Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 159452 dokumen yang sesuai dengan query
cover
Ana Kristiana
"Setiap hari masyarakat dihadapkan pada risiko kehilangan, kegagalan, bahkan kematian akibat kecelakaan lalu lintas. Cara mengatasi ketidakpastian dan mengendalikan risiko kecelakaan lalu lintas jalan adalah dengan mengalihkan risiko tersebut kepada pihak atau perusahaan lain yang disebut asuransi. Memperkirakan kerugian agregat penting bagi perusahaan asuransi untuk memprediksi kewajiban dan mengukur tingkat kecukupan dana perusahaan. Kerugian agregat pada asuransi kecelakaan lalu lintas dapat dihitung berdasarkan dua variabel, severity klaim dan frekuensi klaim. Severity klaim dan frekuensi klaim memiliki jenis distribusi yang berbeda dan terkadang memiliki hubungan yang saling mempengaruhi, sehingga tidak mudah untuk memodelkannya. Salah satu metode analisis statistik yang digunakan untuk menggabungkan dua distribusi data berbeda yang saling berkaitan adalah metode copula. Melalui studi kasus pada perusahaan asuransi PT XYZ, kerugian agregat akan dihitung dengan menggunakan model berbasis copula. Penentuan model terbaik dan akurasi model ditentukan berdasarkan Akaike Information Criterion (AIC), Root Mean Square Error (RMSE) terkecil, dan uji Vuong. Berdasarkan hasil analisis yang diperoleh bahwa model copula Clayton merupakan model terbaik untuk memperkirakan kerugian agregat pada perusahaan asuransi PT XYZ dimasa yang akan datang.

Every day people are faced with the risk of loss, failure, and even death due to traffic accidents. The way to overcome uncertainty and control the risk of road traffic accident is by transferring the risk to another party or company called insurance. Estimating aggregate losses is important for insurance companies to predict liabilities and measure the level of adequacy of company funds. Aggregate losses on traffic accident insurance can be calculated based on two variables, claim severity and claim frequency. Claim severity and claim frequency have different types of distribution and sometimes have relationships that affect each other, so it's not easy to model it. One of the statistical analysis methods used to combine two different data distributions that are related is the copula method. Through a case study on the insurance company PT XYZ, aggregate losses will be calculated using a copula based model. The best model is determined based on the smallest value of Akaike Information Criterion (AIC) and Root Mean Square Error (RMSE) and also by Vuong test. Based on the analysis, explain that Clayton copula is the best model to estimate aggregate losses at the insurance company PT XYZ in the future."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Baini Sulhi
"ABSTRAK
Tesis ini menganalisis frekuensi dan severitas klaim yang merupakan dua risiko utama dalam asuransi umum. Penentuan harga kontrak asuransi dari pemegang polis dengan mengalikan ekspektasi frekuensi klaim dan severitas klaim. Net Premium tersebut merupakan estimasi dari kerugian agregat dari suatu grup polis yang memodelkannya mengasumsikan frekuensi dan severitas klaim saling bebas. Namun, dalam beberapa kasus, terdapat dependensi antara dua variabel tersebut. Untuk mengatasi masalah dependensi tersebut, pada tesis ini digunakan model copula berbasis regresi untuk membangun distribusi bersama. Hal ini dengan menggabungkan marginal generalized linear model dari frekuensi dan rata-rata severitas klaim menggunakan copula. Parameter dari distribusi ditaksir menggunakan metode maksimum likelihood. Kemudian pemilihan copula terbaik yang akan digunakan dalam membangun distribusi bersama dilakukan dengan melihat nilai log-likelihood paling besar dan Root Mean Square Error (RMSE) yang paling kecil. Hasil didapat bahwa model copula Clayton berbasis regresi yang dipilih. Terakhir, estimasi frekuensi dan rata-rata severitas klaim dihitung dan dihasilkan kerugian polis berdasarkan nilai estimasi mean dari distribusi bersamanya.

ABSTRACT
This thesis analyzes the frequency and severity of claim which are the two main risks in general insurance. Determination of insurance contract prices from policyholders by multiplying expected frequency of claims and severity of claims. The Net Premium is an estimate of the aggregate loss of a policy group that models it assuming the frequency and severity of the claims are independent. However, in some cases, there are dependencies between the two variables. To overcome this dependency problem, this thesis uses copula-based regression model to build a joint distribution. This is by combining the marginal generalized linear model of frequency and the average severity of claims using copula. The parameters of the distribution are estimated using the maximum likelihood method. Further, the selection of the best copula that will be used in building a joint distribution is done by looking at the greatest log-likelihood value and smallest value of Root Mean Square Error (RMSE). The result is clayton copula based regression model is chosen. Finally, estimatie of the frequency and average severity of claims is calculated and policy losses are generated based on the estimated mean value of the joint distribution."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dewi Susanawati
"ABSTRAK
Perusahaan asuransi adalah perusahaan yang menerima pelimpahan risiko atas diri tertanggung, sehingga perusahaan asuransi perlu memperhatikan kerugian yang ditimbulkan sebagai akibat terjadinya klaim. Mengestimasi kerugian klaim
merupakan tugas penting bagi perusahaan asuransi untuk memprediksi kewajiban
mereka. Total kerugian dalam portofolio perusahaan didefinisikan sebagai
sejumlah kerugian polis. Kerugian polis pada asuransi kesehatan dapat dihitung
berdasarkan dua variabel, yaitu frekuensi dan severity klaim. Dalam literatur
Statistika, joint distribution adalah metode analisis statistika yang dapat
menggabungkan dua distribusi data yang berbeda, salah satunya adalah Copula.
Tesis ini memberikan penjelasan tentang Copula dalam mengestimasi kerugian
polis pada asuransi kesehatan dimana studi kasus yang diambil adalah perusahaan
asuransi XYZ. Selanjutnya, penulis melakukan regresi antara kedua Generalized
Linear Model (GLM) dari frekuensi klaim dan severity klaim dengan menggunakan
model regresi berbasis copula yang diestimasi dengan Maximum Likelihood
Estimation (MLE). Model terbaik dan keakuratan model ditentukan berdasarkan
nilai Akaike Information Criterion (AIC) dan Root Mean Square Error (RMSE)
terkecil. Pada akhirnya, model regresi berbasis copula Frank lebih baik
dibandingkan model regresi berbasis copula lainnya yang dapat digunakan untuk
memprediksi kerugian polis asuransi kesehatan pada periode berikutnya

ABSTRACT
The insurance company is a company that received delegation of the risks it has
insured, so that this company needs to pay attention to losses incurred as a result of
a claim. Estimating losses of claim is an important task for insurance companies to
predict their obligations. Total losses in the company's portfolio is defined as the
amount of loss policy. Losses in the health insurance policy can be calculated based
on two variables: the frequency and severity of claims. In the literature of Statistics,
joint distribution is a method of statistical analysis that can combine two different
data distribution, it is Copula. This thesis aims to provide a study of Copula for the
estimation of loss claims in health insurance, case study is taken from an insurance
company XYZ. Further, the authors conducted a regression between the
Generalized Linear Model (GLM) of claim frequency and claim severity using
Copula-based Regression Model is estimated by Maximum Likelihood Estimation
(MLE). The best model and model accuracy is determined based on the smallest of
Akaike Information Criterion (AIC) and Root Mean Square Error (RMSE). In the
end of analysis, Frank Copula-based Regression Model is better than other Copulabased
Regression Model that can be used to predict the loss of health insurance
policy in the next period."
2016
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Al Rizza Usfatul Kholifah
"Penentuan premi bersih untuk asuransi non-jiwa dapat dilakukan dengan memperkirakan kerugian agregat dari suatu kelompok polis. Kerugian agregat dihitung berdasarkan frekuensi dan klaim tingkat keparahan rata-rata yang biasanya dianggap independen. Namun, dalam beberapa kasus, ada ketergantungan antara frekuensi dan klaim tingkat keparahan rata-rata. Untuk mengatasi masalah ketergantungan, tesis ini menggunakan model regresi berbasis copula untuk membangun distribusi kerugian agregat. Hal ini dilakukan dengan menggabungkan model linear umum marginal dari frekuensi dan klaim tingkat keparahan rata-rata menggunakan kopula. Selanjutnya, parameter distribusi kerugian agregat diperkirakan menggunakan metode kemungkinan maksimum. Tes Vuong digunakan untuk memilih kopula terbaik yang akan digunakan dalam membangun distribusi kehilangan agregat. Akhirnya, premi bersih dari suatu kelompok kebijakan diperoleh berdasarkan estimasi nilai rata-rata dari distribusi kerugian agregat. Simulasi numerik dilakukan dengan menggunakan langkah-langkah ketergantungan tertentu dalam menerapkan model regresi berbasis kopula untuk menentukan premi bersih dari suatu kelompok kebijakan. Berdasarkan simulasi numerik, dapat disimpulkan bahwa jika klaim frekuensi dan keparahan rata-rata memiliki ukuran ketergantungan negatif, maka estimasi rata-rata kerugian agregat dengan asumsi bahwa klaim frekuensi dan keparahan rata-rata adalah independen akan melebih-lebihkan. Sebaliknya, untuk ukuran ketergantungan yang positif, estimasi rata-rata kerugian agregat dengan asumsi bahwa frekuensi dan klaim tingkat keparahan rata-rata independen akan meremehkan.

Determination of net premiums for non-life insurance can be done by estimating aggregate losses from a group of policies. Aggregate losses are calculated based on frequency and claim average severity which is usually considered independent. However, in some cases, there is a dependency between frequency and claims of average severity. To overcome the problem of dependency, this thesis uses a copula-based regression model to build an aggregate loss distribution. This is done by combining the general marginal linear model of frequency and claiming the average severity using copula. Next, the aggregate loss distribution parameters are estimated using the maximum likelihood method. The Vuong test is used to select the best copula to be used in building the aggregate loss distribution. Finally, the net premium of a policy group is obtained based on the estimated average value of the aggregate loss distribution. Numerical simulations are performed using certain dependency steps in applying a copula-based regression model to determine the net premium of a policy group. Based on numerical simulations, it can be concluded that if the average frequency and severity claims have negative dependency measures, the estimated average aggregate losses assuming that the average frequency and severity claims are independent will be exaggerating. Conversely, for a positive measure of dependency, the estimated average aggregate loss assuming that the frequency and claim severity of the independent average would be underestimated."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amilda Ristania
"ABSTRAK
Pada tahun 2014, Indonesia memulai visi baru dalam pengembangan infrastruktur secara adil di seluruh negara. Dengan visi ini, terjadi peningkatan proyek-proyek konstruksi yang juga menghasilkan peningkatan premi dan risiko terkait konstruksi. Asuransi yang bertanggung jawab untuk kelas ini adalah Construction All Risk CAR yang merupakan bagian dari asuransi rekayasa. Pemerintah belum menetapkan batasan cakupan yang merupakan ruang lingkup asuransi ini dan juga prosedur penentuan premi serta risiko kerugian asuransi konstruksi. Dengan menggunakan data historis PT. Asuransi ABC maka tesis ini akan melihat penetapan harga yang sesuai menurut model aggregate loss. Model yang kadang-kadang disebut sebagai model loss cost ini adalah salah satu metode yang umum digunakan dalam menentukan kerugian yang diharapkan untuk sebagian besar jenis risiko asuransi. Metode ini menggunakan data historis untuk menentukan premi murni yang benar yang perlu diterapkan atas sekelompok risiko. Hasil penelitian ini menunjukkan premi yang seharusnya diberikan oleh PT. ABC jika menggunakan metode aggregate loss berbeda dengan kondisi pasar dimana premi yang digunakan jauh lebih rendah. Hal ini diharapkan dapat menjadi masukan dalam keputusan penutupan premi yang akan datang.

ABSTRACT
In 2014, Indonesia has been embarking a new vision of equitable infrastructure development across the country. With this vision, there is an increase in infrastructure related construction projects which also result in increased premiums and risks related to construction. The insurance responsible for this class is Construction All Risk CAR which is part of engineering insurance. The government has not set limits on coverage that is the scope of this insurance as well as procedures for determining the premiums and risks of construction insurance losses. This thesis will see the appropriate pricing according to aggregate loss model by using historical data of PT. ABC Insurance. The aggregate loss model or sometimes referred to as loss cost is one of the commonly used methods of determining the expected losses for most types of insurance risk. This method uses historical data to determine the true premium that needs to be applied to a group of risks. The results of this study indicate the premium that should be given by PT. ABC if using aggregate loss method is different from market conditions where the premiums used are much lower. This is expected to be an input in the decision to determine the given premium "
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2018
T50395
UI - Tesis Membership  Universitas Indonesia Library
cover
Raden Roro Shalsabila Alwaafi Putriandra
"Dalam studi statistik, mengukur ketergantungan antar variabel sering kali diperlukan untuk memahami perilaku dari variabel-variabel tersebut. Pada skripsi ini, untuk merepresentasikan ketergantungan antar variabel akan digunakan model copula. Copula diterapkan dalam memodelkan ketergantungan pada studi keuangan dan statistik, bahkan diperkenalkan dalam studi aktuaria untuk menghitung total kerugian pada industri asuransi kendaraan bermotor. Perusahaan asuransi, sebagai pihak yang menyediakan asuransi kendaraan bermotor, harus bisa memprediksi kemungkinan kerugian yang akan terjadi guna memprediksi kewajiban dan menyusun strategi perusahaan di masa depan. Total kerugian pada asuransi kendaraan bermotor dapat dihitung berdasarkan dua variabel, yaitu frekuensi klaim dan severitas klaim. Kedua variabel tersebut memiliki distribusi yang berbeda dan terkadang ditemukan ketergantungan di antara keduanya sehingga diperlukan model yang dapat menghubungkannya. Dalam beberapa kasus, kerugian juga dipengaruhi oleh faktor-faktor risiko lainnya yang disebut sebagai kovariat. Salah satu metode analisis statistik untuk menggabungkan dua distribusi data berbeda yang saling berhubungan beserta kovariat adalah dengan model copula berbasis regresi. Hal ini dilakukan dengan menggabungkan marginal Generalized Linear Model dari frekuensi dan severitas klaim. Dengan karakteristik yang berbeda dari kedua data maka model dibentuk dengan pendekatan mixed copula. Copula yang digunakan adalah copula Gaussian dan estimasi parameter dilakukan dengan Maximization by Parts (MBP). Berdasarkan parameter yang diperoleh, dapat disimpulkan bahwa terdapat ketergantungan positif antara frekuensi dan rata-rata severitas klaim. Dengan mempertimbangkan unsur dependensi pada frekuensi dan rata-rata severitas klaim, diperoleh nilai ekspektasi total kerugian yang lebih besar dibandingkan tanpa mempetimbangkan unsur dependensi.

In statistical studies, measuring dependencies between variables is often necessary to understand the behavior of those variables. In this thesis, to represent the dependency between variables, the copula model will be used. Copula is applied to modeling dependencies in financial and statistical studies and has even been introduced in actuarial studies to calculate total losses in the motor vehicle insurance industry. Insurance companies, as parties that provide motor vehicle insurance, must be able to predict possible losses that will occur in order to predict liabilities and develop company strategies in the future. Total losses in motor vehicle insurance can be calculated based on two variables, namely claim frequency and claim severity. These two variables have different distributions, and sometimes dependencies are found between them, so a model is needed that can relate them. In some cases, losses are also influenced by other risk factors known as covariates. One statistical analysis method for combining two different, interconnected data distributions and covariates is a regression-based copula model. This is done by combining marginal generalized linear models of claim frequency and severity. With the different characteristics of the two data sets, the model was formed using a mixed copula approach. The copula used is a Gaussian copula, and parameter estimation is done using Maximization by Parts (MBP). Based on the parameters obtained, it can be concluded that there is a positive dependence between the frequency and average claim severity. By considering the dependency element on the frequency and average severity of claims, the expected total loss value is greater than without considering the dependency element."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fara Fathia
"Tesis ini bertujuan untuk mengestimasi premi murni terhadap data zero inflated klaim asuransi kecelakaan melalui Generalized Linear Model (GLM). Penelitian ini berfokus pada pemodelan data frekuensi klaim dengan zero inflated melalui regresi Zero Inflated Poisson (ZIP) untuk menjembatani kesenjangan yang ada. Berdasarkan peneltian-penelitian terdahulu, frekuensi klaim kerap diasumsikan berdistribusi Poisson dalam perhitungan premi murni dengan GLM tanpa memperhatikan kehadiran excess zeros. Sedangkan estimasi parameter severity (besar klaim) ditentukan melalui regresi Gamma. Selajutnya premi murni diestimasi dengan melakukan perkalian antara frekuensi dan severity atas asumsi independensi. Data yang digunakan dalam penelitian merupakan data sekunder yang diperoleh dari PT ABC sebagai asuransi kecelakaan kerja. 1000 sample data terdiri dari tahun 2017, meliputi frekuensi klaim dan severity yang merupakan variabel dependen, serta data tertanggung yang diataranya adalah usia, jenis kelamin, kelompok lingkungkan kerja, dan masa aktif polis asuransi (exposure) sebagai variabel independen.
Hasil penelitian menunjukkan bahwa model regresi ZIP sesuai untuk mengestimasi frekuensi klaim pada data zero inflated PT ABC. Model regresi Gamma juga menunjukkan kesesuaian dalam mengestimasi severity data PT ABC. Estimasi premi murni yang dihasilkan menunjukkan bahwa jenis kelamin tidak berpengaruh signifikan terhadap besar premi murni. Usia dan kelompok risiko lingkungan kerja merupakan variabel yang paling signifikan terhadap besar premi murni. Frekuensi klaim kecelakaan kerja tertinggi dimiliki tertanggung dengan usia 18 tahun. Frekuensi klaim menurun seiring pertambahan usia baik pada tertanggung wanita maupun pria, namun kembali meningkat di usia akhir 50 tahun hingga 56 tahun pada tertanggung pria. Besar severity tidak selalu sejalan dengan premi murni sehingga dapat disimpulkan bahwa frekuensi klaim merupakan komponen yang lebih berpengaruh terhadap pergerakan premi murni. Premi murni yang dihasilkan lingkungan kerja dengan risiko rendah lebih besar dari pada lingkungan kerja dengan risiko sedang.

This thesis aims to estimate pure premium towards zero inflated claim data of accident insurance through the Generalized Linear Model (GLM). This study focuses on modeling the claim frequency data with excess zeros through the Zero Inflated Poisson (ZIP) regression to bridge the gap between previous studies where it is generally assumed to be distributed in Poisson. Gamma regression is used to estimate the parameter of severity. Pure premiums are estimated by multiplying the frequency and severity in assumption of independence. The data is obtained from accident insurance company PT ABC. 1000 data samples consist of 2017, including the claim frequency and severity as dependent variable, as well as age, sex, occupational environment, and the active period of the insurance policy (exposure) as independent variables.
The results indicate that ZIP regression model is suitable for estimating the claim frequency. The Gamma regression model also shows conformity in estimating the severity. The estimation of pure premiums shows that gender does not have a significant effect on its ammount, while age and occupational environment is the most significant variable. The severity is not always in line with pure premium so it can be concluded that the frequency of claims is a component that has more influence on the movement of pure premiums. Pure premiums produced by a work environment with a low risk are greater than those in a medium-risk work environment. The highest amount of pure premium is on 18 years insureds. Pure premium decline on age, both for the insured women and men, and increased on the end of 50 years to 56 years in the insured man.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2019
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ariandy Dena Putra
"Permasalahan mengenai pencadangan klaim pada perusahaan asuransi merupakan salah satu isu yang harus dihadapi oleh para pelaku bisnis asuransi. Ketersediaan dana klaim oleh perusahaan merupakan hal yang mendasar pada perusahaan asuransi untuk dapat mempertahankan bisnis mereka dan menjaga kelangsungan dari usahanya. Pencadangan klaim ini juga diperlukan perhitungan secara detil mengenai pengalokasian dana yang dimiliki perusahaan berdasarkan penerimaan penjualan produk yang dikeluarkan, untuk menghasilkan profit di dalam bisnis mereka. Berangkat dari keterbatasan model-model terdahulu, tulisan ini ingin memperkenalkan model penghitungan alternatif, yakni model quantile regression. Menurut Chan 2015 model quantile regression ini dianggap memiliki kemampuan untuk melakukan penghitungan pencadangan klaim terhadap data yang memiliki variansi heterogen dan tidak memiliki distribusi yang jelas sebagaimana kebanyakan data asuransi. Penelitian ini akan melakukan penghitungan estimasi cadangan klaim dengan mengadopsi model Quantile Regression. Tujuan utama dari penelitian ini adalah ingin mencoba bagaimana proses penghitungan estimasi dengan model Quantile Regression serta melihat apakah model ini bisa diterapkan pada konteks perusahaan asuransi XYZ di Indonesia. Data yang digunakan dalam penelitian ini adalah data klaim produk asuransi kendaraan bermotor perusahaan XYZ tahun 2013 sampai dengan 2015.

The issue of claim reserves on insurance companies is one of the issues that insurance businesses have to cope with. The availability of claims within the company is fundamental to insurance companies to maintain their business and keep the business going. This claim reserves is also required in precise calculations regarding the allocation of funds owned by the company based on the sale of products issued, to generate profit in their business. Based on the limitations of the traditional models, this paper wants to introduce an alternative model of estimating claim reserve, it is called quantile regression model. According to Chan 2015 this quantile regression model is considered to have the ability to calculate the reserve of claims against data with heterogeneous variance and have no clear distribution, which is mostly insurance data known for. This research will try to calculate estimation for claim reserve by adopting Quantile Regression model. The main purpose of this research is to try how to calculate the estimation with Quantile Regression model and see if this model can be applied to the context of XYZ insurance company in Indonesia. The data used in this research are the claims data of XYZ company s for motor vehicle insurance products from 2013 to 2015.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2017
T49985
UI - Tesis Membership  Universitas Indonesia Library
cover
Arinto Muha Admojo
"ABSTRAK
Asuransi pertanian berbasis indeks iklim di Indonesia belum memiliki riwayat klaim kerugian akibat kekeringan karena defisit hujan saat tesis ini ditulis. Padahal, riwayat tersebut dalam industri, secara empiris digunakan untuk perkiraan cadangan. Sementara itu pengembangannya kedepan, kerugian terekspektasi perlu diestimasi. Data curah hujan harian, sejak 1990 sampai dengan tahun 2015 di Kabupaten Majalengka, Jawa Barat, dianalisa untuk perkiraan kerugian hipotetikal, yang kejadiannya muncul kerena curah hujan kumulatifnya kurang dari nilai picu curah hujan defisit. Kerugian terekspektasi selama musim kemarau dan musim hujan di Kabupaten Majalengka adalah Rp 3.944.620,- dan Rp 4.667.250,- secara beruturan per kontrak polis bila pertanggungan berdasarkan modal produksi padi sebesar Rp 12.700.000,- per masa tanam per Ha tahun 2014 dengan nilai picu curah hujan 46,60 mm dan 361,37 mm secara berurutan.?

ABSTRACT
The records of claims losses due to drought or defisit rainfalls on the weather index based crop insurance in Indonesia have yet been available by the time this thesis is written. In fact, the records in the industry, are used empirically to estimate reserve. Meanwhile for the future development, the expected losses need to be estimated. The Daily rainfall data, from 1990 up to 2015 in Majalengka District, West Java, are analysed for estimating hypothetical losses, which events occur because the commulative rainfalls are less then the trigger of defisit rainfalls.The hypothetical expected losses during the dry season and wet season in Majalengka District are Rp 3,944,620, and Rp 4,667,250, in respectively per policy contract as the coverage basis is on the farming production cost in amount of Rp 12,700,000. per period of cultivation per Ha with the trigger of rainfalls are 46.60 mm dan 361.37 mm respectively. "
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2017
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Salsabila Zahra Aminullah
"

Setiap peristiwa, objek, atau individu dalam kehidupan saling terkait dan saling mempengaruhi. Untuk mengetahui bagaimana hubungan antara variabel acak dapat menggunakan copula. Copula dapat menghubungkan antara fungsi distribusi bivariat dengan fungsi distribusi marginal tanpa harus ada informasi keterkaitan tertentu antar variabel acak. Terdapat beberapa jenis copula, seperti copula elliptical, copula Archimedean, dan copula extreme value. Namun, dalam pemodelan multivariat, masing-masing jenis copula memiliki keterbatasan dalam memodelkan struktur ketergantungan yang kompleks dalam hal simetri dan sifat ketergantungan ekor. Kelas vine copula mengatasi keterbatasan ini dengan membangun model multivariat menggunakan copula bivariat dalam struktur berbentuk pohon. Copula bivariat yang digunakan dalam penelitian ini meliputi keluarga copula Clayton, Gumbel, Frank, Gaussian, dan student’s t. Penelitian ini membahas tentang konstruksi model vine copula, penaksiran parameter, dan aplikasinya. Konstruksi vine copula dilakukan melalui dekomposisi fungsi kepadatan peluang bersyarat dan melakukan substitusi fungsi kepadatan  copula bivariat ke dalam hasil dekomposisi tersebut. Data yang digunakan adalah data logaritma konsentrasi dari unsur kimia dalam sampel air di Colorado. Karena data yang digunakan merupakan data empiris yang tidak diketahui distribusi marginalnya, metode estimasi parameter yang digunakan adalah pseudo-maximum likelihood dengan estimasi sequential. Lalu, dilakukan pemilihan model yang paling sesuai dengan menggunakan kriteria informasi Akaike (AIC). Hasilnya menunjukkan bahwa Sesium dan Titanium memiliki hubungan dependensi terhadap Skandium. Selain itu, Skandium dan Titanium memiliki ketergantungan paling kuat dibandingkan dengan pasangan variabel lainnya.


Every event, object, or individual in life is interconnected and influences each other. To understand the relationships between random variables, one can use copulas. Copula can link the bivariate distribution function with marginal distribution functions without requiring specific information about the interdependence among random variables. There are several types of copulas, such as elliptical copulas, Archimedean copulas, and extreme value copulas. However, in multivariate modeling, each type of copula has limitations in modeling complex dependence structures in terms of symmetry and tail dependence properties. The class of vine copulas overcomes these limitations by constructing multivariate models using bivariate copulas in a tree-like structure. The bivariate copulas used in this study include the Clayton, Gumbel, Frank, Gaussian, and Student’s t copula families. This study discusses the construction of vine copula models, parameter estimation, and their applications. The construction of vine copulas is done through the decomposition of conditional probability density functions and substituting bivariate copula density functions into the decomposition results. The data used in the study is the logarithm of the concentration of chemical elements in water samples in Colorado. Since the data used are empirical data with unknown marginal distributions, the parameter estimation method used is pseudo-maximum likelihood with sequential estimation. Model selection is then performed using the Akaike information criterion (AIC) to determine the most suitable model. The results indicate that Caesium and Titanium have a dependency relationship with Scandium. Moreover, Scandium and Titanium exhibit the strongest dependence compared to other variable pairs.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>