akan di klasifikasi menggunakan Support Vector Machine.

Diabetic retinopathy is one of the complication of diabetes, which is an eye disease that can cause blindness. Its happen because of damage of retina as a result of the long illness of diabetic melitus. People usually do research using image data in diabetic patients. This paper present about diabetic retinopathy will extracting with feature selection. In this study, we use data diabetic patients who will be extracted with a feature selection method. Feature selection used in this study is Recursive Feature Elimination (RFE) and Chi-Square. For classification of diabetic retinopathy has been done by Support Vector Machine (SVM). From the experimental result with various tunning hyperparameters, the classification model can obtain the accuracy between 97%-100% for both methods."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurul Qomariah Abdillah
"Perkembangan teknologi informasi dan komunikasi saat ini menciptakan ketergantungan manusia terhadap teknologi dan internet, salah satunya melalui penggunaan jaringan Wi-Fi. Konektivitas Wi-Fi berkaitan erat dengan Internet of Things (IoT) karena dapat memfasilitasi perangkat IoT untuk saling terhubung dan terkoneksi ke jaringan internet. Namun, peningkatan penggunaan Wi-Fi publik maupun privat rentan terhadap serangan siber. Badan Sandi dan Siber Negara memperkirakan tahun 2024 akan muncul ancaman seperti IoT attacks, distributed denial of services (DDOS), phishing, dan lainnya. Oleh karena itu, perlu adanya upaya antisipatif untuk mengatasi serangan siber. Salah satu upayanya adalah menerapkan intrusion detection system (IDS) untuk memantau lalu lintas jaringan dan memberikan peringatan jika terdapat serangan. Peningkatan kemampuan deteksi IDS dapat dilakukan dengan menerapkan metode machine learning yang mampu mempelajari pola serangan secara efektif dan akurat. Pada penelitian skripsi ini diterapkan metode klasifikasi Support Vector Machine (SVM) Multiclass dengan pendekatan one-vs-one dan one-vs-rest pada dataset Aegean Wi-Fi Intrusion Detection System (AWID2) yang terdiri dari empat kelas dan memiliki dimensi data yang tinggi, yaitu 154 dimensi (fitur). Dalam mengatasi masalah dimensi tinggi tersebut dilakukan seleksi fitur yang bertujuan untuk menghilangkan fitur yang tidak relevan, sehingga fitur hanya terkonsentrasi pada fitur- fitur yang relevan dan informatif dalam menggambarkan serangan. Penelitian skripsi ini menggunakan metode Chi-square dan Information Gain Ratio. Hasil penelitian skripsi ini menunjukkan metode seleksi fitur Chi-square dengan klasifikasi SVM One Vs Rest pada kernel polynomial dengan memilih 54 fitur tertinggi merupakan model terbaik dalam mengklasifikasikan serangan siber pada Wi-Fi dengan nilai accuracy = 98,03%, Precision = 87,24%, Recall = 99,30%, dan F1 score = 91,90%.

Today's advances in information and communication technology create human dependence on technology and the Internet, one of which is through the use of Wi-Fi networks. Wi-fi connectivity is closely related to the Internet of Things (IoT) because it can facilitate IoT devices to interconnect and be connected to the internet network. However, increased use of public and private Wi-FI is vulnerable to cyber attacks. The National Password and Cyber Agency predicts that threats such as IoT attacks, Distributed Denial of Services, phishing, and more will emerge in 2024. Therefore, there is a need for pre-emptive efforts to deal with cyberattacks. One attempt is to implement the Intrusion Detection System (IDS) to monitor network traffic and give warning if there is an attack. Improved IDS detection capabilities can be achieved by applying machine learning methods that can learn patterns of attack effectively and accurately. In this study, the multi-class Support Vector Machine (SVM) classification method was applied to the Aegean Wi-Fi Intrusion Detection System (AWID2) dataset, which consists of four classes and has a high data dimension, namely 154 dimensions. In addressing the high dimension problem, a feature selection was carried out aimed at eliminating irrelevant features, so that the features were concentrated only on the features that are relevant and informative in describing the attack. This study of the script uses the Chi-square method and Information Gain Ratio. The results of this study show that the method of selection of the feature Chi-square with SVM One vs Rest classification on the polynomial kernel by choosing the 54 highest features is the best model in classifying cyber attacks on Wi-Fi with accuracy values = 98.03%, Precision = 87.24%, Recall = 99.30%, and F1 score = 91.90%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Naufal Luthfi
"Peradaban yang terus berkembang telah membuat konflik antara manusia dan lingkungan menjadi semakin parah sehingga menyebabkan banyak terjadinya bencana alam. Banyak negara yang terdampak oleh bencana alam dan salah satunya adalah Indonesia. Kondisi dan letak geografis Indonesia menyebabkan banyak terjadinya bencana alam di Indonesia. Oleh karena itu, perlu dilakukan pengelompokan daerah bencana alam di Indonesia untuk mengetahui daerah yang paling sering terkena bencana alam. Metode clustering dapat digunakan untuk mengetahui daerah tersebut. Dari studi literatur yang telah dilakukan, belum ada penelitian yang menggunakan metode hierarchical clustering dan fuzzy c-means untuk clustering daerah bencana alam di Indonesia. Maka dari itu, tujuan dari penelitian ini adalah mengklasifikasi daerah yang sering mengalami bencana alam di Indonesia dengan menggunakan metode hierarchical clustering dan fuzzy c-means. Data yang digunakan dalam penelitian ini adalah data bencana alam di Indonesia dari tahun 2019 hingga 2023. Variabel yang digunakan adalah jumlah kebakaran hutan dan lahan, banjir, cuaca ekstrem, gelombang pasang, tanah longsor, kekeringan, erupsi gunung api, dan gempa bumi di setiap kabupaten yang terdampak bencana alam. Hasil clustering menunjukan terdapat 66 daerah yang sering mengalami banjir, 45 daerah yang sering mengalami kebakaran hutan dan gelombang pasang, dan 30 daerah yang sering mengalami cuaca ekstrem, tanah longsor, kekeringan, erupsi gunung api, dan gempa bumi.

The continuously evolving civilization has exacerbated the conflict between humans and the environment, leading to increasingly severe natural disasters. Many countries are affected by natural disasters, and one of them is Indonesia. Indonesia's conditions and geographic location contribute to the occurrence of numerous natural disasters in the country. Therefore, it is necessary to classify areas prone to natural disasters in Indonesia to identify the most frequently affected regions. Clustering methods can be used to determine these areas. From the literature review conducted, there has been no research utilizing hierarchical clustering and fuzzy c-means methods for clustering areas prone to natural disasters in Indonesia. Therefore, the aim of this research is to classify areas that frequently experience natural disasters in Indonesia using hierarchical clustering and fuzzy c-means methods. The data used in this research is the natural disaster data in Indonesia from 2019 to 2023. The variables used include the number of forest and land fires, floods, extreme weather events, tidal waves, landslides, droughts, volcanic eruptions, and earthquakes in each disaster-affected district. The clustering results indicate that there are 66 regions frequently experiencing floods, 45 regions often experiencing forest fires and tidal waves, and 30 regions commonly facing extreme weather, landslides, droughts, volcanic eruptions, and earthquakes."
Jakarta: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Cynthia
"Dengue adalah salah satu penyakit endemik yang terjadi pada banyak daerah sub tropis dan tropis. Nyamuk Aedes aegypti merupakan vektor utama penyakit dengue. Jumlah insiden dengue telah meningkat secara drastis di seluruh dunia dalam beberapa dekade terakhir. Perubahan iklim dapat menyebabkan perubahan curah hujan, suhu, kelembapan, dan arah udara, sehingga dapat berpengaruh pada perkembangbiakan hidup nyamuk Aedes. Pada skripsi ini, penulis mengimplementasikan algoritma ­K-Medoids dan Fuzzy C-Means Clustering menggunakan jarak Euclidean pada data insiden dengue dan cuaca yang diambil dari kelima wilayah di DKI Jakarta pada tahun 2009 hingga 2016. Variabel yang digunakan terdiri atas rata-rata temperatur, rata-rata kelembapan udara relatif, curah hujan, dan insiden dengue. Proses implementasi dalam skripsi ini dibedakan atas 2 skenario penelitian, yaitu menggunakan 4 variabel yang telah disebutkan di atas dan 3 variabel (variabel yang sama seperti sebelumnya, namun tanpa variabel insiden dengue). Tujuan penelitian dalam skripsi ini adalah menganalisis keterkaitan antara variabel cuaca tersebut dan insiden dengue dari kelima wilayah di DKI Jakarta. Untuk menentukan jumlah klaster yang digunakan, pada metode K-Medoids Clustering dilakukan perhitungan Silhouette Coefficient dan pada metode Fuzzy C-Means Clustering dilakukan perhitungan Modified Partition Coefficient. Hasil menunjukkan bahwa terdapat korelasi yang cenderung positif antara insiden dengue dengan rata-rata kelembapan udara relatif dan jumlah curah hujan di DKI Jakarta. Sementara itu, terdapat korelasi yang cenderung negatif antara jumlah insiden dengue dengan rata-rata temperatur di DKI Jakarta. Hasil dari kedua skenario menunjukkan bahwa terdapat kemiripan nilai rata-rata temperatur yang terjadi antara Jakarta Pusat dan Jakarta Utara, serta antara Jakarta Timur, Jakarta Selatan, dan Jakarta Barat. Kemiripan nilai rata-rata kelembapan udara relatif juga terjadi pada wilayah-wilayah seperti yang telah disebutkan sebelumnya. Hasil dari kedua skenario juga menunjukkan bahwa insiden dengue yang terjadi di Jakarta Pusat dan Jakarta Utara cenderung lebih rendah dari Jakarta Timur, Jakarta Barat, dan Jakarta Selatan. Berdasarkan hasil yang diperoleh, pembentukan klaster pada skenario pertama cenderung dipengaruhi oleh jumlah insiden dengue. Sementara itu, pembentukan klaster pada skenario kedua cenderung dipengaruhi oleh jumlah curah hujan.

Dengue is an endemic disease prevalent in sub-tropical and tropical regions. The Aedes aegypti mosquito is the main vector of dengue. Dengue incidence has been rising dramatically throughout the last few decades. Climate change may lead to changes in rainfall, temperature, humidity, and wind direction, so that it can affect the breeding of Aedes mosquitoes. In this study, we employ K-Medoids Clustering and Fuzzy C-Means (FCM) Clustering algorithms using Euclidean distance on five regions in DKI Jakarta every year from 2009 to 2016. The variables used consist of average temperature, average relative humidity, rainfall, and dengue incidence. The implementation process in this study is divided into 2 research scenarios. Firstly using the 4 variables that was mentioned above, and secondly using 3 variables (the same variables as before, but without the dengue incidence variable). The purpose of this study is to analyze the relationships between these weather variables and dengue incidence in the five regions in DKI Jakarta. In order to determine the number of clusters used, for K-Medoids Clustering we determine the Silhouette Coefficient, and for Fuzzy C-Means Clustering we determine the Modified Partition Coefficient. The results show that there tends to be a positive correlation between the number of dengue incidence with average relative humidity and the amount of rainfall. On the other hand, there tends to be a negative correlation between the number of dengue incidence with the average temperature. The results of the two scenarios show that there are similarities in the average temperature between Central Jakarta and North Jakarta, as well as between the East Jakarta, South Jakarta, and West Jakarta. Similarities in the average relative humidity also occur in the areas mentioned before. The results of both scenarios also show that the dengue incidence in Central Jakarta and North Jakarta tend to be lower than in East Jakarta, West Jakarta, and South Jakarta. Based on the results, cluster formation in the first scenario tends to be influenced by the number of dengue incidence. Meanwhile, cluster formation in the second scenario tends to be influenced by the amount of rainfall."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arvan Aulia Rachman
"Klasifikasi data kanker dilakukan untuk menemukan terapi yang tepat yaitu memaksimalkan efektivitas dan meminimalkan toksisitas. Pada umumnya, data kanker terdiri dari banyak fitur. Namun, tidak semua fitur tersebut informatif. Oleh karena itu, fitur-fitur tersebut akan diseleksi menggunakan metode Fisher's Ratio untuk memilih fitur-fitur yang paling informatif. Fitur-fitur terbaik akan dibentuk data baru. Data, sebelum dan setelah dilakukan pemilihan fitur, diklasifikasi menggunakan metode Fuzzy C-Means. Akurasi dari proses klasifikasinya akan dibandingkan. Hasilnya, tanpa melakukan pemilihan fitur, diperoleh rata-rata akurasi sebesar 82.92%. Setelah dilakukan pemilihan fitur, diperoleh akurasi terbaik dengan menggunakan 150 fitur dengan rata-rata akurasi sebesar 89.68%.

Classification of cancer data is done to find the right therapy that maximize efficacy and minimize toxicity. In general, cancer data consists of many features. However, not all of these features are informative. Therefore, these features will be selected using Fisher's Ratio to choose features that are most informative. The best features to be formed new data. Data, before and after feature selection, are classified using Fuzzy C-Means. The accuracy of the classification process will be compared. As a result, without doing feature selection, the accuracy is 82.92%. After doing feature selection, the best accuracy is obtained by using 150 features with the accuracy is 89.68%.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S64140
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akmal Fikri
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S27814
UI - Skripsi Open  Universitas Indonesia Library
cover
Cindy
"Dengue adalah penyakit infeksi yang menjadi masalah kesehatan serius di dunia. Jumlah insiden dengue di Indonesia terus meningkat sejak tahun 1968, namun pada beberapa tahun belakangan, jumlah penderita dengue cenderung fluktuatif. Faktor-faktor cuaca cenderung memiliki hubungan dengan insiden dengue di Indonesia. Pada skripsi ini, dilakukan analisis pada data time-series cuaca dan insiden dengue pada wilayah DKI Jakarta dari Januari 2008 sampai September 2017. Clustering dapat digunakan untuk menemukan pola pada dataset time-series yang besar dan berisi informasi berharga. Pada skripsi ini, digunakan pendekatan K-Medoids dan Fuzzy C-Means Clustering menggunakan jarak Dynamic Time Warping (DTW). Skripsi ini bertujuan untuk menganalisis pola faktor-faktor cuaca dan insiden dengue di lima wilayah DKI Jakarta (Jakarta Utara, Jakarta Timur, Jakarta Barat, Jakarta Selatan, dan Jakarta Pusat). Faktor-faktor cuaca yang digunakan terdiri dari rata-rata temperatur, curah hujan, rata-rata kelembapan relatif, sinar matahari, dan rata-rata kecepatan angin. Sebelum clustering dilakukan, nilai Silhouette Coefficient digunakan untuk menentukan jumlah cluster yang optimal pada K-Medoids Clustering. Sedangkan, nilai Modified Partition Coefficient digunakan untuk menentukan jumlah cluster yang optimal pada Fuzzy C-Means Clustering. Hasil implementasi menunjukkan bahwa curah hujan merupakan faktor cuaca yang memiliki pola yang paling serupa dengan insiden dengue di kelima wilayah DKI Jakarta. Selain itu, sinar matahari, rata-rata temperatur, dan rata-rata kelembapan relatif juga cenderung memiliki pola yang serupa. Rata-rata kecepatan angin juga cenderung memiliki pola yang serupa dengan curah hujan dan insiden dengue, atau dengan sinar matahari, rata-rata temperatur, dan rata-rata kelembapan relatif.

Dengue is an infectious disease which has become a serious issue throughout the world. Since 1968, the incidence of dengue in Indonesia has continued to increase every year, but in recent years it tended to fluctuate. Weather factors are associated with the incidence of dengue in Indonesia. In this thesis, an analysis of weather time-series data and dengue incidence is done in the DKI Jakarta area from January 2008 to September 2017. Clustering can be used to discover patterns in large time-series datasets which contain valuable information. In this thesis, the K-Medoids and Fuzzy C-Means Clustering approaches using Dynamic Time Warping (DTW) distance are employed. This thesis aims to analyze patterns of weather factors and dengue incidence in the five regions of DKI Jakarta (North Jakarta, East Jakarta, West Jakarta, South Jakarta and Central Jakarta). The weather variables consist of average temperature, rainfall, average relative humidity, sunshine, and average wind speed. Before the clustering process, the Silhouette Coefficient value is used to determine the optimal number of clusters in K-Medoids Clustering. Meanwhile, the Modified Partition Coefficient value is used to determine the optimal number of clusters in Fuzzy C-Means Clustering. The implementation results show that rainfall is the weather factor which has the most similar pattern to the dengue incidence in the five regions of DKI Jakarta. In addition, sunshine, average temperature, and average relative humidity also tend to have a similar pattern with each other. Average wind speed also tends to have a pattern similar to rainfall and dengue incidence, or with sunshine, average temperature, and average relative humidity."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>