Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 151490 dokumen yang sesuai dengan query
cover
Ika Marta Sari
"

Analisis triclustering merupakan pengembangan dari analisis clustering dan analisis biclustering. Tujuan dari analisis triclustering yaitu mengelompokkan data tiga dimensi secara simultan atau bersamaan. Data tiga dimensi tersebut dapat berupa observasi, atribut, dan konteks. Salah satu pendekatan yang digunakan dalam analisis triclustering, yaitu pendekatan berdasarkan pattern contohnya, adalah metode Timesvector. Metode Timesvector bertujuan untuk mengelompokkan matriks data yang menunjukkan pola yang sama atau berbeda pada data tiga dimensi. Metode Timesvector memiliki langkah kerja yang dimulai dengan mereduksi matriks data tiga dimensi menjadi matriks data dua dimensi untuk mengurangi kompleksitas dalam pengelompokkan. Pada metode ini akan digunakan algoritma Spherical K-means dalam pengelompokkannya. Tahap selanjutnya, yaitu mengidentifikasi pola dari cluster yang dihasilkan pada Spherical K-means. Pola yang dimaksud terdiri dari tiga jenis, yaitu DEP (Differentially Expressed Pattern), ODEP (One Differentially Expressed Pattern), dan SEP (Similarly Expressed Pattern). Penerapan dari metode Timesvector dilakukan pada data ekspresi gen yaitu data tumor otak yang dilakukan dalam 6 skenario. Masing-masing skenario menggunakan banyak cluster yang sama tetapi nilai threshold yang berbeda-beda. Hasil dari ke enam skenario akan divalidasi menggunakan nilai coverage dan nilai tricluster diffusion (TD). Hasil penerapan metode timesvector menunjukkan bahwa dengan menggunakan threshold sebesar 1,5 memberikan hasil yang paling optimal karena memiliki nilai coverage yang tinggi sebesar 57% dan nilai TD yang rendah sebesar 2,95594E-06. Nilai coverage yang tinggi menunjukkan kemampuan metode dalam mengekstrak data dan nilai TD yang rendah menunjukkan bahwa tricluster yang dihasilkan memiliki volume yang besar dan koherensi yang tinggi. Berdasarkan pola yang dihasilkan menggunakan skenario yang optimal diperoleh sebanyak 49 ODEP cluster dengan pasien ke-empat selalu memiliki pola ekspresi yang berbeda dibandingkan dengan pasien lainya.  Hal ini dapat digunakan oleh ahli medis untuk melakukan tindakan selanjutnya terhadap pasien tumor otak.

 


Triclustering analysis is the development of clustering analysis and biclustering analysis. The purpose of triclustering analysis is to group three-dimensional data simultaneously or simultaneously. The three-dimensional data can be in the form of observations, attributes, and context. One of the approaches used in triclustering analysis, namely an approach based on a pattern, for example, is the Timesvector method. Timesvector method aims to group data matrices that show the same or different patterns in three-dimensional data. The Timesvector method has a work step that starts with reducing the three-dimensional data matrix to a two-dimensional data matrix to reduce complexity in a grouping. In this method, the Spherical K-means algorithm will be used in grouping it. The next step is to identify the pattern of the clusters generated in the Spherical K-means. The pattern referred to consists of three types, namely DEP (Differentially Expressed Pattern), ODEP (One Differentially Expressed Pattern), and SEP (Similar Expressed Pattern). The application of the Timesvector method was carried out on gene expression data, namely brain tumor data carried out in 6 scenarios. Each scenario uses the same many clusters but different threshold values. The results of the six scenarios will be validated using the coverage value and the tricluster diffusion (TD) value. The results of applying the timesvector method show that using a threshold of 1.5 gives the most optimal results because it has a high coverage value of 57% and a low TD value of 2.95594E-06. A high coverage value indicates the method's ability to extract data and a low TD value indicates that the resulting tricluster has a large volume and high coherence. Based on the pattern generated using the optimal scenario, there were 49 ODEP clusters with the fourth patient always having a different expression pattern compared to other patients. This can be used by medical experts to perform further action on brain tumor patients.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Latif Raditya Rusdi
"Triclustering merupakan salah satu teknik data mining yang bertujuan untuk mengelompokkan data berbentuk tiga dimensi secara simultan. Salah satu pendekatan yang digunakan dalam triclustering adalah pendekatan pattern-based, contohnya Timesvector. Metode timesvector dirancang khusus untuk pengelompokan data deret waktu tiga dimensi yang bertujuan menangkap pola ekspresi gen yang sama atau berbeda antara dua atau lebih kondisi eksperimen. Implementasi metode timesvector dilakukan pada data ekspresi gen human embryonic stem cell (H1-hESC) yang diberi protein morfogenetik tulang (BMP4) dan dikondisikan di dalam ruang dengan tingkat oksigen 4% dan 20, serta diamati pada 6 titik waktu berbeda selama 120 jam. Triclustering dilakukan dengan lima skenario menggunakan cluster sejumlah 257 dan threshold yang berbeda. Berdasarkan skenario tersebut, metode timesvector menghasilkan skenario terbaik pada skenario dengan threshold 1,5 yang menggunakan validasi berdasarkan nilai coverage. Berdasarkan hasil skenario terbaik, dihasilkan 9 pola DEP, 24 pola ODEP, dan 37 pola SEP dan dari pola tersebut dilakukan analisis Gene Ontology (GO) untuk mengukur kualitas tricluster dalam penggambaran konsep GO. Analisis GO menggunakan Database for Annotation, Visualization, and Integrated Discovery (DAVID) tools untuk menghitung nilai p-value. Pada analisis GO dipilih p-value terkecil pada pola DEP, ODEP, dan SEP sebagai tricluster terbaik, yaitu DEP pada tricluster ke 8, ODEP pada tricluster ke-1, dan SEP pada tricluster ke-26. Berdasarkan tricluster terbaik pada pola DEP dan ODEP dapat dikatakan bahwa kondisi oksigen tingkat fisiologis 4 % dan tingkat atmosfer 20 % memiliki perbedaan dalam mengidentifikasi gen kandidat pada H1-hESC yang mampu berdiferensiasi menjadi trofoblas, sedangkan SEP tidak memiliki perbedaan dalam mengidentifikasi gen kandidat pada H1-hESC dengan dua kondisi berbeda.

Triclustering is one of the data mining techniques that aims to cluster three-dimensional data simultaneously. One of the approaches used in triclustering is a pattern-based approach, such as Timesvector. The timesvector method is specifically designed for clustering three-dimensional time series data that aims to capture gene expression patterns that are the same or different between two or more experimental conditions. The implementation of the timesvector method was performed on human embryonic stem cell (H1-hESC) gene expression data treated with bone morphogenetic protein (BMP4) and conditioned in a chamber with 4% and 20 oxygen levels and observed at 6 different time points for 120 hours. Triclustering was performed with five scenarios using 257 clusters and different thresholds. Based on these scenarios, the timesvector method produces the best scenario in the scenario with a threshold of 1.5 which uses validation based on the coverage value. Based on the results of the best scenario, 9 DEP patterns, 24 ODEP patterns, and 37 SEP patterns were generated from these patterns. Gene Ontology (GO) analysis was carried out to measure the quality of the tricluster in describing the GO concept. GO analysis uses Database for Annotation, Visualization, and Integrated Discovery (DAVID) tools to calculate the p-value. In the GO analysis, the smallest p value in the DEP, ODEP, and SEP patterns was selected as the best tricluster, namely DEP in the 8th tricluster, ODEP in the 1st tricluster, and SEP in the 26th tricluster. Based on the best tricluster in the DEP and ODEP patterns, it can be said that the oxygen conditions of 4% physiological level and 20% atmospheric level have differences in identifying candidate genes in H1-hESC that are able to differentiate into trophoblasts, while SEP has no difference in identifying candidate genes in H1-hESC with two different conditions."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dea Siska
"Metode triclustering merupakan pengembangan dari metode clustering dan biclustering. Berbeda dengan  metode clustering dan biclustering yang bekerja pada data dua dimensi, triclustering bekerja pada data tiga dimensi yang disusun dalam bentuk matriks. Matriks ini terdiri dari dimensi observasi, atribut, dan konteks. Triclustering mampu mengelompokkan ketiga dimensi tersebut secara simultan dan membentuk kelompok berupa subruang yang disebut tricluster. Metode ini umumnya diimplementasikan dalam bidang bioinformatika, terkhususnya dalam analisis data ekspresi gen tiga dimensi untuk menemukan profil ekspresi gen. Data atau matriks ini terdiri dari dimensi gen, kondisi eksperimen, dan waktu eksperimen (time point).
Salah satu algoritma triclustering, yaitu Order Preserving Triclustering (OPTricluster), adalah algoritma yang menggunakan pendekatan pattern based dan digunakan untuk menganalisis data ekspresi gen tiga dimensi yang merupakan short time series 3-8 time point). OPTricluster membentuk tricluster dengan mengidentifikasi gen-gen yang memiliki perubahan ekspresi yang sama di sepanjang time points pada sejumlah kondisi eksperimen.
Dalam penelitian ini, OPTricluster diimplementasikan pada data ekspresi gen sejumlah pasien yellow fever pasca vaksinasi dengan beberapa skenario yang menggunakan threshold yang berbeda-beda. Skenario dengan threshold yang optimum ditunjukkan oleh rata-rata skor Tricluster Diffusion terendah. Tricluster-tricluster yang dihasilkan berhasil menunjukkan hubungan biologis di antara pasien-pasien tersebut, di mana vaksin cenderung memberikan reaksi yang lebih signifikan pada pasien pria dibandingkan pasien wanita. Selain itu, ditemukan anomali pada pasien-pasien tersebut.

Triclustering method is the development of clustering method and biclustering method. Unlike clustering and biclustering that works on two-dimensional data, triclustering works on three-dimensional data that arranged in the form of a matrix consisting of observations, attributes, and contexts dimensions. Triclustering is able to group these dimensions simultaneously and form a subspace called a tricluster. This method is generally implemented in analysis of three-dimensional gene expression data to find profiles of gene expression. This data or matrix consists of genes, experimental conditions and time points dimensions.
One of the triclustering algorithms, Order Preserving Triclustering (OPTricluster), is an algorithm that uses a pattern-based approach and used to analyze short time series data (3-8 time points). The OPTricluster forms the tricluster by identifying genes that have the same expression change across time points under a number of experimental conditions. The change in expression is expressed in a rank pattern which is divided based on three types of patterns, namely constant, conserved and divergent patterns.
In this study, OPTricluster was implemented in gene expression data of yellow fever patients after vaccination using several scenarios with different thresholds. The scenario with the optimum threshold is indicated by the lowest average Tricluster Diffusion score. The resulting triclusters were successful in showing biological relationships among these patients, where the vaccine tending to have a more significant reaction in male patients than in female patients. In addition, anomalies were found in these patients.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Stefany Nurhatika
"

Analisis triclustering merupakan pengembangan dari analisis clustering dan biclustering. Analisis triclustering bertujuan mengelompokkan data tiga dimensi secara simultan yang menghasilkan submatriks dinamakan tricluster. Pendekatan yang digunakan dalam analisis triclustering di antaranya adalah pendekatan berdasarkan greedy dan pattern. Salah satu contoh pendekatan analisis triclustering berdasarkan greedy adalah metode  Î´ – Trimax. Sedangkan salah satu contoh analisis triclustering berdasarkan pattern adalah metode Timesvector. Metode δ – Trimax bertujuan menghasilkan tricluster yang memiliki mean square residual kecil dari threshold  dengan volume data tricluster yang maksimal. Metode Timesvector bertujuan mengelompokkan matriks data yang menunjukkan pola yang sama atau berbeda pada data tiga dimensi. Implementasi metode  Î´ – Trimax dan metode Timesvector pada penelitian ini dilakukan pada data ekspresi gen pasien penderita penyakit periodontitis. Ekspresi gen diukur pada 14 titik kondisi dan 4 titik waktu. Berdasarkan beberapa skenario yang telah diterapkan, metode Î´ – Trimax memberikan hasil terbaik pada saat menerapkan skenario dengan nilai threshold =0,0028564 dan =1,25 dengan jumlah tricluster yang dihasilkan adalah 260 tricluster. Dari 260 tricluster tersebut, dipilih tricluster ke-216 yang dianalisis dengan menggunakan metode Timesvector. Hasil tricluster yang diperoleh dapat menambah wawasan bagi ahli medis dalam memberikan periodontal treatment kepada pasien penderita periodontitis berikutnya.


Triclustering analysis is the development of clustering and biclustering. Triclustering analysis aims to group three-dimensional data simultaneously, forming the initial subspace known as a tricluster. It utilizes two main approaches that are greedy-based and pattern-based approaches, exemplified by the δ – Trimax and Timesvector methods, respectively. The δ – Trimax method aims for triclusters with smaller mean square residuals than the threshold δ, while Timesvector groups data matrices with similar or different patterns. In a study on periodontitis patients gene expression data, comprising 14 condition points and 4 time points, both methods were implemented. The δ – Trimax method yielded optimal results under specific conditions (δ = 0.0028564, λ = 1.25), producing 260 triclusters. Among these, the 216th tricluster was selected for further analysis using the Timesvector method. The insights gained from these triclusters can enhance periodontal treatment strategies for patients with subsequent periodontitis, providing valuable guidance to medical experts.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nisa Nurul Hidayah
"Triclustering digunakan untuk mengelompokkan data tiga dimensi secara simultan. Metode triclustering yang digunakan pada penelitian ini adalah gabungan 𝛿-Trimax dengan Fuzzy Cuckoo search (FCS) berdasarkan Lévy Flight. Data yang digunakan adalah data ekspresi gen dari proses diferensiasi human induced pluripoten stem cell (HiPSC) pada penderita penyakit jantung. Tahap awal adalah mencari populasi solusi tricluster homogen menggunakan metode 𝛿-Trimax. Penentuan nilai skala 𝛿 untuk menjalankan algoritma pada tahap populasi awal dilakukan menggunakan metode silhouette coefficient. Algoritma 𝛿-Trimax yang digunakan pada penelitian ini adalah algoritma Muliple Nodes Deletions dan Single Node Deletions. Tricluster yang didapatkan dari tahap 𝛿- Trimax selanjutnya akan dioptimasi menggunakan metode Fuzzy Cuckoo search berdasarkan Lévy Flight. Solusi tricluster yang berpotensi meningkatkan nilai fungsi objektif akan diganti menggunakan local random walk. Kumpulan tricluster yang terbentuk dari tahap optimasi akan dievaluasi menggunakan metode Tricluster Quality Index (TQI). Solusi tricluster terbaik yang diterapkan pada dataset tiga dimensi penyakit jantung didapatkan dari penggunaan nilai skala 𝛿 = 0,026 dan 𝜃 = 1,7. Solusi tricluster terbaik dianalisis lebih lanjut menggunakan Gene Ontology (GO) untuk menjelaskan keterkaitan gen-gen terhadap proses biologis, fungsi molekuler, dan komponen seluler.

Triclustering is used to group three-dimensional data simultaneously. The triclustering method used in this research is a combination of δ-Trimax with Fuzzy Cuckoo search (FCS) based on Lévy Flight. The threedimensional data used is gene expression data from the human induced pluripotent stem cell (HiPSC) differentiation process in heart disease sufferers. The initial stage finds a homogeneous population of tricluster solutions using the δ-Trimax method. Determining the δ scale value for running the algorithm at the initial population stage is carried out using the silhouette coefficient method. The δ-Trimax algorithm used in this research is the Multiple Nodes Deletions and Single Node Deletions algorithms. The tricluster obtained from the δ-Trimax stage will then be optimized using the Fuzzy Cuckoo search method based on Lévy Flight. The tricluster solution which has the potential to increase the objective function value will be replaced using a local random walk. The tricluster collection formed from the optimization stage will be evaluated using the Tricluster Quality Index (TQI) method. The best tricluster solution applied to a three-dimensional heart disease dataset was obtained from using scale values δ = 0,026 and θ = 1,7. The best tricluster solution was further analyzed using Gene Ontology (GO) to explain the relationship of genes to biological processes, molecular functions, and cellular components.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Noval Saputra
"

Analisis triclustering merupakan teknik analisis pada data 3D (observasi – atribut – konteks). Analisis triclustering dapat mengelompokkan observasi pada beberapa atribut dan konteks secara bersamaan. Analisis triclustering telah sering diterapkan untuk menganalisis data ekspresi gen microarray. Penelitian ini menggunakan metode δ-Trimax untuk melakukan analisis triclustering pada data ekspresi gen microarray. Metode δ-Trimax bertujuan untuk menemukan tricluster yang memiliki mean square residual kecil dari δ dan volume maksimal. Tricluster diperoleh dengan cara melakukan penghapusan node dari data 3D dengan menggunakan algoritma multiple node deletion dan single node deletion. Kandidat tricluster yang telah didapatkan, dilakukan pengecekan  kembali dengan menambahkan beberapa node yang telah dihapus sebelumnya menggunakan algoritma node addition. Pada penelitian ini dilakukan perbaikan program pada metode δ-Trimax dan juga menambahkan penghitungan evaluasi tricluster yang dihasilkan.  Implementasi metode δ-Trimax dilakukan pada data ekspresi gen dari proses diferensiasi human induced pluripoten stem cell (HiPSC) dari pasien penyakit jantung. Ekspresi gen diukur pada 12 titik waktu dan 3 replikasi. Dari beberapa simulasi yang dilakukan, metode δ-Trimax memberikan hasil terbaik ketika δ=0,0068 dan λ=1,2. Berdasarkan tricluster yang dihasilkan dari simulasi terbaik tersebut, dipilih 5 tricluster yang diduga sebagai ciri-ciri penyakit jantung. Lima tricluster ini dapat menjadi pertimbangan bagi ahli medis untuk melakukan tindakan lebih lanjut terhadap pasien.


Triclustering analysis is an analysis technique on 3D data (observation - attribute - context). Triclustering analysis can group observations on several attributes and contexts simultaneously. Triclustering analysis has been frequently applied to analyze microarray gene expression data. This study used the δ-Trimax method to perform triclustering analysis on microarray gene expression data. The δ-Trimax method aims to find a tricluster that has a mean square residual smaller than δ and a maximum volume. Tricluster is obtained by deleting nodes from 3D data using multiple node deletion and single node deletion algorithms. The tricluster candidates that have been obtained are checked again by adding some previously deleted nodes using the node addition algorithm. In this research, the program improvement of the δ-Trimax method was carried out and also the calculation of the resulting tricluster evaluation. The implementation of the δ-Trimax method was carried out on gene expression data from the differentiation process of human induced pluripotent stem cells (HiPSC) from patients with heart disease. Gene expression was measured at 12 time points and 3 replications. From several simulations performed, the δ-Trimax method gives the best results when δ = 0.0068 and λ = 1.2. Based on the tricluster generated from the best simulation, 5 tricluster were selected which were suspected as a characteristic of heart disease. These five tricluster can be a consideration for medical experts to take further action on patients.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akira Andriani
"Analisis clustering merupakan proses pengelompokan yang bertujuan untuk menemukan kelompok atau cluster yang didalamnya memiliki karakteristik yang serupa. Seiring berjalannya waktu, teknik clustering berkembang menjadi biclustering dan triclustering, di mana dalam triclustering data yang digunakan adalah data tiga dimensi. Triclustering mampu mengelompokkan ketiga dimensi tersebut secara bersamaan yang nantinya kelompok yang dihasilkan disebut dengan tricluster. Pada penelitian ini, digunakan metode Fuzzy Cuckoo Search (FCS) untuk mengimplementasikan triclustering pada data ekspresi gen tiga dimensi. FCS mengaplikasikan konsep Fuzzy C-Means (FCM) ke dalam algoritma cuckoo search. Penggunaan fungsi objektif FCM dalam FCS dapat mengatasi ketidakjelasan (uncertainty) dalam data, khususnya pada data ekspresi gen. Dalam metode cuckoo search, pencarian ‘solusi’ tricluster digambarkan dengan spesies cuckoo yang meletakkan telur di sarang burung lain. Berbeda dengan cuckoo search pada umumnya yang menggunakan metode random walk levy flight untuk pencarian solusi, pada penelitian ini, digunakan metode lain, yaitu metode random walk distribusi gaussian, di mana hal tersebut merupakan sebuah kebaruan dalam penelitian ini. Cuckoo search dalam metode FCS merupakan metode metaheuristik, sehingga dapat digunakan dalam berbagai masalah analisis data, termasuk data ekspresi gen. Metode FCS berdasarkan distribusi gaussian diimplementasikan pada data ekspresi gen tiga dimensi dari gen otot rangka yang diberi infus IL-6, di mana ekspresi gen diamati pada 3 subjek dan 3 titik waktu yang berbeda. Metode ini dievaluasi menggunakan ukuran evaluasi Triclustering Quality Index (TQI). Dari skenario yang dilakukan, metode FCS memberikan hasil terbaik dengan rata-rata TQI terendah ketika menggunakan nilai gaussian dan probabilitas . Hasil implementasi metode FCS menunjukkan 4 tricluster yang diduga sebagai kumpulan gen yang berekspresi atas respon dari IL-6. Kelompok gen yang diperoleh dari tricluster dapat digunakan sebagai target oleh ahli medis dalam pengembangan di bidang pengobatan penyakit seperti kanker, diabetes, paru-paru, atau gagal jantung yang menargetkan gen-gen dalam kelompok tricluster tersebut.

Clustering analysis is a grouping process that aims to find clusters such that objects in the same clusters have similar characteristics. Over time, clustering developed into biclustering and triclustering, wherein triclustering use three-dimensional dataset. Triclustering is able to group these three dimensions simultaneously and form groups called tricluster. This study used the Fuzzy Cuckoo Search (FCS) method to implement triclustering on three-dimensional gene expression data. FCS applies the Fuzzy C-means (FCM) concept to the cuckoo search algorithm. The use of the objective function of FCM in FCS can overcome the uncertainty in the data, especially in gene expression data. In the cuckoo search, finding the tricluster is described with cuckoo species laying their egg in the nests of other birds. The egg laid on the nest represents a 'solution' which is an update of the tricluster from the previous tricluster. Unlike cuckoo search in general, in this study, to find the tricluster solutions, it use gaussian random walk instead of levy flight random walk. Cuckoo search in the FCS method is a metaheuristic method, so it can be used in various data analysis problems, including gene expression data. FCS based on Gaussian distribution was implemented on three-dimensional gene expression data of skeletal muscle genes given IL-6 infusion, where the gene expression was observed in 3 subjects and 3 different time points. Of the 36 simulations performed, the FCS method gives the best results with the lowest average TQI when using gaussian values and probability . This method was evaluated using the Triclustering Quality Index (TQI) evaluation measure. The result of the implementation of FCS shows 4 triclusters which were suspected to be a collection of genes that change in response to IL-6. The gene groups obtained from the tricluster can be used as a consideration by medical professionals in the development of the treatment of diseases such as cancer, diabetes, pulmonary disease, or heart failure that target the genes in the tricluster group."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Airlangga Muhammad Putrapradana
"Analisis triclustering merupakan salah satu metode data mining yang bertujuan mengelompokkan data berbentuk tiga dimensi. Triclustering kerap digunakan pada bidang bioinformatika untuk menganalisis kesamaan ekspresi gen suatu eksperimen pada titik waktu tertentu. Analisis triclustering yang dilakukan pada penelitian ini menggunakan metode gabungan Fuzzy Cuckoo Search dengan I-Trimax. Metode ini merupakan penggabungan algoritma nodes deletion pada I-Trimax dengan algoritma optimasi Fuzzy Cuckoo Search. Cuckoo Search merupakan metode optimasi yang sudah baik dalam menghasilkan himpunan tricluster yang menggunakan konsep parasitisme spesies cuckoo. Fuzzy Cuckoo Search menggunakan fungsi objektif fuzzy c-means untuk mengatasi ketidakjelasan (indiscernibility) yang biasa terjadi dalam data ekspresi gen sehingga masalah kesulitan membedakan objek karena kurangnya pengetahuan dari informasi yang tersedia dapat diatasi. Algoritma nodes deletion pada I-Trimax digunakan pada fase pembentukan populasi awal dari metode gabungan Fuzzy Cuckoo Search dengan I-Trimax. Hal ini dilakukan demi mendapatkan populasi awal yang sudah baik yaitu memiliki MSR yang minimum karena konsep dari algoritma nodes deletion yaitu dapat menghasilkan himpunan tricluster dengan Mean Square Residue (MSR) kecil yaitu di bawah threshold. Berdasarkan itu proses komputasi algoritma Fuzzy Cuckoo Searchyang dilakukan pada fase optimasi dapat berjalan dengan efektif sehingga menghasilkan himpunan tricluster yang berkualitas baik secara efisien. Analisis triclustering menggunakan metode gabungan Fuzzy Cuckoo Search dengan I-Trimax digunakan pada data ekspresi gen tiga dimensi sel kanker paru-paru fase stabil (A549) yang berkaitan dengan pemberian obat kemoterapi Motexafin Gadolinium (MGd), di mana ekspresi gen diamati pada 6 kondisi dan 3 titik waktu. Pada penelitian ini, himpunan tricluster yang memiliki kualitas terbaik berdasarkan Triclustering Quality Index (TQI) adalah himpunan tricluster yang dihasilkan dengan nilai  dan. Berdasarkan himpunan tricluster tersebut, didapatkan informasi penting mengenai kumpulan gen yang memiliki respon baik terhadap pemberian MGd tapi tidak bertahan setiap titik waktu. Hal ini dapat dijadikan acuan penelitian terkait terapi kanker menggunakan obat kemoterapi MGd yang perlu dilakukan pengembangan agar dapat tetap efektif pada seluruh titik waktu. Terdapat juga kumpulan gen yang memiliki respon cepat dan bertahan hingga jangka panjang dengan pemberian MGd dan mannitol. Gen-gen tersebut merupakan gen yang menunjukkan respon baik pemberian obat kemoterapi MGd tetapi efektivitasnya tidak terlalu maksimal karena responnya beririsan dengan subjek yang hanya diberikan mannitol. Hal ini dapat dijadikan bahan untuk penelitian lebih lanjut dalam pengembangan obat MGd supaya dapat lebih efektif.

Triclustering analysis is a data mining method that aims to group data in three dimensions. Triclustering is often used in the field of bioinformatics to analyze the similarity of gene expression under experimental conditions at a certain point in time. The triclustering analysis carried out in this study used the combined Fuzzy Cuckoo Search method with -Trimax. This method is a combination of node deletion algorithm on -Trimax with Fuzzy Cuckoo Search optimization algorithm. Cuckoo Search is a good optimization method in generating tricluster sets that use the concept of parasitism of cuckoo species. Fuzzy Cuckoo Search uses the fuzzy c-means objective function to overcome the indiscernibility that usually occurs in gene expression data so that the problem of difficulty distinguishing objects due to lack of knowledge from available information can be overcome. The nodes deletion algorithm on I-Trimax is used in the initial population formation phase from the combined Fuzzy Cuckoo Search method with I-Trimax. This is done in order to get a good initial population, which has a minimum MSR because the concept of the nodes deletion algorithm is that it can produce a tricluster set with a small Mean Square Residue (MSR), which is below the threshold. Based on that, the computational process of the Fuzzy Cuckoo Search algorithm which is carried out in the optimization phase can run effectively so as to produce a good quality tricluster set efficiently. Triclustering analysis using the combined Fuzzy Cuckoo Search method with I-Trimax was used on three-dimensional gene expression data of stable phase lung cancer cells (A549) associated with the administration of the chemotherapy drug Motexafin Gadolinium (MGd), where gene expression was observed in 6 conditions and 3 time points. In this study, the tricluster set that has the best quality based on the Triclustering Quality Index (TQI) is the resulting tricluster set with values. Based on these tricluster sets, important information was obtained regarding gene pools that responded well to MGd administration but did not persist at any point in time. This can be used as a reference for research related to cancer therapy using MGd chemotherapy drugs that need to be developed in order to remain effective at all time points. There is also a gene pool that responds quickly and persists in the long term with MGd and mannitol administration. These genes are genes that show a good response to MGd chemotherapy drugs but their effectiveness is not maximal because their responses coincide with subjects who are only given mannitol. This can be used as material for further research in the development of MGd drugs so that they can be more effective."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Ido Raskapati
"Analisis triclustering adalah salah satu metode data mining yang memiliki tujuan mengelompokkan data berbentuk tiga dimensi. Triclustering umumnya digunakan pada bidang bioinformatika untuk menganalisis kesamaan ekspresi gen suatu eksperimen pada titik waktu tertentu. Analisis triclustering yang dilakukan pada penelitian ini menggunakan metode gabungan Fuzzy Cuckoo Search berdasarkan Gaussian Distribution dengan -Trimax. Metode ini merupakan penggabungan algoritma nodes deletion pada Trimax dengan algoritma optimasi Fuzzy Cuckoo Search. Algoritma nodes deletion pada -Trimax digunakan pada fase pembentukan populasi awal tricluster. Konsep algoritma nodes deletion yaitu dapat menghasilkan himpunan tricluster dengan Mean Square Residue (MSR) di bawah threshold dan mendekati 0. Algoritma optimasi Cuckoo Search adalah algoritma pencarian solusi tricluster, digambarkan dengan konsep parasitisme spesies burung cuckoo. Pada penelitian ini, Cuckoo Search menggunakan random walk Gaussian Distribution untuk pencarian solusi tricluster. Berdasarkan hal ini komputasi algoritma Cuckoo Search menjadi lebih efisien dan efektif dalam menghasilkan himpunan tricluster yang lebih optimal dan mempercepat waktu komputasi. Fuzzy Cuckoo Search adalah pengembangan dari Cuckoo Search yang menggunakan fungsi objektif Fuzzy C-Means untuk mengatasi ketidakjelasan (uncertainty) dalam data ekspresi gen. Analisis triclustering menggunakan metode gabungan Fuzzy Cuckoo Search berdasarkan Gaussian Distribution dengan -Trimax digunakan pada data ekspresi gen tiga dimensi sel fibroblas yang diberikan perlakuan dengan Egr-1 dan Tgf-, di mana ekspresi gen diamati pada 6 kondisi dan 2 titik waktu. Pada penelitian ini, himpunan tricluster yang memiliki kualitas terbaik berdasarkan Triclustering Quality Index adalah himpunan tricluster yang dihasilkan dengan nilai = 0,015 dan = 0,50 . Berdasarkan himpunan tricluster tersebut, didapatkan informasi penting mengenai kumpulan gen yang memiliki respon baik terhadap pemberian perlakuan dengan Egr-1, Tgf- dan bertahan setiap titik waktu. Kumpulan gen tersebut dilakukan Gene Ontology (GO) yang diuji menggunakan Fisher’s exact dengan tingkat signifikansi 0,05 dan dikoreksi dengan False Discovery Rate. Hasil GO tersebut terdiri dari 219 GO Terms Biological Process, 28 GO Terms Molecular Function, dan 52 GO Terms Cellular Component. GO Terms dari masing-masing aspek GO tersebut dapat dijadikan bahan untuk penelitian di bidang bioinformatika untuk menganalisis hubungan GO Terms terhadap penyakit Systemic Sclerosis (SSc).

Triclustering analysis is one of the data mining methods aimed at clustering threedimensional data. Triclustering is commonly used in the field of bioinformatics to analyze the similarity of gene expression in an experiment at specific time points. The triclustering analysis in this research uses a combined method of Fuzzy Cuckoo Search based on Gaussian Distribution with -Trimax. This method combines the nodes deletion algorithm of -Trimax with the optimization algorithm of Fuzzy Cuckoo Search. The nodes deletion algorithm of -Trimax is used in the initial population formation phase of the tricluster. The concept of the nodes deletion algorithm is to produce tricluster sets with Mean Square Residue (MSR) below the threshold and close to 0. The optimization algorithm of Cuckoo Search is a search algorithm for tricluster solutions, depicted with the parasitism concept of cuckoo bird species. In this research, Cuckoo Search uses random walk Gaussian Distribution for tricluster solution search. This enhances the efficiency and effectiveness of the Cuckoo Search algorithm in producing more optimal tricluster sets and accelerating the computation time. Fuzzy Cuckoo Search is an extension of Cuckoo Search that employs Fuzzy C-Means objective function to handle uncertainty in gene expression data. The triclustering analysis using the combined method of Fuzzy Cuckoo Search based on Gaussian Distribution with -Trimax is applied to the three-dimensional gene expression data of fibroblast cells treated with Egr-1 and Tgf-1, where gene expressions are observed under 6 conditions and 2 time points. In this research, the tricluster set with the best quality based on the Triclustering Quality Index (TQI) is obtained with = 0.015 and = 0.50. Based on this tricluster set, important information is derived regarding groups of genes that respond well to treatment with Egr1, Tgf, and persist at each time point. These gene groups are subjected to Gene Ontology (GO) analysis, which is tested using Fisher's exact test with a significance level of 0.05 and corrected with False Discovery Rate. The GO results consist of 219 GO Terms Biological Process, 28 GO Terms Molecular Function, and 52 GO Terms Cellular Component. The GO Terms from each aspect can be utilized for further research in the field of bioinformatics to analyze the relationship of GO Terms with Systemic Sclerosis (SSc) disease."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwi Aji Apriana
"Triclustering merupakan salah satu metode data mining yang juga merupakan pengembangan dari metode biclustering dan clustering. Metode tersebut mengelompokkan set data berupa matriks tiga dimensi (gen, kondisi, dan waktu) menjadi kelompok-kelompok submatriks yang memiliki kesamaan satu sama lain. Salah satu algoritma dari analisis triclustering adalah Extended Dimension Iterative Signature Algorithm (EDISA). Algoritma ini mempertimbangkan jarak Pearson antara tiap gen dan kondisi terhadap vektor rata-rata sebagai ukuran kemiripan. Proses pertama dari EDISA adalah langkah preprocessing yaitu menghapus gen yang memiliki nilai ekspresi gen yang berbeda sangat signifikan dengan nilai ekspresi gen lainnya. Lalu langkah selanjutnya yaitu memilih sebanyak s sampel gen dengan cara memilih satu gen secara random untuk menjadi seed gen, lalu mencari sebanyak s-1 gen yang memiliki jarak Pearson terdekat dengan seed gen tersebut. Tahap berikutnya membuat vektor bobot gen dan kondisi, lalu memasangkannya dengan sampel gen yang telah terpilih, kemudian menghitung vektor rata-ratanya. Proses selanjutnya yaitu proses iterasi di mana setiap gen dan kondisi yang memiliki jarak Pearson terhadap vektor rata-rata di atas ambang batas tertentu (TG dan TG, keduanya merupakan ukuran seberapa baik keselarasan suatu gen dan kondisi terhadap rata-rata kandidat tricluster) harus dihapus karena dianggap tidak memiliki kemiripan yang cukup dengan anggota tricluster lain pada setiap iterasinya. Proses selanjutnya adalah postprocessing yang bertujuan untuk menggabungkan tricluster yang memiliki kemiripan untuk dijadikan tricluster yang lebih besar dan dijadikan sebagai kumpulan tricluster final. Algoritma ini diterapkan pada data ekspresi gen penyakit paru-paru. Penerapan algoritma tersebut menggunakan beberapa skenario dengan nilai Tg dan TG yang berbeda. Hasil dari penerapan pada data ekspresi gen penyakit paru-paru diperoleh bahwa semakin besar nilai TG, maka jumlah gen yang dapat masuk ke dalam tricluster makin banyak, dan semakin besar nilai TG, maka jumlah kondisi yang dapat masuk ke dalam tricluster juga makin banyak. Selain itu, dilakukan evaluasi dari tricluster menggunakan nilai Tricluster Diffusion Score (TD Score) untuk mencari skenario terbaik. Didapat bahwa skenario terbaik merupakan skenario dengan nilai Tg=0,3 dan nilai TG=0,2. Melalui algoritma ini dapat dideteksi gen-gen yang dapat membedakan karakteristik pasien yang berpenyakit paru-paru dan pasien yang sehat."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>