Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2566 dokumen yang sesuai dengan query
cover
Qomaruzzaman
"Graf berarah adalah pasangan himpunan simpul yang tak kosong dan himpunan busur berarah yang merupakan himpunan pasangan terurut dari dua simpul. Graf berarah siklik adalah graf yang setidaknya memiliki satu subgraf lingkaran berarah siklik, yaitu graf lingkaran berarah yang busur berarahnya melewati setiap simpul masing-masing satu kali, kecuali simpul awal dan simpul akhir. Graf kecebong berarah unisiklik adalah graf yang dibentuk dengan menyambungkan salah satu simpul dari graf lingkaran dengan simpul pada ujung dari graf lintasan untuk bilangan asli m ≥ 3 dan n ≥ 1. Graf kecebong berarah unisiklik yang dibahas pada penelitian ini adalah graf kecebong yang seluruh simpul pada bagian lingkarannya masing-masing memiliki satu tetangga masuk dan satu tetangga ke luar, serta arah pada bagian lintasannya keluar dari salah satu simpul pada bagian lingkaran menuju ke ujung ekor. Matriks antiketetanggaan adalah salah satu representasi graf berarah berdasarkan ada atau tidaknya hubungan satu simpul dengan simpul lainnya. Pada penelitian ini, dicari bentuk umum koefisien-koefisien polinomial karakteristik dan nilai-nilai eigen matriks antiketetanggaan dari graf kecebong berarah unisiklik. Untuk mencari bentuk umum polinomial karakteristik matriks antiketetanggaan dari graf kecebong berarah unisiklik, dilakukan pencarian pola polinomial karakteristik berdasarkan banyak simpul atau banyak busurnya, pengelompokkan tipe-tipe subgraf terinduksi menjadi asiklik dan siklik, serta pembuktian dengan teorema-teorema terkait. Sementara itu, untuk mencari bentuk umum nilai eigen matriks antiketetanggaan dari graf kecebong berarah unisiklik dilakukan pemfaktoran polinomial dengan metode Horner dan mencari akar bilangan kompleks. Koefisien-koefisien polinomial karakteristik matriks antiketetanggaan dari graf kecebong berarah unisiklik memiliki tiga nilai yang berbeda dan nilai-nilai eigen matriks antiketetanggaan dari graf kecebong berarah unisiklik dibagi menjadi kasus ganjil dan kasus genap.

A directed graph is a pair of nonempty finite set of vertices and set of directed edges which is set of ordered pairs of two vertices. A directed cyclic graph is a directed graph that has at least one directed cycle graph, that is a directed cycle graph with the direction passes through each vertex once, except at the end vertex. The directed unicyclic tadpole graph is the graph created by concatenating one of vertex of cycle graph with end vertex of path graph for integers m ≥ 3 and n ≥ 1. The directed unicyclic tadpole graph discuss in this research is a tadpole graph which is all vertices in the cycle have each one in-neighbour and one out-neighbour, and the path subgraph has direction from the vertex in the cycle subgraph to end of tail. Antiadjacency matrix is one of directed graph representation based on whether or not there is a relation between one vertex with the others. In this research, the general form of coefficients of characteristic polynomial and eigenvalues of the antiadjacency matrix of the directed unicyclic tadpole graph are proved. To find the general form of coefficients of the characteristics polynomial of antiadjacency matrix of the directed unicyclic tadpole graph, by forming patterns of coefficients of characteristic polynomial based on amount of vertices or edges, grouping of types of induced subgraphs into acyclic and cyclic, and verify with related theorems. Meanwhile, to find the general form of eigenvalues of antiadjacency matrix of directed unicyclic tadpole graph, by factorization its characteristic polynomial using Horner method and root of complex number method. The coefficients of the characteristic polynomial of directed unicyclic tadpole graph consist of three distinct values and the eigenvalues of directed unicyclic tadpole graph are divided into odd case and even case."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Haryono
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
T30010
UI - Tesis Open  Universitas Indonesia Library
cover
Moh. Abdul Latief
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27869
UI - Skripsi Open  Universitas Indonesia Library
cover
Widiyani Suciati
"Misalkan G adalah graf dengan himpunan simpul tak-kosong V dan himpunan busur E, dimana [V(G)] dan [E(G)] masing-masing menyatakan banyak simpul dan busur pada G. Pelabelan harmonis dari graf adalah suatu pemetaan dengan menginduksi pelabelan pada himpunan busur didefinisikan sebagai pemetaan , untuk setiap busur . Jika adalah graf pohon maka tepat satu label simpul berulang atau label simpul dapat dilabelkan dengan menggunakan . Dalam skripsi ini diberikan algoritma untuk menghasilkan semua pelabelan harmonis yang tidak isomorfik pada graf lintasan Pn, graf lingkaran Cn dan graf lobster teratur Ln,r,1 untuk nilai n dan r (untuk graf lobster teratur) yang diberikan. Algoritma-algoritma ini kemudian diimplementasikan dalam program. Diberikan juga simulasi banyak pelabelan harmonis yang mungkin dan tidak isomorfik sampai nilai n tertentu."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27846
UI - Skripsi Open  Universitas Indonesia Library
cover
Natasha Thea
"Suatu graf sederhana dapat direpresentasikan dalam bentuk matriks Laplacian. Nilai eigen kedua terkecil dari matriks Laplacian, didefinisikan sebagai konektivitas aljabar, memiliki peranan dalam menunjukkan keterhubungan dari graf. Dalam tugas akhir ini, pertama-tama dicari batas atas dari jumlah kuadrat derajat pada suatu graf sederhana. Dari hasil yang diperoleh, kemudian ditentukan batas atas dan bawah dari konektivitas aljabar pada graf. Lebih lanjut dibahas pula batas bawah dari konektivitas aljabar pada graf berbobot.

A simple graph can be represented by a Laplacian matrix. The second smallest eigenvalue of Laplacian matrix, defined as algebraic connectivity, is used to show the connectivity of graphs. In this skripsi, first we find some upper bounds on the sum of the squares of the degrees in a simple graph. Using these results, we obtain some upper and lower bounds on the algebraic connectivity of graph. In addition, a lower bound on the algebraic connectivity of a weighted graph is also presented."
2016
S62454
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kevin Kamal
"Pengklasteran clustering yang dilakukan dengan menggunakan metode graf disebut dengan pengklasteran graf graph clustering . Pengklasteran graf dengan memperhatikan bobot dapat diselesaikan dengan menggunakan pohon rentangan minimum. Salah satu algoritma yang dapat digunakan untuk menyelesaikan pengklasteran graf berbobot berdasarkan pohon rentangan minimum adalah algoritma maximum standard deviation reduction MSDR . Pada algoritma MSDR tidak perlu ditentukan banyaknya klaster yang terbentuk, karena terdapat perhitungan untuk menentukan banyak klaster secara otomatis. Namun dalam penelitian lanjutan algoritma MSDR cukup sulit dikerjakan karena sulitnya dalam menentukan nilai kandidat klaster terbaik, sehingga dilakukan modifikasi untuk menentukan nilai -nya. Modifikasi ini disebut dengan modifikasi MSDR MMSDR. Penelitian ini merupakan implementasi dari algoritma MMSDR pada masalah rute penerbangan di Indonesia yang disebut maskapai X, dengan menggunakan input matriks komplemen. Dengan menggunakan input matriks dari komplemen graf didapatkan pengklasteran berdasarkan jarak antar bandara. Penelitian ini juga menganalisis perubahan nilai epsilon dan perubahan matriks input. Hasil analisis menunjukkan bahwa perubahan nilai epsilon tidak mempengaruhi banyaknya klaster dan anggota klaster, sedangkan perubahan matriks input dapat mempengaruhi perbedaan anggota klaster.

Clustering is done by using graph method called graph clustering. Graph clustering with weights can be solved by using a minimum spanning tree. One of the algorithms that can be used to complete a weighted graph clustering based on a minimum spanning tree is the maximum standard deviation reduction MSDR algorithm. In the MSDR algorithm there is no need to determine the number of clusters that are formed, because there are calculaions to determine many clusters automically. However, in advanced research MSDR algorithm is quite difficult to do because of the difficulty in determining the value of best cluster candidates, so modifications are made to determine the value of. This modification is called the modification MSDR MMSDR. This research is an implementation of MMSDR algorithm on flight route problem in Indonesia called airline X, by using input complement matrix. Using the matrix input from the complement graph obtained clustering based on the distance between airports. This research also analyzed changes in epsilon value and changes in input matrix. The results of the analysis show that the change in epsilon value does not affect the number of clusters and clusters members, whereas the change in input matrix may affect the cluster members.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S69594
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahima Fitriani
"Misalkan G= V,E adalah suatu graf dengan V adalah himpunan simpul dan E adalah himpunan busur. Pewarnaan busur sejati dari sebuah graf G merupakan pemberian warna pada busur-busur di G, satu warna untuk masing-masing busur, dan untuk setiap dua busur bertetangga diberikan warna yang berbeda. Pewarnaan busur optimal merupakan pewarnaan busur sejati dengan menggunakan warna sebanyak bilangan kromatik busur graf. Pada graf yang diwarnai busurnya dapat diperoleh lintasan pelangi atau lingkaran pelangi, yaitu lintasan atau lingkaran dengan seluruh busurnya memiliki warna yang berbeda. Skripsi ini meneliti bagaimana aturan pewarnaan busur optimal diberikan pada graf kipas dan graf roda sehingga diperoleh lingkaran pelangi dengan panjang 3 sampai dengan n.

Let G V,E be a graph with V is a set of vertices and E is a set of edges. A proper edge coloring of graph is assignment of colors to the edges of G, one color to each edge, and for two adjacent edges given different colors. An optimal edge coloring is proper edge coloring that use number of color as many as graph s edge chromatic number. On edge colored graph can be obtained rainbow path or rainbow cycle, that is path or cycle whose all edges have different colors. This undergraduate thesis provide optimal edge coloring rules that can be given to fan graph and wheel graph such that there will be rainbow cycles with length 3 up to n."
Depok: Universitas Indonesia, 2017
S68236
UI - Skripsi Membership  Universitas Indonesia Library
cover
Carre, Bernard
Oxford: Clarendon Press, 1979
511.5 CAR g
Buku Teks SO  Universitas Indonesia Library
cover
London: Academic Press, 1988
511.5 SEL
Buku Teks SO  Universitas Indonesia Library
cover
Eriyatno
Bogor: Lembaga Sumberdaya Informasi, 1988
511.5 ERI a
Buku Teks SO  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>