Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 160998 dokumen yang sesuai dengan query
cover
Achmad Hafidzan Aziz Sahab
"Litium Ferro Phosphate, LiFePO4 (LFP) adalah kandidat yang menjanjikan sebagai bahan katoda baterai lithium ion. Dalam penelitian ini, LFNP/C disintesis dengan metode solid-state dari precursor LFP, Nikel menjadi variasi penambahan konten LFP dalam bentuk doping, yaitu, 6, 7,5 dan 9%, diberi label sampel LFNP/C-Ni6%, LFNP/C-Ni7.5% dan LFNP/C-Ni9%. Karakterisasi dilakukan menggunakan XRD, SEM, EDX, dan MAPPING. Ini dilakukan untuk mengamati efek penambahan Nikel pada struktur, morfologi, dan komposisi sampel. Hasil penelitian menunjukkan bahwa persentase optimum doping Nikel adalah 7.5% karena telah menunjukan hasil yang memuaskan di performa CV,CD, dan EIS dengan ukuran kristal 76.93 nm. Dalam pengujian cyclic voltametry, konduktivitas dan kapasitas sampel meningkat dan disebabkan oleh penambahan Nikel pada LFP.

Lithium Ferro Phosphate, LiFePO4 (LFP) is a promising candidate as a cathode material for lithium ion batteries. In this study, LFNP / C was synthesized by the solid-state method of the LFP precursors, Nickel became a variation of LFP content addition in the form of doping, namely, 6, 7.5 and 9%, labeled LFNP / C-Ni6% sample, LFNP / C-Ni7.5% and LFNP / C-Ni9%. Characterization was done using XRD, SEM, EDX, and MAPPING. This was done to observe the effect of adding Nickel to the structure, morphology, and composition of the sample. The results showed that the optimum percentage of Nickel doping was 7.5% because it had shown satisfactory results in the performance of CV, CD, and EIS with a crystal size of 76.93 nm. In cyclic voltametry testing, the conductivity and capacity of the sample increases and is caused by the addition of Nickel to LFP."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Hafidzan Aziz Sahab
"Litium Ferro Phosphate, LiFePO4 (LFP) adalah kandidat yang menjanjikan sebagai bahan katoda baterai lithium ion. Dalam penelitian ini, LFNP/C disintesis dengan metode solid-state dari precursor LFP, Nikel menjadi variasi penambahan konten LFP dalam bentuk doping, yaitu, 6, 7,5 dan 9%, diberi label sampel LFNP/C-Ni6%, LFNP/C-Ni7.5% dan LFNP/C-Ni9%. Karakterisasi dilakukan menggunakan XRD, SEM, EDX, dan MAPPING. Ini dilakukan untuk mengamati efek penambahan Nikel pada struktur, morfologi, dan komposisi sampel. Hasil penelitian menunjukkan bahwa persentase optimum doping Nikel adalah 7.5% karena telah menunjukan hasil yang memuaskan di performa CV,CD, dan EIS dengan ukuran kristal 76.93 nm. Dalam pengujian cyclic voltametry, konduktivitas dan kapasitas sampel meningkat dan disebabkan oleh penambahan Nikel pada LFP.

Lithium Ferro Phosphate, LiFePO4 (LFP) is a promising candidate as a cathode material for lithium ion batteries. In this study, LFNP / C was synthesized by the solid-state method of the LFP precursors, Nickel became a variation of LFP content addition in the form of doping, namely, 6, 7.5 and 9%, labeled LFNP / C-Ni6% sample, LFNP / C-Ni7.5% and LFNP / C-Ni9%. Characterization was done using XRD, SEM, EDX, and MAPPING. This was done to observe the effect of adding Nickel to the structure, morphology, and composition of the sample. The results showed that the optimum percentage of Nickel doping was 7.5% because it had shown satisfactory results in the performance of CV, CD, and EIS with a crystal size of 76.93 nm. In cyclic voltametry testing, the conductivity and capacity of the sample increases and is caused by the addition of Nickel to LFP."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Christian Joshua Bagaskoro
"Litium-Ferrous-Fosfat, LiFePO4 (LFP) adalah kandidat yang menjanjikan sebagai bahan katoda baterai lithium ion. Dalam penelitian ini, LFP akan disintesis dengan menggunakan Fe2O3 melalui cara solid-state dengan bantuan H3PO4 and LiOH•H2O. Setelah itu, nikel akan ditambahkan ke LFP secara komposit. Penambahan konten glukosa sebagai sumber karbon akan dilakukan dengan tiga variasi, 6%, 8% dan 10%. Karakterisasi dilakukan menggunakan XRD dan SEM untuk mengamati efek variasi konten karbon pada struktur dan morfologi sampel yang dihasilkan.

Lithium-iron-phosphate, LiFePO4 (LFP) is one of promising candidate in development of battery cathode. In this experiment, the LFP will be synthesize using Fe2O3, H3PO4 and LiOH•H2O as precursors through solid-state process. Nickel will be added to the LFP/C to improve the properties of LFP/C. The addition of varies glucose content as a carbon source will be done, 6%, 8% and 10%. Material characterization of the samples will be done by using Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) to observe the effect of glucose content on the material structure and morphology."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Baghaskara Surendra
"Litium Titanat, Li4Ti5O12 (LTO) adalah kandidat yang menjanjikan sebagai bahan anoda baterai lithium ion. Dalam penelitian ini, Li4Ti5O12 akan disintesis dengan menggunakan metode solid-state dengan menggunakan komersial TiO2 dan komersial litium hidroksida (LiOH). Setelah itu, komersial bubuk nikel dipanaskan pada suhu 600oC selama 4 jam untuk mendapatkan NiO sebagai logam oksida transisi. Penambahan NiO ke LTO kepada semua sampel sebesar 3%. Tiga variasi penambahan lama waktu proses sintering sebesar 4 jam, 8 jam, 10 jam, diberi label sampel LTO/NiO 3% (4 jam), LTO/NiO 3% (8 jam) and LTO/NiO 3% (10 jam). Karakterisasi dilakukan menggunakan XRD dan SEM untuk mengamati efek penambahan NiO pada struktur dan morfologi sampel yang dibuat. Hasil karakterisasi sampel menunjukkan bahwa penambahan NiO 3% memiliki konduktivitas lebih baik. Hasil dari tes Electrochemical Impedance Spectroscopy juga menunjukkan LTO/NiO 3% (4 jam) memiliki konduktivitas terbaik dengan nilai resistansi terkecil

Lithium titanate, Li4Ti5O12 (LTO) is a promising candidate as lithium ion battery anode material. In this investigation, Li4Ti5O12 was synthesized with solid-state method by using TiO2 with the help of lithium hydroxide (LiOH) and nickel powder as the precursor materials, resulting in LTO. Commercial nickel powder was heated at 600oC for 4 hours to obtain NiO as transition metal oxide. NiO addition to the LTO for all samples is 3% in weight%. Three variations of different sintering holding time for 4 hours, 8 hours and 10 hours labelled as LTO/NiO 3% (4 hours), LTO/NiO 3% (8 hours) and LTO/NiO 3% (10 hours), respectively. The characterizations were made using XRD and SEM testing. These were performed to observe the effect of NiO addition and different holding time on structure and morphology of the resulting samples. The result showed that the addition of NiO will make the samples have better conductivity. According to Electrochemical Impedance Spectroscopy, LTO/NiO 3% (4 hours) also has the best conductivity with the lowest resistivity."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rakha Aditama Anjani
"Lithium Ferro Phosphate (LiFePO4) adalah kandidat yang menjanjikan sebagai bahan sumber energi elektrik yang ramah lingkungan. Penambahan Ni komposit dalam baterai berbasis Li-ion dapat meningkatan performa dari baterai LiFePO4. Dalam penelitian ini, LiFePO4 akan disintesis dengan menggunakan Fe2O3, H3PO4, dan LiOH melalui cara solid-state dan dilakukan perlakuan panas yaitu sintering. Setelah itu, prekursor dikompositkan dengan tiga variasi penambahan konten Nikel dalam % berat, yaitu 5, 7 dan 10% melalui metode solid-state dengan ball mill diberi label LFP/5-Ni, LFP/7.5-Ni dan LFP/10-Ni. Karakterisasi dilakukan menggunakan XRD dan SEM untuk mengamati efek penambahan Nikel pada struktur dan morfologi sampel yang dihasilkan.

Lithium Ferro Phosphate (LiFePO4) is a promising candidate as an environmental friendly electric energy sources. The addition of Nickel composite in Lithium-ion battery based can enhance the performance of LiFePO4 batteries. In this experiment, LiFePO4 was synthesized using Fe2O3, H3PO4, and LiOH by solid-state method and heat treated with sintering process. After that, the precursor were composited with the various Nickel composition, in % wt, 5, 7.5 and 10% with solid-state method by using ball mill and labeled as LFP/5-Ni, LFP/7.5-Ni and LFP/10-Ni respectively. The characterizations were made using XRD and SEM testing. These were performed to observe the effect of Nickel addition on structure and morphology of the resulting samples."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mochamad Febby Fitratama
"

Baterai Lithium-Ion merupakan salah satu media yang efektif untuk meyimpan energi. Baterai ini pun terus diteliti lebih lanjut untuk meningkatkan efisiensi dan kekuatan baterai. Pada saat ini. Anoda LTO merupakan material yang sedang dikembangkan sebagai pengganti anoda grafit. LTO atau litium titanat memiliki beberapa kelebihan seperti sifat zero strain yaitu tidak terjadi perubahan volume atau perubahan volume yang sangat rendah saat charge dan discharge. Sintesis LTO dilakukan dengan menggunakan metode solid state dengan proses mekanokimia dan sintering pada suhu 850o C selama 6 jam. Kadar Zn yang ditambahkan sebesar 3 wt%, 7wt% dan 11 wt%. dan grafit sebesar 3 wt%. Penambahan doping Zn pada LTO meningkatkan konduktifitas elektronik dan kapasitas spesifik dari baterai. Komposit LTO-Grafit/Zn dilakukan karakterisasi menggunakan XRD dan SEM-EDS. Uji performa baterai dilakukan menggunakan pengujian EIS, CV dan CD. Hasil pengujian EIS didapatkan nilai konduktifitas tertinggi pada komposit LTO-grafit/Zn 3%. Kapasitas spesifik tertinggi hasil uji CV didapatkan LTO-grafit/Zn 11% sebesar 154.3 mAH/g. Kapasitas chage discharge tertinggi didapatkan LTO-grafit/Zn 11% pada current rates 0.5 C sampai 15C


Lithium-Ion batteries are one of the effective media for storing energy. This battery continues to be investigated further to increase the efficiency and power of the battery. At this time. LTO anode is a material that is being developed as a substitute for graphite anode. LTO or lithium titanate has several advantages, such as the zero strain characteristic, that is, there is no change in volume or volume changes that are very low during charge and discharge. The LTO synthesis was carried out using a solid state method with a mechanochemical process and sintering at a temperature of 850o C for 6 hours. Zn content added is 3 wt%, 7wt% and 11 wt%. and graphite at 3 wt%. Addition of Zn doping to LTO increases the electronic conductivity and specific capacity of the battery. LTO-Graphite/Zn composites were characterized using XRD and SEM-EDS. Battery performance test is carried out using EIS, CV and CD testing. The EIS test results obtained the highest conductivity value on 3% LTO-graphite / Zn composites. The highest specific capacity CV test results obtained LTO-graphite/Zn 11% of 154.3 mAH / g. The highest chage discharge capacity is obtained by LTO-graphite/Zn 11% in the current rates of 0.5 C to 15C.

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zahwa Denia Afriandi
"Sintesis menggunakan kombinasi metode solution combustion synthesis (SCS) dan solid state telah dilakukan dan diuji coba untuk mendapatkan katode baterai ion litium LiNi0,8Mn0,1Co0,1- xMoxO2/C dengan prekursor LiNO3, Ni(NO)3.6H2O, Mn(NO3)2.4H2O, Co(NO3)2.6H2O, (NH4)6Mo7O24, dan CH4N2O sebagai bahan bakar dengan dilarutkan dengan aquades dan diaduk menggunakan hot plate magnetic stirrer pada temperatur ruangan. Larutan dipanaskan pada temperature 100oC selama 1 jam hingga 200oC selama 2 jam hingga terbentuk pasta cokelat. Pemanasan lanjutan dilakukan pada muffle furnace pada temperature 500oC selama 2 jam, dan kalsinasi pada temperature 900oC selama 3 jam. Super-p carbon black ditambahkan sebagai adisi sebanyak 0,5 wt% dan dicampurkan dengan serbuk NMC 811 menggunakan agathe mortar selama 1 jam dan kalsinasi pada 300oC selama 3 jam. Serbuk berwarna hitam hasil sintesis dianalisis mikroskop elektron (SEM) untuk melihat morfologi, Hasil SEM menunjukkan sampel hasil sintesis memiliki ukuran dengan kisaran 0,1-1,55 µm. uJI difraksi sinar-X (XRD) untuk melihat kristalinitas dan menunjukkan bahwa terjadi pergeseran puncak 2θ ke arah kanan karena pengaruh oksida logam yang terbentuk. Analisis elektrokimia dilakukan dengan impedansi elektrokimia (EIS) untuk melihat hambatan yang dihasilkan dan berpengaruh terhadap konduktivitas listrik dari katode. Hasil karakterisasi memperlihatkan bahwa penambahan Mo dengan jumlah tertentu dan karbon yang merata dapat meningkatkan konduktivitas listrik dari katode NMC 811. Uji Cyclic Voltamettry (CV) menunjukkan puncak oksidasi reduksi yang lebih dari 1 dan mengindikasikan pengotor.

Synthesis using a combination of solution combustion synthesis (SCS) and solid state methods has been carried out and tested to obtain a lithium ion battery cathode LiNi0,8Mn0,1Co0,1-xMoxO2/C with precursors LiNO3, Ni(NO)3.6H2O, Mn(NO3)2.4H2O, Co(NO3)2.6H2O, (NH4)6Mo7O24, and CH4N2O as fuel by being dissolved in distilled water and stirred using a hot plate magnetic stirrer at room temperature. The solution was heated at a temperature of 100 oC for 1 hour to 200oC for 2 hours to form a dark brown paste. Further heating was carried out in a muffle furnace at a temperature of 500oC for 2 hours, and calcination at a temperature of 900oC for 3 hours. Super-p carbon black was added as addition as much as 0.5 wt% and mixed with NMC 811 powder using agathe mortar for 1 hour and calcined at 300oC for 3 hours. The synthesized black powder was analyzed by electron microscopy (SEM) to see morphology. SEM results showed that the synthesized sample had a size in the range of 0.1-1.55 m. X-ray diffraction test (XRD) to see the crystallinity and showed that there was a shift of the 2θ peak to the right due to the influence of the metal oxide formed. Electrochemical analysis was carried out with electrochemical impedance (EIS) to see the resulting resistance and its effect on the electrical conductivity of the cathode. The characterization results showed that the addition of a certain amount of Mo and an even distribution of carbon could increase the electrical conductivity of the NMC 811 cathode. Cyclic Voltamettry (CV) test showed an oxidation-reduction peak that was more than 1 and indicated an impurity."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Panjaitan, Abyan Abdillah Saoloan
"Optimalisasi kinerja untuk anoda baterai lithium-ion (LIBs) dapat dilakukan dengan menambahkan ZnO melalui reaksi sol-gel solid-state. Dalam penelitian ini, Li4Ti5O12 (LTO) yang digunakan disintesis melalui proses sol-gel solid-state dan ditambahkan dengan ZnO-nanorods yang diperoleh dari proses sintesis ZnO- nanorods setelah sintesis LTO selesai. LTO-ZnO yang diperoleh ditandai untuk menentukan fase utama dan komposisi kimia oleh XRD dan SEM-EDS masing-masing. Kinerja elektrokimia dari LTO-ZnO diuji oleh EIS, CV, dan CD. Karakterisasi ZnO-nanorods dengan hasil SEM-EDS menunjukkan bahwa ZnO di dalam LTO terdispersi secara homogen.
Karakterisasi menggunakan XRD mengungkapkan bahwa ZnO berhasil memasuki LTO dengan variasi jumlah 4, 7, dan 10% berat ZnO. Uji konduktivitas listrik menunjukkan peningkatan pada penambahan jumlah ZnO optimum pada 4% berat, meskipun hasil BET menunjukkan pada jumlah optimum luas permukaan dengan 75.545 m2/g. Hasil kinerja elektrokimia menunjukkan kinerja yang optimal dalam ZnO pada 4% berat karena kemampuannya untuk menahan tes EIS pada 20C dibandingkan dengan 7% berat dan 10% berat. Juga kapasitas 4% berat yang ditambahkan adalah 110,2 mAh/g dibandingkan dengan 7% berat dengan 109,1 mAh/g dan 10% berat dengan 96,7 mAh/g.

Performance optimization for anode of lithium-ion batteries (LIBs) can be conducted by adding ZnO through sol-gel solid-state reaction. In this research, the Li4Ti5O12 (LTO) used was synthesized through sol-gel solid-state process and added with ZnO-nanorods obtained ZnO synthesis after LTO synthesis done. LTO-ZnO obtained was characterized to determine the main phase and chemical composition by XRD and SEM-EDS respectively. Electrochemical performance of LTO-ZnO was tested by EIS, CV, and CD. ZnO-nanorods characterization with SEM-EDS results shows that the ZnO inside the LTO dispersed homogenously.
Characterization using XRD revealed that the ZnO successfully enter the LTO with the variation of amount of 4, 7, and 10 wt % of ZnO. Electric conductivity test shows improvement at an optimum addition amount of ZnO at 4 wt%, although BET result shows at the optimum amount of surface area with 75.545 m 2 /g. Electrochemical performance result shows optimum performance in ZnO at 4 wt% for its ability to withstand EIS test at 20C compared to 7 wt% and 10 wt%. Also, capacity of 4 wt% added is 110,2mAh/g compared to 7 wt% with 109.1 mAh/g and 10 wt% with 96,7 mAh/g.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Netta Claudia
"Salah satu anoda yang dewasa ini banyak dikembangkan untuk meningkatkan kapasitas dan performa baterai ion litium adalah anoda litium titanat (Li4Ti5O12). Anoda litium titanat memiliki kelebihan dalam aspek kestabilan termal dan karakteristik zero strain. Kekurangan dari material ini, yaitu konduktivitas listrik dan kapasitas yang rendah. Pada penelitian ini akan diobservasi perubahan karakteristik dari material anoda litium titanat yang dibuat menjadi komposit dengan grafit dan doping Fe dengan variasi konsentrasi 0,1, dan 5 mol%. Sintesis dilakukan dengan metode solid state dan hasil sintesis dikarakterisasi menggunakan XRD dan SEM, kemudian difabrikasi menjadi koin sel untuk dilakukan pengujian performa dengan EIS, CV, dan CD.

One of many anodes currently being developed to increase the capacity and performance of lithium ion batteries is lithium titanate anode (Li4Ti5O12). The lithium titanate anode has advantages in its thermal stability and zero strain characteristic. The main disadvantages of this material are the low electrical conductivity and capacity. This research will be observing the characteristic changes of the lithium titanate material made into composites with graphite (5 wt%) and iron (Fe) doping with concentrations of 0,1, and 5 mol%. The synthesis was carried out by solid state method and the synthesized material was characterized using XRD and SEM, then fabricated into cell coins for performance testing with EIS, CV, and CD."
Depok: Fakultas Teknik Universitas Indonesia , 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pierre Wolter Winowatan
"Konsumsi bahan bakar fosil telah dianggap sebagai salah satu kebutuhan utama kita. Penggunaan bahan bakar fosil bisa merusak lingkungan dengan menghasilkan polusi sebagai produk dari pembakaran bahan bakar fosil. Ada banyak penemuan mengenai pengembangan penyimpanan energi seperti baterai. Penggunaan baterai lithium-ion dapat menjanjikan untuk aplikasi yang membutuhkan daya tinggi dan salah satu kandidat untuk mengalihkan penggunaan bahan bakar fosil. Lithium titanat adalah bahan yang menjanjikan untuk digunakan sebagai bahan anoda. Penambahan silikon yang memiliki kapasitas teoritis 4200 mAh g-1 telah membuat lithium titanat dan silikon untuk saling melengkapi dan bersinergi satu sama lain. Lithium titanate disintesis menggunakan metode sol-gel dan metode solid state. Peracikan dengan elemen silikon dalam slurry dapat mencegah perubahan fase dari silikon menjadi SiO2. Kadar silikon dibagi menjadi tiga komposisi 10 , 20 dan 30 dengan nomenklatur LTO-Si10 sr, LTO-Si20 sr dan LTO-Si30 sr untuk setiap sampel memiliki konten yang berbeda dari silikon masing-masing. Kapasitas tertinggi terkait dengan tingkat C rate yang berbeda adalah LTO-Si20 sr dan Diikuti oleh LTO-Si10 sr yang dimana kapasitas saat C rate berbeda LTO-Si30 memiliki kapasitas yang terbilang buruk.

The consumption of fossil fuel has been considered as one of our main necessity. The use of fossil fuel could damage our environment with the produce of pollution as the combustion product of fossil fuel. There are many inventions regarding the development of energy storage such as battery. The use of lithium ion has been promising for high power application and one of the candidates to divert the usage of fossil fuel. Lithium titanate is a promising material to be used as anode material. The addition of silicon which has theoretical capacity of 4200 mAh g 1 has made lithium titanate and silicon to compliment and synergize with one another. The lithium titanate was synthesized using sol gel and solid state methods. The compounding with silicon element was in the slurry making to prevent any phase changes of silicon to be SiO2. The silicon content was divided into three compositions of 10, 20 and 30 with the nomenclature of LTO Si10 sr, LTO Si20 sr and LTO Si30 sr for each sample having different content of silicon respectively. The highest capacity associated with different C rate is LTO Si20 sr and followed by LTO Si10 sr with LTO Si30 sr having poor overall capacity."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69280
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>