Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 90871 dokumen yang sesuai dengan query
cover
Almaira Nabila Ayudhiya
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Stefany Nurhatika
"

Analisis triclustering merupakan pengembangan dari analisis clustering dan biclustering. Analisis triclustering bertujuan mengelompokkan data tiga dimensi secara simultan yang menghasilkan submatriks dinamakan tricluster. Pendekatan yang digunakan dalam analisis triclustering di antaranya adalah pendekatan berdasarkan greedy dan pattern. Salah satu contoh pendekatan analisis triclustering berdasarkan greedy adalah metode  Î´ – Trimax. Sedangkan salah satu contoh analisis triclustering berdasarkan pattern adalah metode Timesvector. Metode δ – Trimax bertujuan menghasilkan tricluster yang memiliki mean square residual kecil dari threshold  dengan volume data tricluster yang maksimal. Metode Timesvector bertujuan mengelompokkan matriks data yang menunjukkan pola yang sama atau berbeda pada data tiga dimensi. Implementasi metode  Î´ – Trimax dan metode Timesvector pada penelitian ini dilakukan pada data ekspresi gen pasien penderita penyakit periodontitis. Ekspresi gen diukur pada 14 titik kondisi dan 4 titik waktu. Berdasarkan beberapa skenario yang telah diterapkan, metode Î´ – Trimax memberikan hasil terbaik pada saat menerapkan skenario dengan nilai threshold =0,0028564 dan =1,25 dengan jumlah tricluster yang dihasilkan adalah 260 tricluster. Dari 260 tricluster tersebut, dipilih tricluster ke-216 yang dianalisis dengan menggunakan metode Timesvector. Hasil tricluster yang diperoleh dapat menambah wawasan bagi ahli medis dalam memberikan periodontal treatment kepada pasien penderita periodontitis berikutnya.


Triclustering analysis is the development of clustering and biclustering. Triclustering analysis aims to group three-dimensional data simultaneously, forming the initial subspace known as a tricluster. It utilizes two main approaches that are greedy-based and pattern-based approaches, exemplified by the δ – Trimax and Timesvector methods, respectively. The δ – Trimax method aims for triclusters with smaller mean square residuals than the threshold δ, while Timesvector groups data matrices with similar or different patterns. In a study on periodontitis patients gene expression data, comprising 14 condition points and 4 time points, both methods were implemented. The δ – Trimax method yielded optimal results under specific conditions (δ = 0.0028564, λ = 1.25), producing 260 triclusters. Among these, the 216th tricluster was selected for further analysis using the Timesvector method. The insights gained from these triclusters can enhance periodontal treatment strategies for patients with subsequent periodontitis, providing valuable guidance to medical experts.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Airlangga Muhammad Putrapradana
"Analisis triclustering merupakan salah satu metode data mining yang bertujuan mengelompokkan data berbentuk tiga dimensi. Triclustering kerap digunakan pada bidang bioinformatika untuk menganalisis kesamaan ekspresi gen suatu eksperimen pada titik waktu tertentu. Analisis triclustering yang dilakukan pada penelitian ini menggunakan metode gabungan Fuzzy Cuckoo Search dengan I-Trimax. Metode ini merupakan penggabungan algoritma nodes deletion pada I-Trimax dengan algoritma optimasi Fuzzy Cuckoo Search. Cuckoo Search merupakan metode optimasi yang sudah baik dalam menghasilkan himpunan tricluster yang menggunakan konsep parasitisme spesies cuckoo. Fuzzy Cuckoo Search menggunakan fungsi objektif fuzzy c-means untuk mengatasi ketidakjelasan (indiscernibility) yang biasa terjadi dalam data ekspresi gen sehingga masalah kesulitan membedakan objek karena kurangnya pengetahuan dari informasi yang tersedia dapat diatasi. Algoritma nodes deletion pada I-Trimax digunakan pada fase pembentukan populasi awal dari metode gabungan Fuzzy Cuckoo Search dengan I-Trimax. Hal ini dilakukan demi mendapatkan populasi awal yang sudah baik yaitu memiliki MSR yang minimum karena konsep dari algoritma nodes deletion yaitu dapat menghasilkan himpunan tricluster dengan Mean Square Residue (MSR) kecil yaitu di bawah threshold. Berdasarkan itu proses komputasi algoritma Fuzzy Cuckoo Searchyang dilakukan pada fase optimasi dapat berjalan dengan efektif sehingga menghasilkan himpunan tricluster yang berkualitas baik secara efisien. Analisis triclustering menggunakan metode gabungan Fuzzy Cuckoo Search dengan I-Trimax digunakan pada data ekspresi gen tiga dimensi sel kanker paru-paru fase stabil (A549) yang berkaitan dengan pemberian obat kemoterapi Motexafin Gadolinium (MGd), di mana ekspresi gen diamati pada 6 kondisi dan 3 titik waktu. Pada penelitian ini, himpunan tricluster yang memiliki kualitas terbaik berdasarkan Triclustering Quality Index (TQI) adalah himpunan tricluster yang dihasilkan dengan nilai  dan. Berdasarkan himpunan tricluster tersebut, didapatkan informasi penting mengenai kumpulan gen yang memiliki respon baik terhadap pemberian MGd tapi tidak bertahan setiap titik waktu. Hal ini dapat dijadikan acuan penelitian terkait terapi kanker menggunakan obat kemoterapi MGd yang perlu dilakukan pengembangan agar dapat tetap efektif pada seluruh titik waktu. Terdapat juga kumpulan gen yang memiliki respon cepat dan bertahan hingga jangka panjang dengan pemberian MGd dan mannitol. Gen-gen tersebut merupakan gen yang menunjukkan respon baik pemberian obat kemoterapi MGd tetapi efektivitasnya tidak terlalu maksimal karena responnya beririsan dengan subjek yang hanya diberikan mannitol. Hal ini dapat dijadikan bahan untuk penelitian lebih lanjut dalam pengembangan obat MGd supaya dapat lebih efektif.

Triclustering analysis is a data mining method that aims to group data in three dimensions. Triclustering is often used in the field of bioinformatics to analyze the similarity of gene expression under experimental conditions at a certain point in time. The triclustering analysis carried out in this study used the combined Fuzzy Cuckoo Search method with -Trimax. This method is a combination of node deletion algorithm on -Trimax with Fuzzy Cuckoo Search optimization algorithm. Cuckoo Search is a good optimization method in generating tricluster sets that use the concept of parasitism of cuckoo species. Fuzzy Cuckoo Search uses the fuzzy c-means objective function to overcome the indiscernibility that usually occurs in gene expression data so that the problem of difficulty distinguishing objects due to lack of knowledge from available information can be overcome. The nodes deletion algorithm on I-Trimax is used in the initial population formation phase from the combined Fuzzy Cuckoo Search method with I-Trimax. This is done in order to get a good initial population, which has a minimum MSR because the concept of the nodes deletion algorithm is that it can produce a tricluster set with a small Mean Square Residue (MSR), which is below the threshold. Based on that, the computational process of the Fuzzy Cuckoo Search algorithm which is carried out in the optimization phase can run effectively so as to produce a good quality tricluster set efficiently. Triclustering analysis using the combined Fuzzy Cuckoo Search method with I-Trimax was used on three-dimensional gene expression data of stable phase lung cancer cells (A549) associated with the administration of the chemotherapy drug Motexafin Gadolinium (MGd), where gene expression was observed in 6 conditions and 3 time points. In this study, the tricluster set that has the best quality based on the Triclustering Quality Index (TQI) is the resulting tricluster set with values. Based on these tricluster sets, important information was obtained regarding gene pools that responded well to MGd administration but did not persist at any point in time. This can be used as a reference for research related to cancer therapy using MGd chemotherapy drugs that need to be developed in order to remain effective at all time points. There is also a gene pool that responds quickly and persists in the long term with MGd and mannitol administration. These genes are genes that show a good response to MGd chemotherapy drugs but their effectiveness is not maximal because their responses coincide with subjects who are only given mannitol. This can be used as material for further research in the development of MGd drugs so that they can be more effective."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Awlia Dwi Rachma
"

Metode THD-Tricluster merupakan analisis triclustering dengan pendekatan berbasis biclustering. Pada metode THD-Tricluster digunakan nilai Shifting-and-Scaling Similarity untuk membentuk bicluster terlebih dahulu dan dilanjutkan dengan membentuk tricluster. Nilai SSSim menggunakan Shifting-and-Scaling Correlation untuk mendeteksi adanya  korelasi antaranggota dengan pola pergeseran dan penskalaan serta koherensi antarwaktu dan membandingkannya dengan nilai threshold. Metode THD-Tricluster dilakukan pada data respon pengobatan terapi interferon-beta pada pasien sklerosis ganda. Skenario optimal adalah skenario dengan nilai coverage terkecil yaitu saat menggunakan nilai threshold tertinggi. Pada skenario tersebut diperoleh dua jenis tricluster yaitu tricluster yang memiliki kumpulan gen pada pasien yang responsif dan pasien yang tidak responsif terhadap terapi. Perbedaan kumpulan gen pada kedua tricluster dapat digunakan oleh para ahli medis untuk mengembangkan pengobatan terapi  untuk meningkatkan tingkat keresponsifan pasien sklerosis ganda terhadap terapi tersebut.


The THD-Tricluster method is a triclustering analysis with a biclustering-based approach. The THD-Tricluster method uses the Shifting-and-Scaling Similarity value to form a bicluster first and shows it by forming a tricluster. The SSSim value uses Shifting-and-Scaling Correlation to use an interface with shifting and scaling patterns as well as intertemporal coherence and compares it with the threshold value. The THD-Tricluster method was performed on treatment response data to interferon-beta therapy in multiple sclerosis patients. The optimal scenario is a scenario with a coverage value scenario that uses the highest threshold value. In this scenario, there are two types of tricluster, namely the tricluster which has a collection of genes in responsive patients and patients who are not responsive to therapy. Differences in gene pools in the two tricluster can be used by medical professionals to develop IFN-β therapeutic treatments to increase the responsiveness of multiple sclerosis patients to these therapies.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hendy Fergus Atheri Hura
"ABSTRAK
Penelitian ini mengimplementasikan metode spectral clustering-Fuzzy C-Means pada tiga microarray data ekspresi gen, dengan tujuan untuk mengelompokkan gen-gen yang memiliki tingkat ekspresi yang similar. Spectral clustering secara teoritis terdiri dari tiga tahap utama yaitu: membangun matriks jarak, membentuk matriks Laplacian, dan proses partisi, khususnya dalam tesis ini menggunakan algoritma partisi Fuzzy C-Means. Oleh karena itu, implementasi dari spectral clustering-FCM lebih sederhana dan intuitif pada pelaksanaannya. Analisis cluster singkat juga akan dipaparkan untuk masing-masing microarray data yang digunakan yaitu: Carcinoma, Leukemia, dan Lymphoma. Hasil cluster yang sangat baik didapatkan, sehingga metode yang diusulkan memiliki potensi besar ke depannya dalam penelitan pada bidang medis.

ABSTRACT
This research implements the spectral clustering FCM method on three microarray gene expression data, with the aim of grouping genes with similar expression levels. Spectral clustering is theoretically composed of three main stages building distance matrix, forming Laplacian matrix, and partitioning process, especially in this thesis using Fuzzy C Means partition algorithm. Therefore, the implementation of spectral clustering FCM is simpler and more intuitive in its implementation. Brief cluster analysis will also be presented for each microarray data used Carcinoma, Leukemia, and Lymphoma. Excellent cluster results are obtained, so the proposed method has great potential for future research in the medical field. "
2017
T48274
UI - Tesis Membership  Universitas Indonesia Library
cover
Kinanty Tasya Octaviane
"Teknologi DNA microarray menghasilkan data ekspresi gen yang dapat digunakan untuk membantu berbagai pemecahan masalah dalam dunia kesehatan. Data ekspresi gen merupakan matriks berukuran besar berisi gen dan kondisi eksperimental yang tak jarang mengandung missing values dan outlier. Data yang mengandung missing values dapat mengganggu dan membatasi analisis. Untuk mengatasinya, metode komputasi dinilai layak untuk imputasi missing values pada data ekspresi gen sebelum dilakukan analisis lanjutan, terlebih untuk data yang memiliki outlier. Oleh karena itu, pada penelitian ini digunakan metode imputasi missing values NCBI-LPCM untuk mengatasi permasalahan missing values pada data ekspresi gen yang memiliki outlier. Metode NCBI-LPCM menggunakan ukuran korelasi LPCM yang dapat menangani keberadaan outlier untuk pembentukan bicluster dan imputasi least square yang merupakan metode imputasi dengan pendekatan lokal. LPCM mengidentifikasi gen-gen yang memiliki pola korelasi similar sehingga menjadi informasi lokal untuk dasar imputasi. Metode ini diterapkan pada data ekspresi gen pasien Leukemia Limfoblastik Akut pada missing rate 5%, 10%, 15%, 20%, 25%, 30%, dan 35%. Berdasarkan RMSE dan korelasi Pearson, metode NCBI-LPCM lebih baik jika dibandingkan dengan NCBI-SSSim yang juga dapat menangani keberadaan outlier.

DNA microarray technology produces gene expression data that can be used to help solve various problems in healthcare. Gene expression data is a large matrix of genes and experimental conditions that often contains missing values and outliers. Data containing missing values can interfere with and limit analyses. To overcome this, computational methods are considered feasible for imputing missing values in gene expression data before further analysis is carried out, especially for data that has outliers. Therefore, in this study, the NCBI-LPCM missing values imputation method was used to overcome the problem of missing values in gene expression data with outliers. The NCBI-LPCM method uses the LPCM correlation measure which can handle the presence of outliers for bicluster formation and least square imputation which is an imputation method with a local approach. LPCM identifies genes that have similar correlation patterns so that they become local information for the basis of imputation. This method was applied to gene expression data of Acute Lymphoblastic Leukaemia patients at missing rates of 5%, 10%, 15%, 20%, 25%, 30%, and 35%. Based on RMSE and Pearson correlation, the NCBI- LPCM method is better than NCBI-SSSim which can also handle the presence of outliers."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teguh Saputra
"

Analisis triclustering merupakan teknik yang mampu mengelompokkan data 3 dimensi secara bersamaan, sehingga dapat diperoleh sub-ruang dari data 3D yang terdiri dari subset observasi (gen), subset kondisi (kondisi) dan subset konteks (waktu). Analisis triclustering  yang  dilakukan  pada  penelitian  ini  yaitu  metode delta-Trimax melalui pendekatan   two-way   K-means.   Tujuan   dari   metode delta-Trimax yaitu menemukan tricluster yang memiliki nilai minimum dari three-dimensial mean square residual (𝑆3) dan volume maksimum. Pendekatan two-way K-means digunakan untuk membentuk suatu populasi awal agar dapat mengurangi beban komputasi dan membantu membentuk tricluster yang lebih baik. Metode ini akan diimplementasikan pada data ekspresi gen kultur HAE (Human Airway Epithelial) yang terinfeksi virus SARS-CoV, SARS-dORF6, SARS-BatSRBD, dan H1N1. Implementasi dilakukan dengan 9 simulasi dan diperoleh simulasi terbaik dengan nilai threshold dari perhitungan MSR sebesar 0.0435, threshold  = 1.7 dan sebanyak 24 tricluster terbentuk berdasarkan penilain triclustering quality index (TQI). Dari himpunan tricluster tersebut diperoleh informasi mengenai perbandingan pola ekspresi gen pada virus SARS-CoV, SARS-dORF6, SARS-BatSRBD dengan virus influenza H1N1. Terdapat 7 tricluster yang memiliki kesamaan pola ekspresi gen di setiap kondisi dan 8 tricluster yang diduga memiliki perbedaan kondisi antara setiap variasi virus SARS- CoV dengan virus influenza H1N1. Pada tricluster lainnya juga diperoleh informasi hanya beberapa variasi Sars-CoV yang memiliki kesamaan satu sama lain dan juga kesamaan atau perbedaan dengan H1N1. Berdasarkan titik waktu diperoleh 3 tricluster tidak memberikan efek karena pola ekspresi gen tiap waktu sama dengan kondisi awal yaitu titik waktu ke-1 dan 17 tricluster diduga memberikan efek paska infeksi. Untuk menilai kualitas hasil tricluster terbentuk dalam penggambaran fungsi biologis dari kumpulan gen pada tricluster dilakukan evaluasi gene ontology (GO). GO adalah sebuah sistem untuk menggambarkan fungsi, biological process, celluler componet gen dan moleculer function dalam berbagai organisme. Dari hasil evaluasi diperoleh sebanyak 20 tricluster yang memiliki keterlibatan dan kaitan kuat dengan setiap konsep GO. Sebanyak 3 tricluster hanya memiliki keterlibatan atau kaitan pada salah satu aspek GO dan 1 tricluster yang memiliki keterlibatan pada semua aspek GO namun hanya pada aspek celuller componet yang memiliki kaitan kuat. Hal ini dapat menjadi acuan bagi peneliti bidang biologi untuk memfokuskan penelitian lebih lanjut dalam pemahaman fungsi biologis pada himpunan tricluster yang memiliki keterlibatan dan kaitan kuat.


Triclustering analysis is a technique capable of clustering three-dimensional data simultaneously, thus obtaining subspaces of the 3D data consisting of subsets of observations (genes), attribute subsets (conditions), and context subsets (time). The triclustering analysis conducted in this research utilizes the δ-Trimax method through a two-way K-means approach. The goal of the δ-Trimax method is to find triclusters that have minimum values of three-dimensional mean square residu MSR_3D and maximum volume. The two-way K-means approach is used to form an initial population to reduce computational burden and aid in forming better triclusters. This method will be implemented on gene expression data from HAE (Human Airway Epithelial) cultures infected with SARS-CoV, SARS-dORF6, SARS-BatSRBD, and H1N1 viruses. The implementation is carried out through 9 simulations, and the best simulation is obtained with a threshold value of δ calculated from MSR of 0.0435, a threshold value of λ=1.7, resulting in 24 formed triclusters based on the triclustering quality index (TQI) assessment. From the set of triclusters, information regarding the comparison of gene expression patterns between SARS-CoV, SARS-dORF6, SARS-BatSRBD viruses and H1N1 influenza virus is obtained. There are 7 triclusters that exhibit similar gene expression patterns across all conditions, and 8 triclusters that are suspected to have condition differences between various SARS-CoV viruses and the H1N1 virus. Other triclusters also provide information where only certain SARS-CoV variations share similarities with each other or similarities or differences with H1N1. Based on the time points, 3 triclusters show no effect as their gene expression patterns remain the same as the initial condition (time point 1), while 17 triclusters are suspected to have post- infection effects. To assess the quality of the formed triclusters in terms of biological function representation of the gene sets within the triclusters, an evaluation of gene ontology (GO) is performed. GO is a system for describing the functions, biological processes, cellular components, and molecular functions of genes across various organisms. The evaluation method involves the Database for Annotation, Visualization, and Integrated Discovery (DAVID) in calculating p-values. The evaluation results reveal that 20 triclusters have strong involvement and correlation with each GO concept. Three triclusters only exhibit involvement or correlation in one specific aspect of GO, and one tricluster exhibits involvement in all GO aspects, but with a strong correlation only in the cellular component aspect. This information can serve as a reference for researchers in the field of biology to focus further research on understanding the biological functions within tricluster sets that have strong involvement and correlation.

"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teguh Saputra
"

Analisis triclustering merupakan teknik yang mampu mengelompokkan data 3 dimensi secara bersamaan, sehingga dapat diperoleh sub-ruang dari data 3D yang terdiri dari subset observasi (gen), subset kondisi (kondisi) dan subset konteks (waktu). Analisis triclustering  yang  dilakukan  pada  penelitian  ini  yaitu  metode delta-Trimax melalui pendekatan   two-way   K-means.   Tujuan   dari   metode delta-Trimax yaitu menemukan tricluster yang memiliki nilai minimum dari three-dimensial mean square residual (𝑆3) dan volume maksimum. Pendekatan two-way K-means digunakan untuk membentuk suatu populasi awal agar dapat mengurangi beban komputasi dan membantu membentuk tricluster yang lebih baik. Metode ini akan diimplementasikan pada data ekspresi gen kultur HAE (Human Airway Epithelial) yang terinfeksi virus SARS-CoV, SARS-dORF6, SARS-BatSRBD, dan H1N1. Implementasi dilakukan dengan 9 simulasi dan diperoleh simulasi terbaik dengan nilai threshold dari perhitungan MSR sebesar 0.0435, threshold  = 1.7 dan sebanyak 24 tricluster terbentuk berdasarkan penilain triclustering quality index (TQI). Dari himpunan tricluster tersebut diperoleh informasi mengenai perbandingan pola ekspresi gen pada virus SARS-CoV, SARS-dORF6, SARS-BatSRBD dengan virus influenza H1N1. Terdapat 7 tricluster yang memiliki kesamaan pola ekspresi gen di setiap kondisi dan 8 tricluster yang diduga memiliki perbedaan kondisi antara setiap variasi virus SARS- CoV dengan virus influenza H1N1. Pada tricluster lainnya juga diperoleh informasi hanya beberapa variasi Sars-CoV yang memiliki kesamaan satu sama lain dan juga kesamaan atau perbedaan dengan H1N1. Berdasarkan titik waktu diperoleh 3 tricluster tidak memberikan efek karena pola ekspresi gen tiap waktu sama dengan kondisi awal yaitu titik waktu ke-1 dan 17 tricluster diduga memberikan efek paska infeksi. Untuk menilai kualitas hasil tricluster terbentuk dalam penggambaran fungsi biologis dari kumpulan gen pada tricluster dilakukan evaluasi gene ontology (GO). GO adalah sebuah sistem untuk menggambarkan fungsi, biological process, celluler componet gen dan moleculer function dalam berbagai organisme. Dari hasil evaluasi diperoleh sebanyak 20 tricluster yang memiliki keterlibatan dan kaitan kuat dengan setiap konsep GO. Sebanyak 3 tricluster hanya memiliki keterlibatan atau kaitan pada salah satu aspek GO dan 1 tricluster yang memiliki keterlibatan pada semua aspek GO namun hanya pada aspek celuller componet yang memiliki kaitan kuat. Hal ini dapat menjadi acuan bagi peneliti bidang biologi untuk memfokuskan penelitian lebih lanjut dalam pemahaman fungsi biologis pada himpunan tricluster yang memiliki keterlibatan dan kaitan kuat.


Triclustering analysis is a technique capable of clustering three-dimensional data simultaneously, thus obtaining subspaces of the 3D data consisting of subsets of observations (genes), attribute subsets (conditions), and context subsets (time). The triclustering analysis conducted in this research utilizes the δ-Trimax method through a two-way K-means approach. The goal of the δ-Trimax method is to find triclusters that have minimum values of three-dimensional mean square residu MSR_3D and maximum volume. The two-way K-means approach is used to form an initial population to reduce computational burden and aid in forming better triclusters. This method will be implemented on gene expression data from HAE (Human Airway Epithelial) cultures infected with SARS-CoV, SARS-dORF6, SARS-BatSRBD, and H1N1 viruses. The implementation is carried out through 9 simulations, and the best simulation is obtained with a threshold value of δ calculated from MSR of 0.0435, a threshold value of λ=1.7, resulting in 24 formed triclusters based on the triclustering quality index (TQI) assessment. From the set of triclusters, information regarding the comparison of gene expression patterns between SARS-CoV, SARS-dORF6, SARS-BatSRBD viruses and H1N1 influenza virus is obtained. There are 7 triclusters that exhibit similar gene expression patterns across all conditions, and 8 triclusters that are suspected to have condition differences between various SARS-CoV viruses and the H1N1 virus. Other triclusters also provide information where only certain SARS-CoV variations share similarities with each other or similarities or differences with H1N1. Based on the time points, 3 triclusters show no effect as their gene expression patterns remain the same as the initial condition (time point 1), while 17 triclusters are suspected to have post- infection effects. To assess the quality of the formed triclusters in terms of biological function representation of the gene sets within the triclusters, an evaluation of gene ontology (GO) is performed. GO is a system for describing the functions, biological processes, cellular components, and molecular functions of genes across various organisms. The evaluation method involves the Database for Annotation, Visualization, and Integrated Discovery (DAVID) in calculating p-values. The evaluation results reveal that 20 triclusters have strong involvement and correlation with each GO concept. Three triclusters only exhibit involvement or correlation in one specific aspect of GO, and one tricluster exhibits involvement in all GO aspects, but with a strong correlation only in the cellular component aspect. This information can serve as a reference for researchers in the field of biology to focus further research on understanding the biological functions within tricluster sets that have strong involvement and correlation.

"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gianinna Ardaneswari
"Diabetic Retinopathy merupakan penyakit yang disebabkan oleh komplikasi mikrovaskuler jangka panjang dari pasien Diabetes Melitus. Salah satu bentuk data biologi molekuler yang tengah berkembang pesat saat ini adalah data ekspresi gen pada microarray. Analisis data ekspresi gen dapat dilakukan dengan berbagai cara termasuk pengelompokkan data menggunakan algoritma clustering ataupun biclustering. Salah satu metode untuk menganalisis data ekspresi gen adalah metode Two-Phase Biclustering. Untuk data yang berukuran besar, metode tersebut membutuhkan waktu komputasi yang lama. Penerapan komputasi paralel diperlukan dalam metode Two-Phase Biclustering ini agar waktu komputasi yang dibutuhkan lebih sedikit dan memiliki kinerja yang baik.
Dalam tesis ini akan dibahas implementasi paralel pada metode Two-Phase Biclustering, dimana fase pertama menggunakan algoritma paralel K-Means dan fase kedua menggunakan algoritma biclustering Cheng-Church pada data ekspresi gen Diabetic Retinopathy. Dari hasil penelitian kami diperoleh peningkatan kinerja komputasi berupa speed-up sebesar 3,63x pada multicore paralel R dan 34x pada pemrograman manycore paralel CUDA-GPU.

Diabetic Retinopathy is a disease caused by long term microvascular complications on diabetes mellitus patients. Recently, the microarray gene expression data has been developing rapidly in molecular biology. There are many techniques for gene expression data analysis methods using clustering or biclustering algorithms. One of the effective method for analyzing gene expression data is Two Phase Biclustering method. However for large sized data, the method requires long computation time. Implementation of parallel computing is necessary in Two Phase Biclustering method to reduce the computation time and to obtain a good performance.
In this thesis we discuss the implementation of parallel Two Phase biclustering, where in the first phase using parallel K Means algorithm and the second phase using Cheng Church biclustering algorithm on Diabetic Retinopathy gene expression data. In parallel K Means algorithms are applied multicore based parallel R programming and manycore CUDA GPU parallel programming. Parallelization using multicore based parallel R programming achieves an average speed up of 3.63x and using manycore CUDA GPU parallel programming achieves significant performance with an average speed up of 34x.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47269
UI - Tesis Membership  Universitas Indonesia Library
cover
Ika Marta Sari
"

Analisis triclustering merupakan pengembangan dari analisis clustering dan analisis biclustering. Tujuan dari analisis triclustering yaitu mengelompokkan data tiga dimensi secara simultan atau bersamaan. Data tiga dimensi tersebut dapat berupa observasi, atribut, dan konteks. Salah satu pendekatan yang digunakan dalam analisis triclustering, yaitu pendekatan berdasarkan pattern contohnya, adalah metode Timesvector. Metode Timesvector bertujuan untuk mengelompokkan matriks data yang menunjukkan pola yang sama atau berbeda pada data tiga dimensi. Metode Timesvector memiliki langkah kerja yang dimulai dengan mereduksi matriks data tiga dimensi menjadi matriks data dua dimensi untuk mengurangi kompleksitas dalam pengelompokkan. Pada metode ini akan digunakan algoritma Spherical K-means dalam pengelompokkannya. Tahap selanjutnya, yaitu mengidentifikasi pola dari cluster yang dihasilkan pada Spherical K-means. Pola yang dimaksud terdiri dari tiga jenis, yaitu DEP (Differentially Expressed Pattern), ODEP (One Differentially Expressed Pattern), dan SEP (Similarly Expressed Pattern). Penerapan dari metode Timesvector dilakukan pada data ekspresi gen yaitu data tumor otak yang dilakukan dalam 6 skenario. Masing-masing skenario menggunakan banyak cluster yang sama tetapi nilai threshold yang berbeda-beda. Hasil dari ke enam skenario akan divalidasi menggunakan nilai coverage dan nilai tricluster diffusion (TD). Hasil penerapan metode timesvector menunjukkan bahwa dengan menggunakan threshold sebesar 1,5 memberikan hasil yang paling optimal karena memiliki nilai coverage yang tinggi sebesar 57% dan nilai TD yang rendah sebesar 2,95594E-06. Nilai coverage yang tinggi menunjukkan kemampuan metode dalam mengekstrak data dan nilai TD yang rendah menunjukkan bahwa tricluster yang dihasilkan memiliki volume yang besar dan koherensi yang tinggi. Berdasarkan pola yang dihasilkan menggunakan skenario yang optimal diperoleh sebanyak 49 ODEP cluster dengan pasien ke-empat selalu memiliki pola ekspresi yang berbeda dibandingkan dengan pasien lainya.  Hal ini dapat digunakan oleh ahli medis untuk melakukan tindakan selanjutnya terhadap pasien tumor otak.

 


Triclustering analysis is the development of clustering analysis and biclustering analysis. The purpose of triclustering analysis is to group three-dimensional data simultaneously or simultaneously. The three-dimensional data can be in the form of observations, attributes, and context. One of the approaches used in triclustering analysis, namely an approach based on a pattern, for example, is the Timesvector method. Timesvector method aims to group data matrices that show the same or different patterns in three-dimensional data. The Timesvector method has a work step that starts with reducing the three-dimensional data matrix to a two-dimensional data matrix to reduce complexity in a grouping. In this method, the Spherical K-means algorithm will be used in grouping it. The next step is to identify the pattern of the clusters generated in the Spherical K-means. The pattern referred to consists of three types, namely DEP (Differentially Expressed Pattern), ODEP (One Differentially Expressed Pattern), and SEP (Similar Expressed Pattern). The application of the Timesvector method was carried out on gene expression data, namely brain tumor data carried out in 6 scenarios. Each scenario uses the same many clusters but different threshold values. The results of the six scenarios will be validated using the coverage value and the tricluster diffusion (TD) value. The results of applying the timesvector method show that using a threshold of 1.5 gives the most optimal results because it has a high coverage value of 57% and a low TD value of 2.95594E-06. A high coverage value indicates the method's ability to extract data and a low TD value indicates that the resulting tricluster has a large volume and high coherence. Based on the pattern generated using the optimal scenario, there were 49 ODEP clusters with the fourth patient always having a different expression pattern compared to other patients. This can be used by medical experts to perform further action on brain tumor patients.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>