Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 23460 dokumen yang sesuai dengan query
cover
Ajeng Maharani Putri
"Stroke adalah tanda-tanda klinis gangguan fungsi otak yang penyebabnya berasal dari pembuluh darah. Hal tersebut dapat terjadi karena bagian otak tidak menerima aliran darah yang dibutuhkan karena suatu alasan, baik suplai darah ke bagian otak terganggu, atau karena pembuluh darah di otak pecah dan darah menyebar ke daerah sekitarnya. Sejumlah tes klinis telah dikembangkan selama bertahun-tahun untuk membantu menentukan keberadaan stroke. Salah satunya dengan brain imaging, yaitu menggunakan CT (Computed Tomography) scan dan MRI (Magnetic Resonance Imaging). Pemeriksaan ini dilakukan oleh dokter guna melakukan diagnosa pasien terhadap jenis stroke yang diderita. Dua jenis utama dari penyakit stroke ini ada dua, yaitu stroke iskemik dan stroke hemoragik. Sebagai tes pencitraan untuk mendiagnosa stroke, CT scan dan MRI memiliki kelebihan dan kekurangannya masing-masing. Kemudian selain tes pecintraan, terhadap pasien stroke juga dilakukan pemeriksaan laboratorium yang berisi fitur-fitur dari pemeriksaan laboratorium tersebut. Oleh karena itu, dalam penelitian akan dilakukan pengklasifikasian dengan pendekatan menggunakan machine learning menggunakan data pemeriksaan laboratorium pasien stroke. Metode klasifikasi yang digunakan adalah Grey Wolf Optimization-Support Vector Machine (GWO-SVM), dimana Grey Wolf Optimization (GWO) digunakan sebagai optimisasi parameter yang akan digunakan pada Support Vector Machine (SVM). Untuk mengukur performa GWO-SVM, hasil akurasi, spesifisitas, dan sensitivitas dari klasifikasi dengan GWO-SVM akan dibandingkan dengan SVM. Data stroke yang digunakan dalam penelitian ini diperoleh dari Departemen Medik Penyakit Syaraf, Rumah Sakit Umum Pusat Nasional (RSUPN) Dr. Cipto Mangunkusumo. Hasil menujukan bahwa klasifikasi dengan menggunakan Grey Wolf Optimization-Support Vector Machine (GWO-SVM) menghasilkan performa yang lebih baik jika dibandingkan dengan Support Vector Machine (SVM) tanpa optimisasi parameter.

Stroke is clinical signs of impaired brain function whose causes originate from vascular. It occurs when part of the brain does not receive the needed blood flow for a reason, either the blood supply to the brain is disrupted, or because a blood vessel in the brain burst and blood spreads to the surrounding area. Several clinical tests have been developed over the years to help determine the presence of a stroke. One of them is by brain imaging, which uses CT (Computed Tomography) scan and MRI (Magnetic Resonance Imaging). This examination is carried out by the doctor to diagnose the patient for the type of stroke suffered. There are two main types of stroke, namely ischemic stroke and hemorrhagic stroke. As an imaging test to diagnose stroke, CT scan and MRI have their respective advantages and disadvantages. Then, in addition to the imaging test, the stroke patient has also carried out a laboratory examination that contains the features of the laboratory examination. Therefore, in this research a classification approach using machine learning will be carried out using laboratory examination data of stroke patients. The classification method that will be used is Grey Wolf Optimization-Support Vector Machine (GWO-SVM), where Grey Wolf Optimization (GWO) is used as an optimization parameter to be used in Support Vector Machine (SVM). To measure the performance of GWO-SVM, the results of accuracy, specificity, and sensitivity of the classification with GWO-SVM will be compared with SVM. Stroke data used in this study were obtained from the Department of Neurology, National Center General Hospital Dr. Cipto Mangunkusumo. The results showed that the classification using GWO-SVM produces better performance when compared to SVM without parameter optimization.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adhitya Dwi Nugraha
"Ledakan batu merupakan kecelakaan destruktif yang cukup sering terjadi pada tambang bawah tanah. Seiring dengan berkembangnya teknologi, machine learning hadir sebagai alternatif solusi yang dapat dimanfaatkan dalam langkah preventif atas kasus ledakan batu. Penelitian ini menggunakan GWO-SVM dan XGBoost sebagai model machine learning dalam klasifikasi ledakan batu dan intensitasnya pada tambang bawah tanah. Grey Wolf Optimization (GWO) digunakan sebagai optimizer dari parameter SVM. Intensitas ledakan batu dibedakan atas tidak ada ledakan batu, lemah, sedang dan kuat. Dalam implementasi model, digunakan 467 kasus ledakan batu yang dikumpulkan dari berbagai sumber. Fitur yang digunakan pada penelitian ini meliputi tegangan maksimal tangensial, kekuatan tekan uniaksial, kekuatan tarik uniaksial, koefisien tegangan, koefisien kerapuhan batuan, dan indeks regangan elastis. Sebelum implementasi model dilakukan data preprocessing yang meliputi imputasi missing values, menghapus outlier, normalisasi fitur dan resampling data. Kinerja model dievaluasi berdasarkan nilai metrik accuracy, precision, recall, dan f1-score dengan memerhatikan running time dan proporsi data training berkisar dari 50% hingga 90%. Hasil penelitian menunjukkan bahwa GWO-SVM mengungguli XGBoost baik dalam klasifikasi ledakan batu dengan accuracy 98.0392%, precision 97.8495%, recall 98.2609%, dan f1-score 98.0161% serta klasifikasi intensitas ledakannya dengan accuracy 75.8242%, precision 75.1473%, recall 75.3115%, dan f1-score 75.2150%.

Rockburst is a destructive accident that frequently occurs in underground mines. With the advancement of technology, machine learning has emerged as an alternative solution that can be utilized to measures against rockbursts. This research employs GWO-SVM and XGBoost as machine learning models for the classification of rockburst and its intensity in underground mines. Grey Wolf Optimization (GWO) is used as an optimizer for SVM parameters. The intensity of a rockburst is classified into four categories: no rockburst, weak, moderate, and strong. The implementation of the model utilizes 476 cases of rockburst collected from various sources. The features used in this study include maximum tangential stress, uniaxial compressive strength, uniaxial tensile strength, stress coefficient, rock brittleness coefficient, and elastic strain index. Before implementing the model, data preprocessing is conducted, which includes imputing missing values, removing outliers, feature normalization, and data resampling. The performance of the model is evaluated based on metrics such as accuracy, precision, recall, and f1-score with various training data proportions ranging from 50% to 90%. The research results indicate that GWO-SVM outperforms XGBoost in both the classification of rockburst with 98.0392% accuracy, 97.8495% precision, 98.2609% recall, and 98.0161% f1-score as well as intensity with 75.8242% accuracy, 75.1473% precision, 75.3115% recall, and 75.2150% f1-score.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Qisthina Syifa Setiawan
"Serviks atau leher rahim merupakan salah satu bagian dari sistem alat reproduksi wanita. Salah satu penyakit yang dapat menyerang serviks adalah kanker. Di dunia, kanker serviks adalah salah satu kanker yang menyebabkan kematian dan keganasan yang paling umum terjadi pada wanita. Kanker serviks merupakan penyakit yang memiliki peluang sembuh cukup besar jika terdeteksi sejak dini. Seiring dengan perkembangan teknologi dalam berbagai bidang, termasuk dalam bidang medis, maka pendeteksian dini kanker serviks dapat dilakukan dengan klasifikasi menggunakan bantuan dari metode klasifikasi machine learning. Pada penelitian ini, metode klasifikasi machine learning yang digunakan untuk mengklasifikasikan kanker serviks adalah metode Naïve Bayes (NB) dan Support Vector Machine (SVM) dengan seleksi fitur Grey Wolf Optimization (GWO). Seleksi fitur GWO merupakan seleksi fitur metode wrapper yang digunakan pada penelitian ini untuk mengeliminasi fitur-fitur tidak relevan dalam mengklasifikasikan data kanker serviks, agar NB dan SVM dapat mengklasifikasi dengan lebih akurat. Sehingga, metode ini disebut sebagai metode NB–GWO dan SVM–GWO. Data kanker serviks yang digunakan pada penelitian ini merupakan data numerik dari hasil citra MRI yang diperoleh dari Departemen Radiologi RSUPN Dr. Cipto Mangunkusumo. Berdasarkan hasil penelitian dengan seleksi fitur GWO, metode NB–GWO menghasilkan rata-rata akurasi, recall, dan f1-score tertinggi masing-masing sebesar 96,30%, 96,08%, 97,93%, dan 96,30%, sedangkan metode SVM–GWO menghasilkan rata-rata akurasi dan f1-score tertinggi masing-masing sebesar 95,37% dan 95,36% dengan kernel Linier, rata- rata presisi tertinggi sebesar 97,56% dengan kernel Polinomial, serta rata-rata recall tertinggi sebesar 99,75% dengan kernel RBF. Kemudian, berdasarkan hasil klasifikasi tanpa seleksi fitur GWO, metode NB menghasilkan rata-rata akurasi, presisi, recall, dan f1-score tertinggi masing-masing sebesar 91,98%, 95,21%, 92,90%, 91,95%, sedangkan metode SVM menghasilkan rata-rata akurasi, recall, dan f1-score tertinggi sebesar 92,13%, 99,24%, dan 92,19% dengan kernel RBF, serta rata-rata presisi tertinggi sebesar 93,59% dengan kernel Polinomial. Dengan demikian, metode seleksi fitur GWO dapat meningkatkan kinerja dari NB dan SVM dalam mengklasifikasikan data kanker serviks. Selanjutnya, berdasarkan hasil perbandingan kinerja dari NB–GWO dan SVM–GWO, maka secara keseluruhan metode NB–GWO menghasilkan kinerja yang lebih baik dalam mengklasifikasikan data kanker serviks dibandingkan dengan SVM–GWO.

Cervix is one part of the female reproductive system. One of the diseases that can attack the cervix is cancer. In the world, cervical cancer is one of the cancers that cause death and malignancy that is most common in women. Cervical cancer is a disease that has a considerable chance of recovery if detected early. Along with the development of technology in various fields, including in the medical field, the early detection of cervical cancer can be done by classification using the help of machine learning classification methods. In this study, the machine learning classification method used to classify cervical cancer was Naïve Bayes (NB) and Support Vector Machine (SVM) with Grey Wolf Optimization (GWO) feature selection. GWO feature selection is a wrapper feature selection method used in this study to eliminate irrelevant features in classifying cervical cancer data, so that NB and SVM can classify more accurately. Thus, this method is referred to as the NB–GWO and SVM–GWO. Cervical cancer data used in this study is numerical data from MRI obtained from the Department of Radiology RSUPN Dr. Cipto Mangunkusumo. Based on the results of the study with GWO feature selection, NB– GWO produced the highest average accuracy, recall, and f1-score of 96.30%, 96.08%, 97.93%, and 96.30% respectively, while SVM–GWO produced the highest average accuracy and f1-score of 95.37% and 95.36% respectively with Linear kernel, the highest precision average of 97.56% with Polynomial kernel, and the highest recall average of 99.75% with RBF kernel. Then, based on the results of classification without GWO feature selection, the NB produced the highest average accuracy, precision, recall, and f1- score of 91.98%, 95.21%, 92.90%, 91.95% respectively, while SVM produced the highest average accuracy, recall, and f1-score of 92.13%, 99.24%, and 92.19% with RBF kernel, and the highest average precision of 93.59% with Polynomial kernel. Thus, GWO feature selection method was able to improve the performance of NB and SVM in classifying cervical cancer. Furthermore, based on the results of performance comparison from NB– GWO and SVM–GWO, the overall method of NB–GWO resulted in better performance in classifying cervical cancer data compared to SVM–GWO."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hamidah
"

Klasifikasi stroke merupakan masalah yang harus diselesaikan dengan cepat dan tepat untuk menentukan pengobatan awal yang tepat bagi penderita stroke. Jika pengobatan awal yang tepat terlambat untuk dilakukan, maka hal ini dapat menyebabkan kecacatan bahkan kematian. Penelitian ini menyelesaikan masalah klasifikasi stroke menggunakan pendekatan machine learning dengan metode Minimally Spanned Support Vector Machine (MSSVM). Metode ini merupakan pengembangan dari metode Support Vector Machine (SVM) dimana metode ini mengaplikasikan algoritma Minimum Spanning Tree (MST) untuk mereduksi jumlah support vector pada SVM. Hal ini bertujuan untuk mempercepat waktu komputasi yang dibutuhkan oleh SVM dan meningkatkan kinerja SVM. Hal ini dikarenakan waktu komputasi yang dibutuhkan oleh SVM bergantung pada jumlah support vector dimana jumlah support vector yang semakin banyak memberikan waktu komputasi yang dibutuhkan semakin lama. Selain itu, pereduksian jumlah support vector dapat memberikan kesalahan generalisasi yang lebih kecil sehingga memberikan kinerja yang lebih baik. Pada penelitian ini, kinerja dari MSSVM dievaluasi dengan membandingkan beberapa parameter dengan kinerja SVM. Hasil yang diperoleh adalah bahwa MSSVM berhasil mereduksi jumlah support vector pada SVM sedemikian sehingga mempercepat waktu komputasi yang dibutuhkan oleh SVM dalam mengklasifikasikan data stroke tanpa mengurangi kinerja dari SVM.  


Stroke classification is a problem that must be solved quickly and precisely to determine the right initial treatment for stroke sufferers. If the right initial treatment is too late to do so, this can cause disability and even death. This study solves the problem of stroke classification using a machine learning approach with Minimally Spanned Support Vector Machine (MSSVM) method. This method is a development of Support Vector Machine (SVM) method where this method applies the Minimum Spanning Tree (MST) algorithm to reduce the number of support vectors in SVM. This aims to speed up the computation time required by SVM and improve the performance of SVM. This is because the computation time required by SVM depends on the number of support vectors where the more support vectors give the required computation time longer. In addition, reducing the number of support vectors can provide smaller generalization errors, thus providing better performance. In this study, the performance of MSSVM was evaluated by comparing several parameters with the performance of SVM. The results obtained are that MSSVM has succeeded in reducing the number of support vectors in SVM thus accelerating the computational time needed by SVM in classifying stroke data without reducing SVM performance.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Puspita Sari
"Coronavirus yaitu kelompok virus yang menginfeksi sistem pernapasan yang dapat menyebabkan infeksi pernapasan ringan maupun berat. Salah satu virus yang termasuk ke dalam coronavirus adalah SARS-CoV-2. Penyakit yang disebabkan oleh virus SARS-CoV-2 disebut COVID-19. COVID-19 pertama kali terdeteksi pada tahun 2019 di Wuhan, China. Penyebaran COVID-19 sangat cepat dengan tingkat kematian yang tinggi terus terjadi di berbagai negara sehingga penyakit ini berstatus pandemi. Skripsi ini menyelesaikan masalah klasifikasi virus SARS-CoV-2 dengan menggunakan data sekuens protein coronavirus. Seleksi fitur pada data sekuens protein coronavirus menggunakan metode seleksi fitur Random Forest-Recurisive Feature Elimination (RF-RFE). Setelah dilakukan seleksi fitur, dilakukan klasifikasi menggunakan pendekatan machine learning dengan metode Support Vector Machine (SVM) dan Particle Swarm Optimization-Support Vector Machine (PSO-SVM). Hasil terbaik performa rata-rata akurasi, spesifisitas, dan sensitivitas untuk metode SVM berturut-turut adalah 93,43%, 98,06%, dan 88,84% pada data pelatihan sebesar 80%. Untuk metode PSO-SVM, hasil terbaik rata-rata akurasi dan spesifisitas adalah 98,48% dan 98,57% pada data pelatihan sebesar 80%, sedangkan hasil terbaik rata-rata sensitivitas adalah 98,96% pada data pelatihan sebesar 90%. Oleh karena itu, pada penelitian ini dapat disimpulkan bahwa metode PSO-SVM menghasilkan performa yang lebih baik dibandingkan dengan metode SVM.

Coronaviruses are a group of viruses that infect the respiratory system that can cause mild or severe respiratory infections. One of the viruses that belongs to the coronavirus is SARS-CoV-2. The disease caused by the SARS-CoV-2 virus is called COVID-19. COVID-19 was first detected in 2019 in Wuhan, China. The spread of COVID-19 is very fast with a high mortality rate that continues to occur in various countries so that this disease has a pandemic status. This thesis solves the problem of classifying the SARS-CoV-2 virus using coronavirus protein sequence data. Feature selection on coronavirus protein sequence data used the Random Forest-Recursive Feature Elimination (RF-RFE) feature selection method. After feature selection, classification is carried out using a machine learning approach with the Support Vector Machine (SVM) and Particle Swarm Optimization-Support Vector Machine (PSO-SVM) methods. The best results of the average performance of accuracy, specificity, and sensitivity for the SVM method are 93.43%, 98.06%, and 88.84%, respectively, for training data of 80%. For the PSO-SVM method, the best results on average accuracy and specificity are 98.48% and 98.57% on training data of 80%, while the best results on average sensitivity are 98.96% on training data of 90%. Therefore, in this study it can be concluded that the PSO-SVM method produces better performance than the SVM method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dea Aulia Utami
"ABSTRAK
Infark serebral merupakan salah satu penyebab terjadinya stroke iskemik di otak. Dalam mendiagnosis adanya infark serebral di otak, digunakan pembelajaran mesin karena tidak cukup hanya menggunakan CT scan untuk mendiagnosisnya. Support vector machine (SVM) merupakan salah satu metode pembelajaran mesin yang dikenal dengan nilai akurasinya yang tinggi. Namun SVM dapat memberikan hasil yang kurang optimal jika data yang digunakan tidak seimbang. Jika data yang digunakan tidak seimbang, model yang dihasilkan akan bias. Oleh karena itu, penelitian ini menggunakan metode Synthetic Minority Oversampling Technique (SMOTE) dalam menangani data infark serebral yang tidak seimbang sehingga menjadi data yang seimbang. SMOTE mensintesis sampel data baru dari kelas minoritas untuk menyeimbangkan kumpulan data. Metode ini bekerja dengan mencari nilai tetangga terdekat untuk setiap data di kelas minoritas. Data yang telah diimbangi dengan metode SMOTE akan diklasifikasikan menggunakan SVM. Hasil klasifikasi SVM pada data infark serebral imbalanced dan data infark serebral berimbang akan dibandingkan berdasarkan nilai akurasi, recall, spesifisitas, presisi dan f1-score. Data infark serebral diperoleh dari Bagian Radiologi RSUD Dr. Cipto Mangunkusumo.
ABSTRACT
Cerebral infarction is one of the causes of ischemic stroke in the brain. In diagnosing cerebral infarction in the brain, machine learning is used because it is not enough to just use a CT scan to diagnose it. Support vector machine (SVM) is a machine learning method known for its high accuracy value. However, SVM can give less than optimal results if the data used is not balanced. If the data used is not balanced, the resulting model will be biased. Therefore, this study uses the Synthetic Minority Oversampling Technique (SMOTE) method in handling unbalanced cerebral infarction data so that it becomes a balanced data. SMOTE synthesizes a new data sample from a minority class to balance the data set. This method works by finding the value of the nearest neighbor for each data in the minority class. Data that has been balanced with the SMOTE method will be classified using SVM. The SVM classification results on imbalanced cerebral infarction data and balanced cerebral infarction data will be compared based on the accuracy, recall, specificity, precision and f1-score values. Cerebral infarction data were obtained from the Radiology Department of RSUD Dr. Cipto Mangunkusumo."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arfiani
"Stroke merupakan penyakit yang menempati urutan ketiga sebagai penyebab kematian terbesar di dunia setelah penyakit jantung dan kanker. Stroke juga menduduki posisi pertama sebagai penyakit yang dapat menyebabkan kecacatan, baik ringan maupun berat. Salah satu jenis stroke yang umum terjadi adalah infark serebri. Di Indonesia, jumlah penderita stroke, terutama infark serebri, semakin meningkat setiap tahunnya. Tidak hanya terjadi pada seseorang yang berusia lanjut, namun infark serebri juga dapat terjadi pada seseorang yang masih muda dan produktif. Oleh sebab itu, pendeteksian dini terhadap infark serebri sangatlah penting. Berbagai metode medis selalu digunakan untuk mengklasifikasi infark serebri, namun dalam penelitian ini, akan digunakan metode machine learning. Metode yang diusulkan yaitu Multiple Support Vector Machine dengan Seleksi Fitur Information Gain (MSVM-IG). MSVM-IG merupakan metode baru yang menggunakan support vector sebagai data baru untuk selanjutnya dilakukan seleksi fitur dan evaluasi performa. Data yang digunakan berupa data numerik hasil CT Scan yang diperoleh dari RSUPN dr. Cipto Mangunkusumo, Jakarta. Berdasarkan hasil uji coba, metode yang diusulkan mampu mencapai nilai akurasi sebesar 88,71%. Sehingga, metode MSVM-IG ini dapat menjadi salah satu alternatif untuk membantu praktisi medis dalam mengklasifikasi infark serebri.

Stroke is a disease that ranks third as the biggest cause of death in the world after heart disease and cancer. Stroke also occupies the first position as a disease that can cause disability, both mild and severe. One type of stroke that is common is cerebral infarction. In Indonesia, the number of stroke patients, especially cerebral infarction, is increasing every year. Not only occurs in someone who is elderly, but cerebral infarction can also occur in someone who is young and productive. Therefore, early detection of cerebral infarction is very important. Various medical methods are always used to classify cerebral infarction, but in this study, machine learning methods would be used. The proposed method is Multiple Support Vector Machine with Information Gain Feature Selection (MSVM-IG). MSVM-IG is a new method that uses support vector as a new dataset, then feature selection step and performance evaluation are performed. The data used in the form of numerical data results of CT scan obtained from RSUPN Dr. Cipto Mangunkusumo, Jakarta. Based on the results, the proposed method is able to achieve an accuracy value of 88.71%. Thus, the MSVM-IG could be an alternative to assist medical practitioners in classifying cerebral infarction."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ismail
"

Kanker adalah penyakit yang disebabkan akibat pertumbuhan (pembelahan) tidak normal dari sel jaringan tubuh. Kanker dapat menyebar ke jaringan lain yang terdekatnya. Menurut World Health Organization (WHO), tercatat pada tahun 2018 ada sebanyak 9,6 juta jiwa yang meninggal pada tahun 2018. Biasanya untuk dapat mengetahui sesorang terjangkit kanker atau tidak, ahli medis akan melakukan biopsi apabila disarankan oleh dokter. Namun, sekarang terknologi semakin berkembang, para saintis menggunakan metode komputasi dalam pendekatan pengolahan citra untuk meningkatkan penilaian histopatologis. Penelitian – penelitian sebelumnya telah menunjukan bagaimana machine learning dapat membantu pendeteksian kanker salah satunya mengguakan metode data scaling. Penelitian ini membahas algoritma data scaling membantu meningkatkan akurasi dalam proses klasifikasi kanker usus besar menggunakan Support Vector Machine. Hasil dari penelitian ini, algoritma data scaling memiliki nilai akurasi yang lebih tinggi dibandingkan dengan yang tidak menggunakannya.

 


Cancer is a disease caused by abnormal growth (division) of body tissue cells. Cancer can spread to other tissues closest to it. According to the World Health Organization (WHO), it was noted that in 2018 there were 9.6 million people who dies in 2018. Usually to be able to find out if someone has contracted cancer, a medical expert will do a biopsy if advised by a doctor. However, now that technology is growing, scientists use computational methods in image processing approaches to improve histopathological assessment. Previous studies have shown how machine learning can help detect cancer, one of which uses the method of data scaling. This study discusses the data scaling algorithm help to improve accuracy in the process of classification of colon cancer using Support Vector Machine. The result of this study, the data scaling algorithm has a higher accuracy than those who did not use it.

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amanda Rizki Bagasta
"ABSTRAK

Infark Serebri adalah kondisi dari suatu jaringan otak yang tidak teralirkan darah sehingga sel-sel otak tersebut kekurangan oksigen dan nutrisi. Hal ini dapat mengakibatkan kerusakan bahkan kematian sel-sel otak dan perlu dengan segera mendapatkan penanganan. Keadaan ini sering dikenal sebagai Stroke, dimana pada penulisan ini akan berfokus pada data stroke nonhemoragik (stroke tidak berdarah) yang diakibatkan penyumbatan pembuluh darah di otak. Biasanya penyakit ini dapat dikenali dari gejala kelumpuhan suatu bagian tubuh atau kesulitan menggunakan suatu alat indra. Menurut para ahli, penyakit ini harus dicegah sejak dini karena dapat berakibat fatal bagi keseluruhan fungsional tubuh. Salah satu tindakan yang dapat dilakukan sejak dini adalah mendeteksi kemungkinan penyakit agar dapat dilakukan penanganan secara tepat dan cepat. Dalam penelitian ini, Infark Serebri dideteksi dengan mengklasifikasi ada atau tidaknya sel abnormal pada jaringan otak pada hasil CT Scan otak pasien menggunakan Support Vector Machine dengan Seleksi Fitur RELIEF. Data yang digunakan berupa data numerik dari pasien yang melakukan pemeriksaan di RSUPN dr. Cipto Mangunkusumo Jakarta dalam bentuk hasil CT Scan otak. Terdapat Sembilan fitur indikator yang digunakan dan diproses dengan membandingkan Support Vector Machine dengan dan tanpa seleksi fitur RELIEF. Berdasarkan hasil uji coba, metode yang diusulkan mampu mencapai akurasi sebesar 95,23%. Sehingga, penggunaan seleksi fitur RELIEF pada SVM merupakan metode yang baik untuk menklasifikasi infark serebri.


ABSTRACT

 


The Cerebrovascular Infarction is a condition of an inflowed blood of brain tissue so that the brain cells lack oxygen and nutrients. This can cause the damage and even the death of brain cells and needed to get immediate treatment. This situation is often known as stroke, which at this writing will fokus on data on non-hemoragic strokes (non-bleeding strokes) caused by blockage of blood vessels in the brain. Usually this disease can be identified by symptoms of paralysis of some body part or difficulty using a human sensory. According to the experts, this disease must be prevented early because it can be fatal to the overall functional body. One of the actions that can be done early is to detect the possibility of a disease so that it can be handled appropriately and quickly. In this study, the cerebral infarction was detected by classifying the presence or absence of abnormal cells in brain tissue in the results of a CT brain scan of patients using Support Vector Machine with the RELIEF Selection Feature. The data used in the form of numerical data reports from patients who performed examinations at the RSUPN dr. Cipto Mangunkusumo Jakarta in the form of brain CT Scan. There are nine indicator features that are used and processed by comparing Support Vector Machine with and without RELIEF feature selection. Based on the results, the proposed method is able to achieve accuracy value of 95,23%. Thus, the use of RELIEF feature selection with SVM is a good method for classifying cerebral infarction.

 

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Brahmana, Jane Eva Aurelia Sembiring
"Di dunia kesehatan, tenaga medis dituntut untuk mengatasi berbagai jenis penyakit dengan gejala yang beragam. Oleh karena itu, diperlukan suatu teknologi untuk membantu mereka menyelesaikannya dengan baik. Penelitian ini mendukung mereka dengan menggunakan machine learning sebagai pemecah masalah. Penelitian ini membahas kanker payudara yang merupakan salah satu penyakit dengan angka kematian tertinggi di dunia, khususnya bagi wanita. Berdasarkan patologisnya, ada beberapa jenis kanker payudara yang dikelompokkan menjadi dua kategori utama, yaitu invasif dan non-invasif. Penelitian ini menggunakan dataset MRI payudara penderita kanker payudara dari Rumah Sakit Cipto Mangunkusumo, Jakarta, Indonesia. Dataset berupa citra MRI akan diimplementasikan pada algoritma yang telah dikonstruksikan. Pada tahap awal, metode Convolutional Neural Network akan digunakan untuk bagian konvolusi. Berikutnya, pada bagian klasifikasi, metode yang akan diterapkan sebagai metode klasifikasi adalah Support Vector Machine. Dengan mengevaluasi hasil kinerja metode pembaharuan yang digunakan (Convolutional Neural Network–Support Vector Machine) dari dataset yang dimiliki, kita akan mengetahui apakah metode Convolutional Neural Network–Support Vector Machine lebih akurat dibandingkan dengan metode Convolutional Neural Network dalam membantu klasifikasi dataset MRI penderita kanker payudara yang dimiliki. 

In the world of health, medical personnel are required to deal with various types of diseases with various symptoms. Therefore, a technology is needed to help them solve it well. This research supports them by using machine learning as a problem solver. This research discusses breast cancer, which is one of the diseases with the highest mortality rate in the world, especially for women. Based on the pathology, there are several types of breast cancer which are grouped into two main categories, namely invasive and non-invasive. This study used the breast MRI dataset of breast cancer patients from Cipto Mangunkusumo Hospital, Jakarta, Indonesia. The dataset in the form of an MRI image will be implemented in the algorithm that has been constructed. In the early stages, the Convolutional Neural Network method will be used for the convolution section. Next, in the classification section, the method that will be applied as a classification method is the Support Vector Machine. By evaluating the performance results of the renewal method used (Convolutional Neural Network–Support Vector Machine) from our dataset, we will find out whether the Convolutional Neural Network–Support Vector Machine method is more accurate than the Convolutional Neural Network method in helping to classify the MRI dataset for breast cancer patients which are owned."
Jakarta: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>