Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 69235 dokumen yang sesuai dengan query
cover
Anom Galuh Mustika Sari
"

Kanker payudara adalah suatu jenis tumor ganas yang berkembang pada sel-sel payudara. Pada penelitian ini digunakan model Adaptive Neuro Fuzzy Inference System (ANFIS) dengan Selecting Feature. Neuro Fuzzy (NF) menghibridisasi keunggulan dari Artificial Neural Network (ANN) dan Fuzzy Logic (FL) untuk mengatasi masalah input informasi yang tidak pasti dan tidak tepat. Penelitian model ANFIS dengan selecting feature dilakukan dengan 4 tahap. Pada tahap pertama dilakukan preprocessing data, di mana terlebih dahulu dilakukan cleaning dataset untuk menghilangkan 16 missing value, kemudian data dinormalisasi dalam interval [0,1], selanjutnya dipilih fitur mana yang mewakili dataset menggunakan algoritma relief, correlation plot, dan ilmu di bidang kesehatannya. Tahap kedua yaitu pembagian dataset menjadi 4 label. Hal ini bertujuan untuk melihat pembagian data antara data training dan data testing mana yang proporsional untuk diuji. Tahap ketiga merupakan pengujian model ANFIS dengan eppoch= 50, 100, 150 pada 4 label dataset. Tahap ini menghasilkan nilai RMSE untuk melihat seberapa kecil tingkat kesalahan dari model ANFIS. Pada tahap akhir, dilakukan uji performance data untuk melihat akurasi pada data testing. Berdasarkan hasil uji dalam 4 label dataset, diperoleh rata-rata untuk akurasi 96,35%. Dari hasil penelitian disimpulkan bahwa model Adaptive Neuro Fuzzy Inference System dengan Selecting Feature cukup baik untuk memprediksi kanker payudara.


Breast cancer is a type of tumor that develops in breast cells. In this study, the Adaptive Neuro Fuzzy Inference System (ANFIS) model was used with the Selecting Feature. Neuro Fuzzy (NF) hybridizes the advantages of Artificial Neural Network (ANN) and Fuzzy Logic (FL) to solve the problem of uncertain and imprecise information input. The ANFIS research model with feature selection was carried out in 4 stages. In the first stage, data preprocessing is carried out, where first cleaning the dataset to eliminate 16 missing values, then the data is normalized in intervals [0,1], then selected which features represent the dataset using relief algorithms, correlation plots, and science in the field. his health. The second stage is dividing the dataset into 4 labels. This aims to see the distribution of data between training data and testing data which is proportional to be tested. The third stage is the ANFIS testing model with eppoch = 50, 100, 150 on 4 dataset labels. This stage generates the RMSE value to see the slightest error rate of the ANFIS model. In the final stage, a data performance test is carried out to see the accuracy of the data testing. Based on the test results in 4 dataset labels, an average of 96.35% accuracy is obtained. From the research, it was concluded that the Adaptive Neuro Fuzzy Inference System model with the Selecting Feature was good enough to predict breast cancer.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratna Idayati
"Klasifikasi data citra Ultrasonograf (USG) tumor payudara telah dilakukan dengan menggunakan Adaptive Neuro Fuzzy Inference System (ANFIS). Untuk klasifikasi diberikan pasangan-pasangan input fungsi keanggotaan (MFs) antara 0 - 0,1 dengan output pasien tumor/kanker sangat parah; input MFs 0,11 - 0,2 dengan output pasien tumor/kanker parah; input MFs 0,21 - 0,4 dengan output pasien tumor/kanker tidak parah; dan input 0,41 - 1 dengan output pasien sehat. Klasifikasi dilakukan terhadap data citra ultrasonografi baik pada pasien sehat maupun pada pasien yang memiliki kelainan, dan memberikan persentase kebenaran data training sebesar 87 %. Rule base dibuat dengan menggunakan sistem pakar (expert system) dengan 8 aturan dan training data FMS dilakukan dengan menggunakan metode backpropagation."
Depok: Fakultas Teknik Universitas Indonesia, 2003
T14689
UI - Tesis Membership  Universitas Indonesia Library
cover
Budi Triantono
Depok: Fakultas Teknik Universitas Indonesia, 1999
S39053
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Nafiys Ismail
"Proses sistem kendali adalah proses penting yang terjadi di dunia perindustrian, salah satunya di ranah industri hulu migas. Salah satu instrumen utama pada proses upstream migas adalah separator yang memiliki fungsi untuk memisahkan kandungan fluida minyak mentah yang mengalir melalui pipa menjadi beberapa wujud fase. Pada kenyataanya hampir semua proses pengendalian separator pada fasilitas produksi PT. Pertamina EP masih menggunakan model pengendalian PID konvensional yang harus terus dimonitoring oleh sumber daya manusia selama 24 jam per hari. Oleh karenanya, pada penelitian ini dirancang sebuah metode pengendalian berbasis intelligent system, yaitu simulasi pengendalian Neuro Fuzzy. Metode pengendalian Neuro-Fuzzy ini didesain menggunakan algoritma ANFIS dengan input berupa setpoint, error, dan selisih error dari proses variabel fluida separator, yaitu level (h) fluida. Penelitian dilakukan menggunakan aplikasi Simulink/MATLAB dengan memasukkan fungsi transfer dari model matematis separator lalu melakukan perbandingan dengan melihat grafik respon dan parameter antara model pengendali PID dan ANFIS. Hasil dari penelitian menunjukan bahwa performa pengendali model ANFIS secara rata-rata memiliki overshoot yang jauh lebih baik dari model PID karena selalu mendekati nol dalam tiap kondisi set point serta model ANFIS memiliki nilai error yang lebih baik pada saat set point bernilai 5 dengan perbedaan error 0,712 dari error model pengendali PID.

The control system process is an important process that occurs in the industrial world, one of which is in the upstream oil and gas industry. One of the main instruments in the upstream oil and gas process is a separator which has afunction to separate the crude oil fluid content flowing through the pipe into several phases. In fact, almost all separator control processes at PT. Pertamina EP still uses the conventional PID control model which must be continuously monitored by human resources 24 hours per day. Therefore, in this study, a control method based on intelligent systems is based on Neuro Fuzzy control of the level (h) of the fluid. The research was conducted using the Simulink/MATLAB application by entering the transfer function of the separator mathematical model and then making comparisons by looking at the response and parameter charts between the PID and ANFIS controller. The results of the study show that the ANFIS model controller performance on average has a much better overshoot than the PID model because it is always close to zero in each set point condition and the ANFIS model has a better error value when the set point is 5 with an error difference of 0.712. of the PID controller model error."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Titan Kemal Latif
"Pada masa sekarang ini perkembangan teknologi cenderung memiliki kemampuan untuk berpikir dan mengambil keputusan layaknya manusia. Salah satu dari banyak metode untuk mengembangkan teknologi yang cerdas adalah dengan menggunakan Adaptive Neuro Fuzyy Inference System. Penelitian ini dilakukan dengan menerapkan ANFIS tipe Sugeno pada data-data penelitian umum, seperti data tanaman iris dan data ionosphere, melihat efek perubahan parameter-parameter terhadap recognisinya, lalu melakukan ANFIS terhadap data citra wajah.

The technology nowadays tends to have abbility to think and to size up decision, just like us humans. One of the kind of method to enhance smart technology is by using Adaptive Neuro Fuzyy Inference System. This research is done by using ANFIS Sugeno type on general research data, such as iris plant data and ionosphere data, observing the effect of the changing parameter over the recognition, then using ANFIS on face image data.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S47312
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Anita Setianingrum
"Prediksi harga saham merupakan hal yang sangat penting bagi investor karena sangat berguna untuk menentukan nilai masa depan dari suatu perusahaan yang sahamnya sedang diperdagangkan di bursa efek. Investor akan mendapatkan keuntungan yang besar dengan prediksi yang tepat, sebaliknya investor akan mendapatkan kerugian jika prediksi yang digunakan tidak tepat. Pada skripsi ini, akan dibahas pembuatan model prediksi Adaptive Neuro Fuzzy Inference System ANFIS dengan menggunakan variabel indikator teknikal terbaik berdasarkan Support Vector Regression SVR yang dilihat dari kecenderungan data historis saham 25 perusahaan dari sub sektor Bank, sektor Keuangan, yang tercatat di Bursa Efek Indonesia. Melalui metode ini, akan didapatkan nilai akurasi model yang cukup baik sedemikian sehingga dapat menjadi rekomendasi bagi investor dalam melakukan prediksi harga saham berdasarkan variabel indikator teknikal terpilih.

Forecasting stock price has become an important issue for stock investors because it is very useful to determine the future value of a company whose its share are traded on the stock exchange. Investors will get a profit with a sharp predictions, otherwise they will get loss if the predictions is inappropriately used. This undergraduate thesis will study how to make a model prediction Adaptive Neruo Fuzzy Inference System ANFIS using the best technical indicators. These technical indicators chosen by using Support Vector Regression SVR referred from the tendencies of stock time series data for 25 companies of Banking sub sector, Financial sector, that listed on Indonesian Stock Exchange. Through this method, analyst will get the value of the model rsquo s accuracy, that is good enough. So that it could be a recommendation for investors for forecasting the stock prices using this method with the selected technical indicators."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S66167
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hajratul Hasanah
"

Demam Berdarah Dengue (DBD) merupakan penyakit yang banyak ditemukan di sebagian besar wilayah tropis dan subtropis. DBD merupakan penyakit infeksi yang disebabkan oleh virus dengue yang termasuk ke dalam family flaviviridae dan genus flavivirus yang ditularkan ke manusia melalui gigitan nyamuk Aedes aegypti dan Aedes albopicus dengan masa inkubasi intrinsik 3 sampai 14 hari, dan inkubasi ekstrinsik 8 sampai 10 hari. Dalam 3 tahun terakhir, jumlah penderita DBD di DKI Jakarta menduduki jumlah tertinggi yang mencapai 813 jiwa pada tahun 2019. Pada tugas akhir ini, dibahas pembuatan model Adaptive Neuro-Fuzzy Inference System (ANFIS) untuk memprediksi jumlah insiden DBD di DKI Jakarta menggunakan data jumlah insiden DBD pada setiap wilayah di DKI Jakarta tahun 2009 sampai 2017. Hasil simulasi dari model Adaptive Neuro-Fuzzy Inference System dibandingkan dengan hasil model Artificial Neural Network (ANN) dan Ensemble ANN-ANFIS yang dievaluasi berdasarkan Root Mean Squared Error dan Mean Absolute Error. Pada tugas akhir ini, Adaptive Neuro-Fuzzy Inference System memiliki performa lebih baik dibandingkan Artificial Neural Network dan Ensemble ANN-ANFIS hampir seluruh daerah di DKI Jakarta.


Dengue Hemorrhagic Fever (DHF) is a disease that is found in most tropical and subtropical regions. DHF is a disease caused by dengue virus which belongs to the flaviviridae family and genus flavivirus which is transmitted to humans through the bite of Aedes aegypti and Aedes albopicus mosquitoes with an intrinsic incubation period of 3 to14 days, and extrinsic incubation period of 8 to 10 days. In the last 3 years, the number of DHF sufferers in DKI occupied the highest number, which reached 813 people in 2019. In this final project, we will discuss making an Adaptive Neuro-Fuzzy Inference System (ANFIS) model to predict the number of DHF reporting in DKI Jakarta using data on the number of DHF reporting in each region in DKI Jakarta from 2009 to 2017. Simulation result from the Adaptive Neuro-Fuzzy Inference System model are compared with the results of the Artificial Neural Network (ANN) model and the Ensemble ANN-ANFIS model, evaluated based on Root Mean Squared Error and Mean Absolute Error. In this final project, the Adaptive Neuro-Fuzzy Inference System has better performance than the Artificial Neural Network and Ensemble ANN-ANFIS in all regions in DKI Jakarta.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurul Hikmah
"Identifikasi retina merupakan metode identifikasi biometrik dengan tingkat kesalahan rendah melalui pola-pola unik pembuluh darah di bagian belakang retina. Pola-pola ini dapat digunakan sebagai data latih logika neuro fuzzy untuk kemudian digunakan sebagai pembanding pada saat identifikasi dilakukan.
Penelitian ini bertujuan untuk mengenali citra retina mata manusia, baik bagian kiri maupun kanan, menggunakan teknik pengolahan citra dan Adaptive Neuro Fuzzy Inference System (ANFIS). Pada proses pengenalan retina ini, citra digital yang sudah diakuisisi akan dicrop dan dibagi menjadi image block berukuran 4x4. Kemudian blok citra dikonversi dari format Red Green Blue (RGB) menjadi format Hue Saturation Value (HSV). Untuk mendapatkan parameter fitur warna HSV, setiap komponen warna HSV dihitung nilai rata-ratanya. Nilai rata-rata HSV dimasukkan ke dalam database dan dilatih dengan ANFIS yang terdiri atas 2 jenis membership function, yaitu Gaussian dan Trapesium dengan 3 input dan 1 ouput.
Dari hasil uji coba, hasil identifikasi memiliki tingkat akurasi hingga 65% untuk membership function Trapesium dan 80% untuk membership function Gaussian dengan 60 kali pelatihan ANFIS.

Retina identification is a biometric identification method which has very low error rate using a unique blood vessel pattern in the back of the retina. The identification involved an infrared scanned retina imagery which is analyzed using image processing technique to derive the color characteristics and then trained into the Adaptive Neuro Fuzzy Inference System (ANFIS).
The objective of this research to identify a person?s identity from his/her retina image. The identification process is started by cropping the digital retina image then transformed into an 4x4 image block. The image block is then converted from Red Green Blue (RGB) color format to the Hue Saturation Value (HSV) format. Each color component of HSV values is then averaged, saved to a database and trained using ANFIS. The Neuro fuzzy used Gaussian and Trapezoid membership function which have 3 input and 1 ouput, respectively.
The simulation results showed the identification system has an accuracy rate up to 65% and up to 80%, for Trapezoid and Gaussian membership function, respectively. This results are achieved using 60 training data in the ANFIS."
2008
S40478
UI - Skripsi Open  Universitas Indonesia Library
cover
Dwi Kris Setianto
"Tugas akhir ini dilakukan sebagai penelitian untuk menganalisa proses pengenalan iris mata manusia dengan teknik pengolahan citra menggunakan metode adaptive neuro-fuzzy inference system (ANFIS). Hal ini didasarkan pada teori bahwa setiap iris mata manusia mempunyai bagian-bagian yang unik dan berbeda antara iris yang satu dengan yang lain. Data iris yang digunakan dalam penulisan tugas akhir ini diambil dari http://pesona.mmu.edu.my/~ccteo/. Data yang didapat sudah dalam grayscale dengan demikian dari data tersebut sudah dapat diolah dengan pengolahan selanjutnya dengan menentukan region of interest, mengubah koordinat citra dari koordinat kartesian menjadi koordinat polar, mengekstrak citra menjadi 3 bagian dan membuat blok-blok dari matriks tersebut, kemudian mengkodekan dengan filter wavelet. Dari hasil pengkodean ini didapat tiga buah parameter yaitu matriks diagonal, matriks vertikal, dan matriks horisontal. Dari ketiga parameter ini diambil nilai rata-ratanya dan hasilnya digunakan untuk pembentukan database yang kemudian digunakan untuk proses pelatihan, pengujian, dan pengecekan pada adaptive neuro-fuzzy inference system dengan menggunakan fungsi keanggotaan gaussian dan metode subtractive clustering. Hasil yang diadapat dari metode ini untuk citra mata yang telah dilatih sebesar 90% sedangkan untuk data uji atau citra yang tidak dilatih sebesar 25%.

This paper was made for studying identification proccess of human iris with image processing using adaptive neuro-fuzzy inference system (ANFIS) methode. The study based on the theory that every human iris have unique parts. Data that used in this paper taken from http://pesona.mmu.edu.my/~ccteo/. Data format in grayscale level therefore this data could be proccess with the further processing decisively region of interest, transform from rectangular coordinate to polar coordinate, extracted the image to 3 parts and made blocs from this matrix, afterwards encode the matrix using wavelet filter. From the results of this coding was gotten three parameters that is the diagonal matrix, the vertical matrix, and the horizontal matrix. From the three parameters was taken average value and results was used for database formation, afterwards was used for training process, testing, and checking in adaptive neuro-fuzzy inference system used the function of the gaussian membership and subtractive clustering methode. The result for his method 90% for image that was trained and 25% for test data or image that was not trained."
2008
S40591
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>