Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 141861 dokumen yang sesuai dengan query
cover
Median Hardiv Nugraha
"Sektor pariwisata menjadi salah satu sektor yang memiliki banyak potensipemasukan anggaran negara. Salah satu cara untuk meningkatkan pemasukanmelalui sektor pariwisata adalah dengan memanfaatkan teknologi informasi agardapat menarik lebih banyak wisatawan yang datang. Pemanfaatan teknologitersebut adalah dengan menggunakan smart tourism. Implementasi smart tourismyang digunakan pada pariwisata di Indonesia, khususnya untuk objek wisataMonumen Nasional (Monas) adalah dengan memanfaatkan aplikasi telepon pintarberbasis Visual Question Answering (VQA) untuk memberikan informasi detailmengenai objek pariwisata yang sedang diamati dari kamera ponsel. Fokus dariskripsi ini adalah untuk menghasilkan model latihan dengan akurasi deteksi objekyang baik. Hasil dari proses latihan model akan dijadikan sebagai model untukdeteksi objek yang ada di sekitar Monas yang akan digunakan untuk melakukan VQA. Dataset yang digunakan dalam penelitian ini adalah gambar Monas besertaobjek-objek sekitarnya sebanyak 600 gambar dengan label kelas sebanyak 25 kelasobjek. Jaringan yang digunakan untuk melakukan deteksi objek adalah denganmenggunakan YOLO dan RetinaNet, dimana nantinya kedua jaringan ini akandilakukan komparasi dengan mencari skor akhir dari hasil evaluasi kedua modelyang telah dihasilkan. Dengan menggunakan dataset orisinil, pada jaringan YOLO mean average precision (mAP) yang didapatkan dengan rentang nilai confidencelevel threshold 0,1 sampai 0,9 berkisar antara 60,77% sampai 71,99%, sedangkanuntuk jaringan RetinaNet mAP yang didapatkan berkisar antara 72,18% sampai92,98%. Dengan menggunakan dataset augmentasi, pada jaringan YOLO mAPyang didapatkan berkisar antara 52,51% sampai 93,72%, sedangkan untuk jaringanRetinaNet mAP yang didapatkan berkisar antara 23,8% sampai 56,19%. Untuk skorArea Under Curve (AUC) pada dataset orisinil sebesar 0,99 dan 0,96 pada datasetaugmentasi. Berdasarkan hasil eksperimen ini dapat disimpulkan model YOLOdapat mendeteksi lebih baik dibandingkan dengan RetinaNet dan datasetaugmentasi dapat menghasilkan deteksi gambar lebih baik dibandingkan dengandataset orisinil.

Tourism sector has become one of the most potential income for some countires.One of the way to increase income from tourism sector is to implement informationtechnology so it can attract more tourists to come. The technology that can beimplemented is smart tourism. One of the smart tourism implementations forIndonesia tourism, especially for Monumen Nasional (Monas) tourism destinationis mobile based Visual Question Answering (VQA) application that can providedetailed information about tourism object from mobile phone camera. Focus of thisthesis is to produce training model with good detection accuracy. The result of themodel training process will be used as model for object detection model that willbe used for doing VQA. Dataset that will be used for this research are 600 picturescontaining Monas and 25 surrounding objects called class. The networks that willbe used for object detection is using YOLO and RetinaNet, where both of thesenetworks will be compared each other by searching the accuracy from evaluationmetric from both networks. By using original dataset, in YOLO network the meanaverage precision (mAP) score is between 60.77% to 71.99% with 0.1 to 0.9confidence level threshold range and in RetinaNet network the mAP score isbetween 72.18% to 92.98%. By using augmented dataset, in YOLO network themAP score is between 52.51% to 93.72% and in RetinaNet network the mAP scoreis between 23,8% to 56,19%. The Area Under Curve (AUC) score for originaldataset is 0.99 and 0.96 for augmented dataset using YOLO network. Based on theevaluation result, YOLO can detect objects better than RetinaNet and augmenteddataset can produce better detection than original dataset.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Singh, Dhananjay
"This book highlights new methods, algorithms and software for the digital processing and recovery of signals. In addition, it describes a new method for modeling one dimensional and multidimensional signals as successions of local polynomial splines and their spectral characteristics. It provides examples of how the proposed methods can be applied in specific cases, together with signal processing software examples in the MATLAB environment, and models of special processes in the Simulink environment. The books goal is to make it easier for beginners to understand the subject matter; it is intended for engineers, undergraduate and graduate students engaged in research or the evaluation and design of hardware and software for the digital processing and recovery of signals."
Singapore: Springer Nature, 2019
e20509801
eBooks  Universitas Indonesia Library
cover
Fakultas Ilmu Komputer Universitas Indonesia, 1995
S26898
UI - Skripsi Membership  Universitas Indonesia Library
cover
Salim Eben Ezer
"ABSTRAK
Salah satu bagian terpenting dalam sistem telekomunikasi adalah kemampuan
menjaga keutuhan infomasi, mengingat pada saat pentransmisian data Dada sistem
telekomunikasi didapati error (gangguanPengkodean konvolusi (2,1,5) dengan mengurai viterbi menggunakan DSPS TMS320C yang dapat disebabkan oleh derau (noise),
interferensi, Serta gangguan medan magnit/listrik. Untuk menghindari hal tersebut pada sistem komunikasi digital digunakan sistem pengoreksi kesalahart Pada sistem ini
salah satu metode penyandian yang cukup efektif adalah metode konvolusi dan pada
bagian pengurainya mengiinakan algoritma Viterbi.

"
1996
S38755
UI - Skripsi Membership  Universitas Indonesia Library
cover
"This book gathers selected papers presented at the 7th International Conference on Innovations in Electronics and Communication Engineering, held at Guru Nanak Institutions in Hyderabad, India. It highlights contributions by researchers, technocrats and experts regarding the latest technologies in electronic and communication engineering, and addresses various aspects of communication engineering, including signal processing, VLSI design, embedded systems, wireless communications, and electronics and communications in general. Covering cutting-edge technologies, the book offers a valuable resource, especially for young researchers. "
Springer Nature, 2019
e20509039
eBooks  Universitas Indonesia Library
cover
Stuber, Gordon L.
"Principles of mobile communication, is an authoritative treatment of the fundamentals of mobile communications. This book stresses the "fundamentals" of physical-layer wireless and mobile communications engineering that are important for the design of "any" wireless system. This book differs from others in the field by stressing mathematical modeling and analysis. It includes many detailed derivations from first principles, extensive literature references, and provides a level of depth that is necessary for graduate students wishing to pursue research on this topic. The book's focus will benefit students taking formal instruction and practicing engineers who are likely to already have familiarity with the standards and are seeking to increase their knowledge of this important subject. "
New York: Springer, 2011
e20421086
eBooks  Universitas Indonesia Library
cover
Raizha Rayhananta Prayoga
"Sinyal dalam konteks telekomunikasi membawa informasi dengan variasi terhadap waktu, termasuk sinyal suara yang bersifat non-stasioner. Kehadiran noise dalam sinyal suara dapat mengurangi kualitas informasi yang ditransmisikan. Penggunaan transformasi wavelet telah menjadi pendekatan yang efektif dalam denoising sinyal suara, namun untuk hasil optimal, diperlukan pemilihan model threshold dan wavelet families yang tepat. Penelitian ini mengeksplorasi kinerja berbagai model threshold dalam denoising sinyal suara. Hasil penelitian menunjukkan bahwa waktu komputasi untuk denoising meningkat seiring dengan peningkatan level dekomposisi, dengan threshold Donoho memiliki waktu komputasi tercepat, diikuti oleh modifikasi, dan acuan Gang Yang [9] paling lambat. Penggunaan wavelet families juga memengaruhi nilai Mean Squared Error (MSE) dan waktu komputasi. Model threshold acuan Gang Yang [9] memberikan MSE terbaik dengan waktu komputasi 119,252 detik pada level dekomposisi 4, sedangkan threshold modifikasi menawarkan waktu komputasi lebih cepat yaitu 87,965 detik dengan MSE hampir setara pada level dekomposisi 2. Peningkatan panjang filter wavelet meningkatkan kompleksitas program dan waktu komputasi, namun efeknya bervariasi pada tiap model threshold. Selain itu, dilakukan denoising pada noise teras rumah (SPL 83,445 dB) dan noise mesin konstruksi (SPL 87,439 dB). Pada noise teras rumah, level dekomposisi 1 dengan Biorthogonal 3.3 (bior33) paling efektif, mengurangi SPL menjadi 40,216 dB. Pada noise mesin konstruksi, level dekomposisi 1 dengan Reverse Biorthogonal 3.3 (rbio33) paling efektif, menurunkan SPL menjadi 69,569 dB. Berdasarkan hal tersebut, dalam memilih model threshold yang optimal, perlu dipertimbangkan nilai MSE dan efisiensi komputasi. Penelitian ini memberikan wawasan penting dalam memilih metode denoising yang efektif untuk meningkatkan kualitas sinyal suara.

In telecommunications, signals carry information with variations over time, including non-stationary audio signals. Noise in audio signals can degrade the quality of transmitted information. Wavelet transform is an effective approach for denoising audio signals, but optimal results require appropriate threshold models and wavelet families. This study explores the performance of various threshold models in denoising speech signals. Results indicate that computation time for denoising increases with decomposition levels; the Donoho threshold is the fastest, followed by the modified model, with Gang Yang [9]'s reference model being the slowest. Wavelet family choice significantly impacts Mean Squared Error (MSE) and computation time. The Gang Yang [9] reference model offers the best MSE at SNR 20-27 with a slight computation time increase (119.252 seconds at level 4), while the modified model achieves faster computation (87.965 seconds at level 2) with nearly equivalent MSE. Longer wavelet filters increase program complexity and computation time, varying by threshold model. Additionally, denoising was performed on residential porch noise (SPL 83.445 dB) and construction machinery noise (SPL 87.439 dB). For residential porch noise, decomposition level 1 with Biorthogonal 3.3 (bior33) was most effective, reducing the SPL to 40.216 dB. For construction machinery noise, decomposition level 1 with Reverse Biorthogonal 3.3 (rbio33) was most effective, lowering the SPL to 69.569 dB. Thus, selecting an optimal threshold model involves considering both MSE and computational efficiency. This study provides key insights for effective denoising methods to enhance speech signal quality."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rista
"

Kegiatan monitoring adalah salah satu hal penting dalam proses perawatan pohon kelapa sawit. Penyakit Ganoderma merupakan salah satu penyakit pada pohon kelapa sawit yang proses penyebarannya cepat. Saat ini kegiatan monitoring kesehatan kelapa sawit masih dilakukan secara manual (konvensional) yaitu dengan melihat secara langsung satu persatu pohon kelapa sawit. Proses ini membutuhkan waktu yang lama serta tenaga yang tidak sedikit. Teknik deteksi menggunakan potongan sampel daun dapat memungkinkan terjadi perubahan biologis pada daun dan proses pengambilan data sampel yang rumit. Pendeteksian menggunakan sampel citra dari drone lebih mudah dilakukan, namun belum dapat menghasilkan informasi terkait vegetasi tanaman. Berdasarkan permasalahan tersebut, pada penelitian ini dilakukan deteksi dan klasifikasi kesehatan pohon kelapa sawit menggunakan sampel citra pohon tampak atas. Pengambil data citra menggunakan drone DJI Air 2S yang dilengkapi dengan kamera multispektral enam kanal (red, green, blue, orange, cyan, dan near infrared) untuk mendapatkan informasi yang lebih lengkap terkait vegetasi tanaman, sehingga prosesnya jauh lebih mudah dan cepat. Data citra yang diperoleh dilakukan pemodelan YOLO dan middle level fusion CNN untuk mendapatkan hasil lokasi pohon dan status kesehatannya. Pengambilan data citra dilakukan di PT Perkebunan Nusantara III (PERSERO) kelapa sawit Cikasungka, Wilayah Distrik Jawa Barat Banten pada pohon kelapa sawit sehat dan pohon kelapa sawit terinfeksi penyakit Ganoderma. Dalam penelitian ini, pemodelan YOLO menggunakan citra RGB mampu mendeteksi banyaknya objek pohon terdeteksi dengan baik (convidence score > 0,75) sebanyak 1426 pohon (703 pohon sehat dan 723 pohon tidak sehat) dengan mAP (mean Average Precision) sebesar 0,911. Pada pemodelan CNN menggunakan metode middle fusion dengan citra multispektral mampu mengklasifikasi kesehatan pohon kelapa sawit lebih baik dibandingkan hanya menggunakan citra RGB maupun citra OCN dengan performa akurasi sebesar 89,72 %.


Monitoring activities is one of the essential things the oil palm maintenance process. Ganoderma disease is one of the fastest spreading diseases of oil palm trees. Currently, monitoring the health of oil palms is still done manually (conventional) by looking directly at each oil palm tree. This process certainly requires a long time and a lot of energy. Detection techniques using leaf sample pieces can allow for biological changes in the leaf and the collection process are too tricky. Detection techniques using image sample captured by drone can be easier, but it does not provide complete information related to plant vegetation. Based on these problems, in this research the detection and classification of oil palm tree health using top view tree image samples. Image data collection using DJI Air 2S drone equipped with a six-band multispectral camera (red, green, blue, orange, cyan, and near infrared) to obtain more complete information related to plant vegetation, so that the process will be much easier and faster. The image data obtained is then performed YOLO modeling and middle level fusion CNN using multispectral images (RGB and OCN) to get the results of tree location and health status. The data was collected at PT Perkebunan Nusantara III (PERSERO) Cikasungka Oil Palm Plantation, West Java District Area Banten on healthy oil palm trees and oil palm trees infected with Ganoderma disease. In this research, YOLO modeling using RGB images was able to detect the number of tree objects detected well (convidence score > 0,75) as many as 1426 trees (703 healthy trees and 723 unhealthy trees) with mAP (mean Average Precision) of 0,911. CNN modeling using the middle fusion method is able to classify the health status of oil palm trees better than only using RGB images and OCN images with an accuracy performance of 89,72%.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fadel Muhammad Ali
"ABSTRACT
Spatial Audio Object Coding SAOC merupakan standar pengkodean audio yang diluncurkan oleh Moving Picture Expert Group MPEG yang dapat melakukan kompresi dan koding audio berbasis objek dan telah diaplikasikan ke banyak bidang telekomunikasi, multimedia, dan hiburan. Salah satu kelemahan dari SAOC adalah kurang dapat diandalkan untuk menjamin kualitas audio yang baik untuk aplikasi pemisahan sumber audio. Hasil beberapa penelitian mengungkapkan bahwa ternyata SAOC memiliki struktur sistem yang mirip dengan algoritma pemisahan sumber suara yang bernama Informed Source Separation, Informed Source Separation ISS, yaitu algoritma sistem yang dapat memprediksi sinyal objek audio masukan untuk memisahkan objek audio dengan kualitas yang baik. Pada penelitian ini, telah dirancang algoritma pemisahan sumber audio di MATLAB yang diadopsi dari persamaan matematis standar SAOC serta ditambahkan filter Wienerpada algoritma tersebut. Algoritma yang diajukan diuji dengan memisahkan beberapa rekaman musik profesional dan kualitas audio rekonstruksinya akan dibandingkan dengan algoritma pemisahan sumber audio lain secara objektif. Hasil pengujian menunjukkan bahwa adanya peningkatan nilai Source-to-Distortion Ratio SDR dalam hasil rekonstruksi pemisahan sinyal dengan algoritma SAOC yang ditambahkan filter Wiener dari algoritma pemisahan sumber suara yang lain sebesar maksimum 10,42232904 dB untuk objek audio bass, 13,95175919 dB untuk drum, 17,73005926 dB untuk vokal, dan 8,266838319 dB untuk instrument lain.

ABSTRACT
Spatial Audio Object Coding SAOC is an audio coding standard launched by MPEG Moving Picture Expert Group MPEG that can perform audio compression and codingand has already applied to many areas of telecommunications, multimedia, and entertainment. One of the disadvantages of SAOC is low reliability in ensuring good audio quality for audio separation. The results of several studies have found that SAOC has the same structure with an audio source separation algorithm, namely Informed Source Separation, which is an algorithm that can predict audio object signals to separate audio objects while ensuring good output audio quality. In this research, an audio source separation algorithmwhich is adopted from SAOC standard mathematical equation andWiener filter addition has been designed. The proposed algorithm is tested by separating several professional music recordings and thereconstructed audios rsquo quality werecomparedwith other audio source separation algorithms. The results show that there is an increase in Source to Distortion Ratio SDR value of reconstructed audio object that is separated with SAOC algorithmwith addition of Wiener filter compared tootheraudiosource separation algorithmsbymaximum of 10.42232904 dB for bass, 13,95175919 dB for drums, 17,73005926 dB for vocals, and 8.266838319 dB for other instruments."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siregar, Ahmad Hasan
"Visual Question Answering (VQA) adalah sebuah tugas pembelajaran mesin di mana diberikan pasangan gambar dan pertanyaan visual dalam bahasa natural, mesin harus memprediksi jawaban yang tepat. Kesulitan dari tugas VQA adalah masukan melibatkan dua media informasi (modality), yaitu gambar dan teks. VQA masih merupakan bidang penelitian yang aktif yang setiap tahunnya berbagai peneliti mempublikasikan model VQA, sebuah respons terhadap VQA challenge, dengan akurasi state-of-the-art tahun 2016 di 66.47% dan akurasi state-of-ther-art terakhir tahun 2019 masih di 75.23%. Diketahui bahwa tidak ada data VQA yang tersedia dalam bahasa Indonesia, data VQA Monas disusun dalam bahasa tersebut dengan fokus Monas sebagai konteksnya yang merupakan objek pariwisata di Jakarta. Metode pembelajaran mesin multimodal diajukan menggunakan CNN sebagai image embedding dan beberapa teknik di bidang linguistik sebagai sentence embedding, yaitu Bag-of-Words, fastText, BERT, dan [Bi-]LSTM. Akurasi sebesar 68.39% dicapai pada model dengan performa terbaik. Studi ablasi juga dilaporkan untuk menganalisis pengaruh dari sebuah lapisan individu terhadap akurasi model secara keseluruhan.

Visual Question Answering (VQA) is a machine learning task, given a pair of image and natural language visual question, machine should predict an accurate answer. Difficulty of VQA lies in the fact that the inputs has two information media (modality), i.e. image and text. VQA is an active research field as each year researchers still publish VQA models, a response to a VQA challenge, with state-of-the-art accuracy in 2016 at 66.47% and the latest state-of-the-art accuracy in 2019 is still at 75.23%. Known that there is no VQA dataset available in Bahasa Indonesia, a VQA Monas dataset is established in that language with focus on Monas as the context, a Jakarta tourism object. A multimodal machine learning method is proposed based on CNN for image embedding and several techniques in linguistic field for sentence embedding, i.e. Bag-of-Words, fastText, BERT, and [Bi-]LSTM. Accuracy of 68.39% is achieved on the best performing model. Ablation studies is also shown to analyze the impact of a layer to model’s accuracy as a whole."
Depok: Fakultas Ilmu Kompter Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>