Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 180838 dokumen yang sesuai dengan query
cover
Monyta Rahmania
"ABSTRAK
Malaria adalah penyakit yang disebabkan oleh parasit Plasmodium. Parasit ini ditularkan melalui gigitan nyamuk Anopheles betina yang terinfeksi. Penyakit malaria merupakan penyakit yang mematikan, kelompok usia paling rentan terhadap kematian akibat malaria adalah anak-anak berusia di bawah lima tahun. Gejala malaria meliputi demam, menggigil, sakit kepala, dan lain-lain. Terdapat penderita malaria yang tidak mengalami gejala apapun, namun dapat menularkan penyakit, penderita ini disebut carrier asimtomatik. Sebuah model matematika mengenai penyebaran malaria dengan carrier asimtomatik dan dua grup umur pada populasi manusia dibentuk pada penelitian ini. Pada model ini, dilakukan intervensi penggunaan kelambu berinsektisida tahan lama dan Indoor Residual Spraying yang menyebabkan kematian tambahan nyamuk. Kajian analitis yang ditinjau berdasarkan skala waktu cepat-lambat dilakukan pada penelitian ini. Simulasi numerik juga dilakukan untuk memperoleh gambaran dan pemahaman lebih baik mengenai model. Berdasarkan hasil simulasi numerik, dapat disimpulkan bahwa penggunaan kelambu berinsektisida tahan lama dan Indoor Residual Spraying mempengaruhi populasi nyamuk yang ditunjukkan oleh penurunan drastis pada populasi nyamuk.

ABSTRACT
Malaria is a disease caused by Plasmodium parasite. The parasite is transmitted through the bite of infected female Anopheles mosquito. Malaria is a fatal disease; the most vulnerable age group to malaria deaths are children aged under five years old. The symptoms of malaria include fever, shivering, headaches, etc. Individuals who are infected with malaria but showing no signs or symptoms are called asymptomatic carriers. A mathematical model of malaria transmission with asymptomatic carrier and two aged groups is constructed in this research. In this model, the extra mortality of mosquitos due to Long-Lasting Insecticide Nets (LLINs) and Indoor Residual Spraying is taken into account. Fast-slow timescales analysis is used in this research. Numerical simulations are also carried out to get a better understanding of the model. Based on the results of numerical simulations, it can be concluded that the use of Long-Lasting Insecticide Nets (LLINs) and Indoor Residual Spraying (IRS) affects mosquito population that is shown by a significant decrease of the mosquito population."
2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sakhiyah Karomah Salam
"Model deterministik penyebaran penyakit Middle East Respiratory Syndrome MERS pada skripsi ini melibatkan interaksi antara populasi manusia dan populasi unta di daerah peternakan. Model matematika pada penyebaran penyakit MERS disajikan dengan intervensi rawat inap pada populasi manusia dan vaksinasi pada populasi unta. Proporsi konstan akan diberikan kepada kelompok manusia yang memiliki pekerjaan di area rumah sakit, kawasan peternakan dan tidak di kedua tempat tersebut. Ada lima titik kesetimbangan yang diperoleh pada model, yaitu titik kesetimbangan bebas penyakit pada kedua populasi, titik keseimbangan bebas penyakit pada populasi manusia saja, titik keseimbangan bebas penyakit pada populasi unta saja, titik keseimbangan endemik tanpa dan dengan intervensi. Eksistensi titik-titik kesetimbangan dan kriteria kestabilitan lokal diberikan de- ngan pendekatan analitik dan numerik. Basic reproduction number R0 sebagai ambang batas endemik diberikan secara analitik dengan pendekatan next-generation matrix. Dari analisis sensitivitas R0 dan simulasi numerik terhadap parameter intervensi, ditemukan bahwa intervensi rawat inap dapat menekan penyebaran penyakit MERS pada populasi terinfeksi manusia dan intervensi vaksinasi pada unta dapat membuat penyakit MERS dapat punah dari populasi unta pada suatu waktu.

A deterministic model of Middle East Respiratory Syndrome MERS spread involving mass interaction between human and camel in a ranch area will be introduced in this thesis. This mathematical model for the spread of MERS with Intervention of medical treatment to human population and vaccination in camel population included in to the model. Constant proportions will be given to separate group of human who has a daily activity in a hospital area, ranch area and not in these both place. There are four equilibrium points respect to the introduced model, i.e. completely disease free equilibrium, disease free equilibrium in human population only, disease free equilibrium in camel population only, and endemic equilibrium. Existence and local stability criteria of equilibrium points are given from analytic and numerical approach. Basic reproduction number as an endemic threshold given analytically with next generation matrix approach. From sensitivity analysis of basic reproduction number and numerical simulation to the parameters of the intervention we find that inpatient intervention could suppress the spread of MERS disease in human infected populations and vaccination intervention in camels could make MERS disease extinct from camel populations at some time.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Evllyn Tamalia
"

Malaria adalah penyakit yang disebabkan oleh parasit Plasmodium dan ditularkan melalui gigitan nyamuk Anopheles betina terinfeksi. Pada umumnya, terdapat lima spesies Plasmodium yang dapat menyebabkan penyakit malaria. Dari kelima spesies tersebut, Plasmodium falciparum dan Plasmodium vivax adalah dua spesies Plasmodium yang dapat menyebabkan terjadinya superinfeksi malaria dalam tubuh manusia. Berbagai upaya telah dilakukan pemerintah untuk mengendalikan malaria, di antaranya dengan menggunakan obat Artemisinin-based Combination Therapies (ACT) serta fumigasi untuk membasmi nyamuk. Pada penelitian ini, dikonstruksi model penyebaran superinfeksi malaria dengan intervensi pengobatan dan fumigasi. Lebih lanjut, kajian analitis dan numerik mengenai titik keseimbangan bebas penyakit, titik keseimbangan endemik, dan basic reproduction number (R0) dilakukan untuk memahami dinamika jangka pendek dari model yang telah dikonstruksi. (R0) merupakan ekspektasi banyaknya infeksi sekunder dalam suatu poopulasi. Hasil analisis sensitivitas menunjukkan bahwa laju kematian nyamuk akibat fumigasi merupakan parameter yang paling memengaruhi nilai R0. Kemudian, hasil simulasi autonomous menunjukkan bahwa pengobatan bagi manusia yang terinfeksi, baik terinfeksi Plasmodium falciparum dan Plasmodium vivax, dapat menghilangkan superinfeksi malaria dari populasi.


Malaria is a disease caused by the parasite Plasmodium and transmitted by the bite of an infected female Anopheles. In general, there are five species of Plasmodium that can cause malaria. Of the five species, Plasmodium falciparum and Plasmodium vivax are two species of Plasmodium that can allow malaria superinfection in the human body. Various attempts were made by the government to control malaria, such as with the Artemisininbased Combination Therapies (ACT) and fumigation to eradicate the mosquitoes. In this study, a malaria superinfection spread model was constructed with treatment and fumigation interventions. Furthermore, analytical and numerical studies of disease-free equilibrium points, endemic equilibrium points, and basic reproduction number (R0) are carried out to understand the short-term dynamics of the constructed model. (R0) is an expectation number for the second infection in population. The results of sensitivity analysis show that fumigation is the most influence parameter respect to the value of R0. Then, autonomous simulation show that treatment for infected humans, both infected with Plasmodium falciparum and Plasmodium vivax, can eliminate malaria superinfection from the population.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Amalia
"Malaria adalah penyakit menular yang disebabkan oleh parasit Plasmodium dan ditularkan melalui gigitan nyamuk Anopheles betina. Dalam tesis ini dikonstruksikan model matematis penyebaran malaria dengan mempertimbangkan faktor bias dalam proses infeksi dan intervensi fumigasi dalam pengendalian malaria. Model tersebut dibangun sebagai model SIRI-UV dalam bentuk sistem persamaan
perbedaan biasa enam dimensi. Analisis titik keseimbangan dan stabilitasnya dan analisis sensitivitas dari bilangan reproduksi dasar (R0) dilakukan secara analitik dan numerik. Berdasarkan studi analitik diperoleh dua jenis titik keseimbangan yaitu titik keseimbangan bebas penyakit dan titik keseimbangan endemik. Ketika R0 @@ 1, tidak
ada titik keseimbangan endemik, atau ada dua titik keseimbangan endemik bila R0 1. Sedangkan bila R0 AA 1 terdapat titik keseimbangan endemik dan tiga titik keseimbangan jika R0 1. Melalui studi analitik dengan menggunakan aturan Descartes dan eksperimen numerik, menemukan bahwa percabangan ke belakang terjadi pada suatu saat R0 1, ​​dan saat R0 1 terjadi percabangan maju dan mundur secara bersamaan. Untuk Untuk mendukung interpretasi model, simulasi numerik dari sensitivitas R0 dan R0 juga dilakukan simulasi otonom dari parameter angka kematian nyamuk akibat fumigasi dan faktor bias. Hasil simulasi menunjukkan bahwa angka kematian nyamuk meningkat karena pengasapan akan meningkatkan kemungkinan penyakit tidak menyebar dan hilang, Adapun semakin besar faktor biasnya maka semakin besar pula jumlah nyamuk dan manusia yang terinfeksi.

Malaria is a contagious disease caused by the parasite Plasmodium and transmitted through the bite of a female Anopheles mosquito. In this thesis, a mathematical model of the spread of malaria was developed by considering bias factors in the infection process and fumigation interventions in malaria control. The model is built as a SIRI-UV model in the form of a system of equations the usual six dimensional difference. The equilibrium point analysis and stability and sensitivity analysis of the basic reproduction number (R0) were carried out analytically and numerically. Based on the analytical study, two types of balance points were obtained, namely the disease-free balance point and the endemic balance point. When R0 @@ 1, no there is an endemic equilibrium point, or there are two endemic equilibrium points if R0 1. Whereas if R0 AA 1 there is an endemic equilibrium point and three equilibrium points if R0 1. Through analytic studies using Descartes' rule and numerical experiments it is found that the reverse branching occurs at one day R0 1, ​​and when R0 1 there is simultaneous forward and backward branching. To support the interpretation of the model, numerical simulations of the sensitivity of R0 and R0 were also carried out with autonomous simulations of the mosquito mortality rate parameters due to fumigation and bias factors. The simulation results show that the increased mosquito mortality rate due to smoking will increase the likelihood that the disease will not spread and disappear. The greater the bias factor, the greater the number of infected mosquitoes and humans."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siti Leah Latifa
"Penyakit Bovine tuberculosis merupakan penyakit yang dapat menyerang manusia melalui hewan ternak. Proses penularan dapat terjadi melalui udara dan produk hewan ternak yang tidak diolah dengan benar. Saat manusia terjangkit BTB, dapat terjadi proses infeksi sekunder dan relapse. Fenomena ini dapat dimodelkan secara matematis dengan model epidemi SEIR yang merepresentasikan 7 kelompok individu yaitu manusia rentan Sh, manusia terekspos Eh, manusia terinfeksi Ih, manusia sembuh Rh, hewan ternak rentan Sc, hewan ternak terekspos Ec dan hewan ternak terinfeksi Ic. Dari kajian analitik dan numerik dapat ditentukan syarat eksistensi dan kestabilan bilangan reproduksi dasar untuk manusia R01 dan hewan ternak R02. Selain itu didapat juga syarat eksistensi dan kestabilan titik endemis EE dan titik bebas penyakit DFE.

Bovine tuberculosis is a disease that can attack humans through cattle. The process of transmission can occur through the air and cattle products that are not treated properly. When humans are infected with BTB, reinfection and relapse may occur. This phenomenon can be mathematically modeled with the SEIR epidemic model that represents the 7 individual groups of susceptible human beings Sh, exposed human Eh, infected humans Ih, recovery human Rh, susceptible cattle Sc, exposed cattle Ec and infected cattle Ic . From analytic and numerical studies we can determine the terms of existence and stability of basic reproduction numbers for humans R01 and farm animals R02. In addition, there is also a requirement of the existence and stability of endemic point EE and disease free point DFE.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wulan Hapsari Bhagyawanti
"Malaria merupakan penyakit infeksi yang disebabkan oleh parasit Plasmodium dimana penyebarannya terjadi melalui perantara nyamuk Anopheles betina. Di Indonesia, kasus malaria paling banyak ditemukan di bagian timur, seperti Papua dan Papua Barat. Salah satu cara untuk memahami penyebaran penyakit malaria yaitu menggunakan model matematika. Oleh karena itu, penelitian ini bertujuan untuk mengonstruksi model matematika penyebaran penyakit malaria dengan bentuk SIS-UV menggunakan sistem persamaaan diferensial biasa nonlinier berdimensi lima. Model matematika yang dibentuk dalam penelitian ini mempertimbangkan kepedulian manusia, faktor bias pada nyamuk, dan fumigasi pada nyamuk. Kajian analitik dilakukan untuk menganalisis eksistensi dan kestabilan titik-titik keseimbangan, serta bilangan reproduksi dasar (R0). Diperoleh bahwa titik keseimbangan bebas malaria eksis tanpa syarat dan akan bersifat stabil asimtotik lokal jika bilangan reproduksi dasar kurang dari satu (R0<1). Sementara itu, titik keseimbangan endemik malaria akan selalu muncul jika bilangan reproduksi dasar lebih dari satu (R0>1). Saat R0=1, terdapat kemungkinan muncul bifurkasi mundur yang dijelaskan menggunakan teorema Castillo-Chavez dan Song. Hal tersebut mengindikasikan bahwa tetap didapatkan titik keseimbangan endemik yang stabil asimtotik lokal meskipun R0<1. Selanjutnya, dilakukan penaksiran parameter menggunakan data akumulasi bulanan malaria tahun 2020 di Papua yang diperoleh dari Kementerian Kesehatan Republik Indonesia. Berdasarkan hasil estimasi, diperoleh nilai R0=1,35>1 yang mengindikasikan bahwa penyakit malaria menjadi endemik di Papua. Simulasi numerik diberikan untuk menggambarkan hasil dari kajian analitik. Hasil simulasi menunjukkan bahwa intervensi fumigasi dan peningkatan kepedulian manusia merupakan parameter yang efektif dalam mengubah nilai bilangan reproduksi dasar (R0). Oleh karena itu, penerapan kedua intervensi tersebut diharapkan dapat mengendalikan penyebaran penyakit malaria dalam populasi.

Malaria is an infectious disease caused by the Plasmodium parasite where it is spread through female Anopheles mosquitoes. In Indonesia, malaria cases are mostly found in the eastern part, such as Papua and West Papua. One way to understand the spread of malaria is to use a mathematical model. Therefore, this study aims to construct a mathematical model of the spread of malaria in the form of SIS-UV using a five-dimensional nonlinear ordinary differential equation system. The mathematical model formed in this study considers people awareness, factors biased by mosquito, and mosquito fumigation. Analytical studies were conducted to analyze the existence and stability of equilibrium points, as well as basic reproduction numbers (R0). It was found that the malaria-free equilibrium point exists unconditionally and will be locally asymptotically stable if the basic reproduction number is less than one (R0<1). Meanwhile, the malaria endemic equilibrium point will always appear if the basic reproduction number is more than one (R0>1). When R0=1, there is the possibility of a backward bifurcation which is explained using the Castillo-Chavez and Song theorems. This indicates that a locally asymptotically stable endemic equilibrium point is still obtained even though R0<1. Furthermore, parameter estimation is carried out using monthly malaria accumulation data in 2020 in Papua obtained from the Ministry of Health of the Republic of Indonesia. Based on the estimation results, the value of R0=1.35>1 indicates that malaria is endemic in Papua. Numerical simulations are provided to illustrate the results of the analytical study. The simulation results show that the fumigation intervention and the improvement of people awareness are effective parameters in changing the value of the basic reproduction number (R0). Therefore, the application of these two interventions is expected to control the spread of malaria in the population. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahma Rosaliana Saraswati
"Penelitian ini bertujuan untuk memahami penyebaran malaria dengan kasus resistansi terhadap multi obat antimalaria menggunakan model matematika yang merupakan modifikasi model matematika terkait resistansi terhadap obat antimalaria yang sudah ada. Model yang dirumuskan dalam penelitian ini memperhatikan fakta bahwa saat ini banyak kasus malaria dengan parasit yang resistan terhadap kombinasi beberapa obat antimalaria. Model yang dibentuk dalam penelitian ini terdiri dari dua belas variabel dengan delapan variabel manusia dan empat variabel vektor nyamuk, yang kemudian direduksi menjadi sepuluh variabel dengan tujuh variabel manusia dan tiga variabel nyamuk. Hasil analisis model ditemukan terdapat tujuh titik keseimbangan dan tiga bilangan reproduksi dasar. Adapun berdasarkan hasil simulasi numerik didapatkan bahwa laju tingkat kontak infeksi antara nyamuk dengan manusia dan laju tingkat kegagalan pengobatan mempengaruhi jumlah individu terinfeksi malaria. Berdasarkan hasil analisis dan simulasi numerik pada model ditemukan bahwa untuk mencegah penyebaran penyakit malaria dengan resistansi obat antimalaria dapat dilakukan dengan cara penggunaan kelambu dan obat nyamuk, serta memperbaiki sistem pengobatan terhadap penyakit malaria. Di sisi lain, ditemukan juga bahwa sangat penting untuk menurunkan angka infeksi malaria yang resistan terhadap multi obat antimalaria terlebih dahulu, sehingga dapat menurunkan angka infeksi malaria dengan parasit resistan terhadap satu jenis obat dan kemudian menurunkan parasit yang sensitif terhadap obat antimalaria.

This research aims to understand the spread of malaria with cases of antimalarial multidrug resistance using a mathematical model which is a modification of a exist mathematical model about antimalarial drug resistance. The model was formulated taking into account the fact that currently there are many cases of malaria with parasites that are resistant to a combination of several antimalarial drugs. The model in this research consists of twelve variables with eight human variables and four mosquito vector variables, which were then reduced to ten variables with seven human variables and three mosquito variables. The analytical result shows that the model has seven equilibrium points and three basic reproduction number. Based on the results of numerical simulations, it was found that the rate of infection between mosquitoes and humans and the rate of treatment failure affect the number of individuals infected with malaria. Based on the results of analysis and numerical simulations of the model, it was found that preventing the spread of malaria with antimalarial drug resistance can be done by using mosquito nets or mosquito coils and improving the treatment system for malaria. On the other hand, it was also found that it is very important to reduce the number of malaria infections that are resistant to multidrug antimalarial first, so that we can reduce the number of malaria infections with parasites that are resistant to one type of drug and control parasites that are sensitive to antimalarial drugs."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Basyar Lauzha Fardian
"Studi literatur terkait model koinfeksi malaria-COVID-19 yang ditulis oleh Tchoumi dkk pada tahun 2021 dibahas pada skripsi ini. Kajian infeksi tunggal malaria dan COVID-19 dibahas secara mendetail terkait eksistensi dan kestabilan lokal dan/atau global titik keseimbangan serta hubungannya dengan bilangan reproduksi dasar. Pendekatan numerik dilakukan untuk analisa eksistensi titik keseimbangan model koinfeksi. Kajian analisis sensitivitas dilakukan untuk mengetahui parameter yang berperan penting dalam penyebaran COVID-19 dan malaria. Dari kajian yang telah dilakukan, dapat disimpulkan bahwa reduksi laju sukses infeksi pada salah satu atau kedua penyakit melalui perlindungan diri sukses mengontrol penyebaran koinfeksi malaria-COVID-19.

The literature study about malaria-COVID-19 co-infection written by Tchoumi etc in 2021 is discussed in this study. The analytical single infection study of malaria and COVID-19 is discussed in detail regarding the existence and stability of local and/or global equilibrium point and their correlation to each basic reproduction number. The numerical experiment is used to analyze the existence and stability of the co-infection endemic equilibrium point. The sensitivity analysis is carried out to determine the parameters that play an essential role in the spread of COVID-19 and malaria. From the analysis, it can be concluded that reducing the success rate of infection in one or two diseases through self-protection can successfully control the spread of malaria-COVID-19 co-infection."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rayhan Adi Pratama
"Malaria adalah penyakit yang disebabkan oleh parasit melalui penularan nyamuk dan merupakan salah satu penyakit menular yang paling mematikan bagi manusia. Berbagai cara telah dilakukan untuk mengatasi malaria, salah satunya adalah dengan menggunakan intervensi ITN. Namun berbagai laporan mengindikasikan bahwa malaria masih menjadi masalah kesehatan serius di berbagai negara tropis karena berbagai faktor. Salah satu faktor tersebut adalah terus munculnya resistensi terhadap obat antimalaria pada manusia dan resistensi terhadap insektisida pada nyamuk. Pada skripsi ini, dibangun model matematis mengenai penyebaran penyakit malaria dengan mempertimbangkan faktor resistensi insektisida dan faktor resistensi obat dengan intervensi ITN. Di skripsi ini, dilakukan kajian analitik dan simulasi numerik. Kajian analitik berupa analisis eksistensi, analisis kestabilan titik-titik keseimbangan, serta analisis nilai bilangan reproduksi dasar. Kemudian simulasi numerik berupa analisis elastisitas, analisis sensitivitas, serta simulasi autonomous. Berdasarkan kajian analitik dan simulasi numerik, diperoleh bahwa penyebaran malaria dapat dikendalikan dengan efektif melalui penggunaan ITN.

Malaria is a disease caused by parasites through mosquito transmission and is one of the deadliest infectious diseases for humans. Various ways have been done to overcome malaria, such as using ITN intervention. However reports indicates that malaria still a massive health issue in tropical countries due to various factors. One such factor is the continued emergence of resistance to antimalarial drugs in humans and resistance to insecticides in mosquitoes. In this reasearch, a mathematical model has been constructed by regarding the spread of malaria by considering the insecticide resistance factor and the drug resistance factor with ITN intervention. An analytical study and numerical simulation are carried out. Analytical studies include analysis of the existence and stability analysis of equilibrium points, and analysis of the value of the basic reproduction number. Numerical simulations in the form of elasticity analysis, sensitivity analysis, and autonomous simulation. Based on analytical studies and numerical simulations, it was found that the spread of malaria could be controlled effectively through the use of ITN."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michellyn Angelina
"

Malaria adalah penyakit yang ditularkan melalui vektor (hewan perantara). Salah satu cara untuk membantu pemahaman dalam dinamika penularan penyakit malaria yaitu dengan menggunakan model matematika. Diharapkan model ini dapat memberikan wawasan yang lebih baik untuk mengurangi dampak beban malaria di masyarakat. Oleh karena itu, penulisan ini bertujuan untuk mengonstruksi model matematika transmisi malaria dengan bentuk SIS-UV melalui persamaan diferensial biasa berdimensi empat nonlinier. Penyebaran infeksi malaria yang dibuat dalam penulisan ini mempertimbangkan faktor bias oleh vektor, pengobatan bersaturasi pada manusia, dan fumigasi pada vektor. Analisis dilakukan dengan menyelidiki kestabilan titik keseimbangan dan bilangan reproduksi dasar (R0). Analisis tersebut menunjukkan jika bilangan reproduksi dasar kurang dari 1 (R0 < 1), maka titik keseimbangan bebas malaria akan stabil asimtotik lokal. Sementara itu, titik keseimbangan endemik akan selalu muncul jika R0 > 1. Ketika R0 = 1, terdapat kemungkinan munculnya fenomena bifurkasi mundur yang dijelaskan dengan menggunakan teorema Castillo-Chavez dan Song. Hal tersebut menunjukkan bahwa tetap terdapat titik keseimbangan endemik yang stabil meskipun R0 < 1. Selanjutnya, pendekatan numerik diberikan untuk menggambarkan hasil dari analisis teoritik. Hasil simulasi menunjukkan bahwa intervensi fumigasi merupakan parameter yang paling signifikan dalam merubah nilai bilangan reproduksi dasar (R0). Dengan demikian, intervensi fumigasi merupakan hal yang masuk akal untuk mengurangi kasus penyakit malaria dalam populasi.


Malaria is one of the most common vector-borne diseases. One of the options to help people to understand the dynamics of malaria transmission is by using a mathematical model. It provides better insights to reduce the impact of malaria burden within the community. Therefore, this talk aims to apply the SIS-UV model with the form of four-dimensional ordinary differential equations nonlinear. The mathematical model will be constructed by investigating the spread of malaria considering factors biased by vectors, saturated treatment in humans, and fumigation in vectors. The analysis is carried out by investigating the stability of the equilibrium points and basic reproduction numbers (R0). It shows that if the basic reproduction number is less than 1 (R0 < 1), then the malaria-free equilibrium point is locally asymptotically stable. Meanwhile, the endemic equilibrium point will always appear if R0 > 1. When R0 = 1, there is the possibility of a backward bifurcation phenomenon that is explained using the Castillo-Chavez and Song theorem. This shows that there is still a stable endemic equilibrium even though R0 < 1. Next, a numerical approach is given to illustrate the theoretical analysis. Simulation results show that fumigation intervention is the most significant parameter in changing the value of basic reproduction numbers (R0). Therefore, the selection of fumigation interventions is reasonable to eradicate malaria in the population.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>