Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 131460 dokumen yang sesuai dengan query
cover
Fatah Abdul Wahab
"Computer vision merupakan cabang dari bidang ilmu kecerdasan buatan yang mempelajari bagaimana sebuah komputer dapat memahami suatu gambar yang diberikan. Salah satu contoh nyata dari penerapan computer vision adalah pengenalan objek bola pada robot sepak bola. Salah satu tantangan yang dapat menyulitkan robot dalam mendeteksi bola adalah warna bola yang sebagian besar berwarna putih. Hal ini menjadi tantangan karena warna putih sangat rentan terhadap noise. Metode tradisional yang hanya dapat mendeteksi satu bentuk saja tidak cukup untuk memenuhi kebutuhan tersebut, karenanya digunakan pendeteksian berdasarkan machine learning. Salah satu metode pengenalan objek berdasarkan machine learning yang sering digunakan adalah metode Jaringan Saraf Tiruan. Pada tulisan ini, sistem penglihatan robot sepak bola untuk mengenali objek bola dirancang menggunakan metode jaringan saraf tiruan dengan library pengolahan citra OpenCV dalam bahasa pemrograman C++. Berdasarkan pengujian kinerja sistem dalam mendeteksi bola pada gambar mendapatkan nilai accuracy sebesar 0.9987, nilai precision sebesar 0.8055, nilai recall sebesar 0.7, dan FPS sebesar 6. Sedangkan kinerja sistem pembanding dengan menggunakan SVM pada dataset yang sama mendapatkan nilai accuracy sebesar 0.988, nilai precision sebesar 0.167, nilai recall sebesar 0.966, dan FPS sebesar 7,7. Setelah kedua metode dibandingkan dapat disimpulkan bahwa metode jaringan saraf tiruan dapat mendeteksi bola lebih akurat berdasarkan nilai F-Score yang didapatkan yaitu 0.749 pada sistem yang dibuat berbanding dengan 0.285 pada sistem pembanding, namun memerlukan waktu proses yang lebih lama.

Computer vision is a branch of the field of artificial intelligence that studies how a computer can understand a given image. An example of the application of computer vision is detecting a ball object on a soccer robot. One of the challenges that can make it difficult for the robot to detect the ball is the color of the ball, which is mostly white. This becomes a challenge because white is very susceptible to noise. Traditional methods that can only detect one form are not sufficient to meet these needs, therefore detection based on machine learning is used. One of the object detection methods based on machine learning that is often used is the Artificial Neural Network method. In this paper, the system to detect ball object is implemented using an artificial neural network method with the OpenCV image processing library in the C ++ programming language. Based on testing the performance of the system at detecting ball have the accuracy value of 0.9987, precision value of 0.8055, recall value of 0.7, and FPS of 6. While the performance of the comparison system using SVM on the same dataset gets accuracy value of 0.988, precision value of 0.167, recall value of 0.966, and FPS of 7.7. After the two methods were compared, it can be concluded that the artificial neural network method can detect the ball more accurately based on the F-Score value obtained, which is 0.749 compared to 0.285, but it requires a longer processing time"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lazuardi Naufal
"Sistem navigasi memegang peranan penting dalam proses pelacakan posisi suatu objek,
khususnya objek bergerak seperti kendaraan, pesawat, rudal, kapal, dan lainnya.
Beberapa jenis sistem navigasi yang umumnya digunakan saat ini adalah sistem
pemosisian global (GPS) dan sistem navigasi inersia (INS). GPS bergantung pada satelit
agar dapat menentukan posisi suatu objek secara konstan. Berbeda dengan GPS, INS
bekerja secara independen dengan memanfaatkan seperangkat sensor inersia
(akselerometer dan giroskop) dan perangkat pemrosesan untuk mencari posisi, kecepatan,
orientasi, dan besaran navigasi penting lainnya. Skripsi ini menyelidiki kinerja dari
integrasi penggunaan GPS dan INS secara bersamaan dalam pelacakan posisi objek
bergerak dan pencarian besaran navigasi penting lainnya. Proses filtering juga akan
dilakukan untuk memberikan estimasi posisi yang lebih akurat dan meredamkan noise.
Pengujian akan dilakukan pada mobil dengan lintasan yang cukup mendukung dalam
pengambilan data agar dapat dianalisis. Analisis data hasil pengujian tersebut akan
menentukan seberapa baik rancangan sistem ini dalam pelacakan posisi objek bergerak.

The navigation system plays an important role in the process of tracking the position of
an object, especially the moving objects such as vehicles, aircraft, missiles, ships, etc.
Some types of navigation systems that are generally used today are global positioning
system (GPS) and inertial navigation system (INS). GPS relies on satellites to constantly
determine the position of an object. Unlike GPS, INS work independently by utilizing a
set of inertial sensors (accelerometers and gyroscopes) and processing devices to find the
position, velocity, orientation, and other important navigation quantities. This thesis
investigates the performance of the integration of GPS and INS simultaneously in
tracking the position of moving object and searching for other important navigation
quantities. The filtering process will also be carried out to provide a more accurate
estimated position and reduce noise. The test will be carried out on a car with a track that
is sufficiently supportive of data collection so that it can be analyzed. Analysis of the test
results data will determine how well the design of this system is in tracking the position
of moving objects.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Adi Nugroho
"Pengenalan wajah telah menjadi topik pengolahan citra yang banyak mengalami perkembangan. Pengembangan yang dilakukan bertujuan mengatasi kesulitan-kesulitan dalam pengenalan wajah, diantaranya pose pengambilan gambar. Penelitian ini bertujuan membuat rancang bangun rekognisi wajah tiga dimensi dengan sistem Fuzzy dan Jaringan Saraf Tiruan Hemisfer untuk mengatasi masalah tsersebut. Sistem fuzzy bertujuan untuk mengestimasi sudut pengambilan gambar dengan menempatkan informasi gambar ke suatu titik di ruang vektor fuzzy atau manifold dari data referensi menggunakan jarak terdekat fuzzy. Informasi sudut akan diteruskan ke jaringan saraf tiruan yang mengenali wajah-wajah dengan cara mempelajari wajah-wajah yang disediakan untuk pembelajaran. Informasi gambar yang dimasukkan ke dalam jaringan saraf tiruan terlebih dahulu dikompresi dengan metode Principle Component Analysis (PCA). Keunggulan jaringan saraf tiruan hemisfer dalam pengenalan wajah tiga dimensi adalah adanya faktor pengali neuron yang besarnya bergantung dari informasi sudut pengambilan gambar, sehingga gambar dua dimensi dapat diproyeksikan ke ruang tiga dimensi. Metode pembelajaran yang digunakan pada tulisan ini ialah pengembangan dari metode backpropagation. Penelitian diawali dengan pengambilan data dari alat pengambil gambar wajah tiga dimensi, perancangan sistem fuzzy dan jaringan saraf tiruan dalam MATLAB, dan validasi masing-masing sistem dengan data yang diambil. Sistem ini kemudian dikombinasikan dalam perangkat lunak MATLAB dan diuji dengan sebuah prototipe yang terdiri atas satu kamera. Hasil penelitian menunjukkan tingkat rekognisi sistem sebesar 76,29% pada saat validasi dan 37% saat aplikasi sistem satu kamera. Dari penelitian ini dibuktikan sistem dapat diaplikasikan untuk merekognisi wajah tiga dimensi, namun harus diperhatikan keakuratan pemotongan gambar untuk mendapat hasil yang akurat.

Face recognition is currently a highly discussed topic on image processing. The developments are aimed to overcome problems on recognizing face, such as various pose of image object. The study tries to solve the problem by creating a system design of 3D face recognition using a fuzzy system and Hemispheric Structure Hidden Layer of Artificial Neural Network to overcome the problem. The fuzzy system estimates pose information of the object taken. It is done by mapping the image taken to a point in a fuzzy vector space or manifold using fuzzy nearest distance. Pose information is then projected to the artificial neural network which is able to recognize faces after formerly learned a set of learning database. The data submitted to the artificial neural network is compressed by Principle Component Analysis (PCA). Main advantage of hemispheric neural network on 3D face recognition is the multiplying factor which values depend on the image pose information, so that the two dimensional images can be projected into three dimensional space. Learning method used in this study is an expansion of backpropagation. The study begins by taking experimental data from 3D face capturing devices, developing fuzzy system and artificial neural network in MATLAB, and validating both systems. The system is then combined in MATLAB and tested by a single unit camera prototype. Results show the system able to reach recognition rate of 76.29% on validation and 37% on single unit camera application. The study proves that the system is applicable for a 3D face recognition system, however the accuracy of image cropping should be taken into consideration for an accurate result.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65124
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisaa Primadini
"Jaringan Saraf Tiruan adalah salah satu metode baru yang dikembangkan untuk pemecahan berbagai masalah kompleks yang tidak dapat diselesaikan secara analitik. Salah satu pengembangannya adalah metode jaringan saraf pembelajaran Radial Basis Function, dengan metode inisialisasi bobot Nguyen-Widrow dan Orthogonal Least Square (OLS). Akurasi dan kecepatan pembelajaran yang dimiliki oleh Radial Basis Function (RBF) sangat menarik untuk diaplikasikan pada sistem kendali. Pemodelan Forward dan Invers sistem dilakukan dengan metode RBF dengan mengambil data sistem SISO Pressure Process Rig. Setelah dilakukan pemodelan, jaringan saraf tiruan akan diuji dengan Direct Inverse Test. Hasil identifikasi sistem dan identifikasi invers pada sistem Pressure Process Rig memiliki hasil yang baik. Begitu pula saat diuji coba dengan Direct Inverse Test, sistem kendali mempunyai performa cukup baik, namun tidak menutup kemungkinan adanya skema model lain yang dapat digunakan dalam pemodelan sistem.

Artificial Neural Network is a newer field of study that could solve any complex problem that could not be done by analytical solution. Radial Basis Function (RBF) is one of the newer method of Artificial Neural Network with two distinct weight initialization method ; Nguyen-Widrow and Orthogonal Least Square (OLS) methods. RBF?s high recognition rate and very fast learning speed are interesting enough to be used in control system. RBF is used in forward and inverse identification in modelling Pressure Process Rig system. Direct Inverse Test is also done in order to make sure Radial Basis Function perform well in identifying a particular system. Radial Basis Function had a great perfomance in both forward and inverse system identification and also in Direct Inverse Test, but it is possible to have another learning scheme in system modelling.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55173
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ravialdy Hidayat
"Issue keselamatan atau safety merupakan salah satu capaian yang paling penting di industri pertambangan. Hal ini dikarenakan adanya kecelakaan kerja dapat berakibat fatal bagi intensitas produksi yang dapat dilakukan hingga berpotensi untuk terjadinya pencabutan izin operasional perusahaan oleh pemerintah. Pada PT X sendiri, pelanggaran atau deviasi yang berisiko sangat tinggi untuk terjadinya kecelakaan kerja yang mengakibatkan kematian adalah terkait dengan adanya manusia di area operasional pertambangan tanpa izin dan jarak tidak aman dari kendaraan-kendaraan yang ada, khususnya kendaraan dengan muatan berat seperti HD (Heavy Duty Dump Truck). Oleh karena itu, pada penelitian ini akan diusulkan metode deteksi objek yang berbasis deep learning YOLOv4 untuk mendeteksi objek manusia dan HD beserta penggunaan jarak Euclidean untuk estimasi jarak tidak aman antar kendaraan HD. Dengan menggunakan sebanyak 2009 gambar sebagai data latih dan sebanyak 201 gambar sebagai data uji, dihasilkan nilai mAP terbaik selama proses pelatihan model sebesar 88,76% dan nilai recall objek manusia dan HD pada sebanyak 10 video uji masing-masing sebesar 56,96% dan 55,73%. Nilai recall tersebut dapat meningkat cukup signifikan manakala teknologi CCTV dilakukan proses zoom in. Adanya penelitian ini diharapkan dapat membantu pengawas untuk mendeteksi deviasi-deviasi yang terjadi di area operasional pertambangan, khususnya untuk deteksi objek manusia dan HD beserta prediksi jarak tidak aman antar HD.

The safety issue is one of the most important achievements in the mining industry. This is because work accidents can be fatal for the intensity of production that can be carried out and the government has the potential to revoke the company's operating license. At PT X itself, violations or deviations that pose a very high risk for work accidents resulting in death are related to the presence of humans in the mining operational area without a permit and an unsafe distance from existing vehicles, especially vehicles with heavy loads such as HD. Therefore, in this study, an object detection method based on deep learning YOLOv4 will be proposed to detect human and HD (Heavy Duty Dump Truck) objects along with the estimation of unsafe distances between HD vehicles using euclidean distance method. By using as many as 2009 images as training data and as many as 201 images as test data, the best mAP value during the model training process is 88.76% and the recall value of human and HD objects in 10 test videos are 56.96% and 55.73%. The recall value can increase significantly when CCTV technology is zoomed in. The existence of this research is expected to help supervisors to detect deviations that occur in the mining operational area, especially for the detection of human objects and HD along with predictions of unsafe distances between HD."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Alfi Aldolio
"Kamera digunakan oleh pengelola jalur lalu lintas kendaraan di jalan besar pada beberapa kota-kota di Indonesia untuk tujuan pengawasan, pengendalian, hingga pengambilan bukti pelanggaran atau kronologi kecelakaan pada ruas jalan tersebut. Namun, penggunaan kamera ini masih dalam tahap menerima data yang kemudian tindakan selanjutnya dilakukan secara manual. Sedangkan, banyak kebutuhan yang dapat dipenuhi dengan adanya perkembangan teknologi pada bidang komputasi. Salah satunya adalah penggunaan kamera tersebut dapat dimaksimalkan dengan mengimplementasikan algoritma pembelajaran mesin untuk menentukan jalur lalu lintas mana yang menjadi prioritas pada persimpangan dengan kuantifikasi kepadatan kendaraan pada ruas jalan. Pada penilitian ini sistem kuantifikasi kepadatan kendaraan melalui data gambar dikaji dengan menggunakan algoritma untuk mendeteksi objek kendaraan pada seperti YOLOv4 yang merupakan state-of-the-art dalam algoritma pendeteksian karena memiliki akurasi yang lebih baik dan juga lebih cepat dibandingkan dengan arsitektur deteksi objek lainnya. Selain itu, diimplementasikan juga algoritma pelacakan objek kendaraan seperti CSRT/KCF sehingga tidak perlu melakukan proses deteksi secara terus-menerus dan dapat mengurangi biaya komputasi. Hasil percobaan pada penilitian ini membuktikan bahwa kombinasi model deteksi dan pelacakan dapat digunakan secara real-time maupun interaktif. Walaupun nilai mAP dari model YOLOv4 mengalami penurunan sekitar 20.65%, namun perbedaan antara hasil kuantifikasi kepadatan kendaraan sistem dan nilai aktual masih tidak terlalu jauh yaitu sekitar 1-5%, tergantung dengan jenis model yang digunakan.

Cameras are used by traffic lane managers on major roads in several cities in Indonesia for the purpose of monitoring, controlling, and collecting evidence of violations or chronology of accidents on those roads. However, the use of this camera is still in the stage of receiving data, then further actions are carried out manually. Meanwhile, many needs can be met with the development of technology in the field of computing. One of them is that the use of the camera can be maximized by implementing machine learning algorithms to determine which traffic lanes are the priority at intersections by quantifying the density of vehicles on the road. In this study, the vehicle density quantification system through image data will be studied using an algorithm to detect vehicle objects such as YOLOv4 which is a state-of-the-art detection algorithm because it has better accuracy and is also faster than other object detection architectures. In addition, vehicle object tracking algorithms such as CSRT/KCF will also be implemented so that there is no need to carry out the detection process continuously and can reduce computational costs. To meet the needs of image data processing from the video as well as the configuration of the AI ​​model, one of the libraries, namely OpenCV, will be used to facilitate the creation and optimization of machine learning models/algorithms. This research proves that the combination of detection and tracking models can be used in real-time or interactively. Although the mAP value of the YOLOv4 model has decreased by about 20.65%, the difference between the system vehicle density quantification results and the actual value is still not too far away, around 1-5%, depending on the type of model used.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dina Chahyati
"Pelacakan orang banyak pada video berdasarkan hasil deteksi orang pada setiap frame merupakan problem yang menantang karena kompleksitas yang dimilikinya. Kesalahan deteksi orang pada setiap frame akan menyebabkan kesalahan pelacakan orang pada keseluruhan video. Pada penelitian ini, diusulkan metode pelacakan yang dapat meminimalkan propagasi kesalahan dari kesalahan deteksi dengan waktu pelacakan yang tidak terlalu lama. Penelitian ini menggunakan deep convolutional neural network (DCNN) seperti Faster-RCNN dan RetinaNet sebagai detektor objek dan algoritma Hungarian sebagai metode asosiasi antar orang-orang yang terdeteksi di setiap frame. Matriks masukan untuk algoritma Hungarian terdiri dari kedekatan vektor ciri DCNN yang dihasilkan oleh Siamese Network, jarak titik tengah bounding box, dan perbandingan irisan-gabungan (IoU) dari bounding box. Pada tahap akhir dilakukan interpolasi terhadap hasil pelacakan. Metode yang diusulkan menghasilkan MOTA 61.0 pada dataset benchmark pelacakan orang banyak MOT16.

Multiple object (human) tracking in video based on object detection in every frame is a challenging problem due to its complexity. Error in the detection phase will cause error in the tracking phase. In this research, a multiple human tracking method is proposed to minimize the error propagation. The method uses deep convolutional neural network (DCNN) such as Faster-RCNN and RetinaNet as object detector and Hungarian algorithm as association method among detected humans in consecutive frames. The input matrix for Hungarian algorithm consists of the similarity of DCNN feature vector resulted from Siamese network, the distance of bounding box centers, and bounding box intersection of union (IoU). In the last step, interpolation is applied to the tracking result. The proposed method achieves 61.0 MOTA in multiple object tracking benchmark MOT16."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Lauren
"ABSTRACT
Skripsi ini membahas mengenai reduksi suatu kumpulan data menggunakan metode penggabungan data. Kumpulan data yang digunakan dalam penelitian ini adalah data bunga iris dengan 3 macam kelas dan data aroma dengan 18 macam kelas. Hasil penggabungan kumpulan data tersebut akan menjadi data masukan dalam pembelajaran algoritma jaringan saraf tiruan propagasi balik dan jaringan saraf probabilistik yang dipergunakan dalam penelitian ini. Hasil pembelajaran menggunakan data hasil penggabungan tersebut akan dibandingkan dengan hasil pembelajaran menggunakan data tanpa penggabungan. Hasil penelitian ini menyatakan bahwa penggunaan data hasil penggabungan akan mempercepat pembelajaran dan meningkatkan kestabilan keluaran sistem, namun mengurangi akurasi tingkat pengenalan

ABSTRACT
This thesis discusses about reduction of a data set using data merging method. The data set used in this study are iris set data with 3 kinds of classes and odor set data with 18 kinds of classes. The result of merging the data set become the input data in the learning algorithm backpropagation neural network and probabilistic neural network on learning part. Learning output using data with merging method will be compared with the results of the learning using data without merging. The results of this study suggest that the use of data resulting from this combination will accelerate learning and improve stability of output system, but reduces the level of recognition accuracy."
2014
S56492
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bariqi Abdillah
"ABSTRAK
Pelacakan multi objek merupakan salah satu topik penting pada bidang ilmu komputer yang memiliki banyak aplikasi, diantaranya adalah sebagai sistem pengawasan, navigasi robot, analisis bidang olahraga, autonomous driving car, dan lain-lain. Salah satu permasalahan utama pelacakan multi objek adalah oklusi. Oklusi adalah objek yang tertutupi oleh objek lainnya. Oklusi dapat menyebabkan ID antar objek tertukar. Penelitian ini membahas oklusi pada pelacakan multi objek serta penyelesaiannya dengan Network Flow. Diberikan data deteksi objek-objek pada setiap frame-nya, tugas pelacakan multi objek adalah mengestimasi pergerakan setiap objek kemudian menghubungkan objek-objek hasil estimasi dengan objek-objek pada frame berikutnya yang bersesuaian atau yang lebih dikenal dengan asosiasi data. Pandang setiap objek pada sebuah frame sebagai node, kemudian ada edge yang menghubungkan setiap node pada frame satu dengan frame lainnya, arsitektur seperti ini pada teori graph dikenal dengan Network Flow. Kemudian cari himpunan edge yang memberikan peluang terbesar transisi dari suatu frame ke frame berikutnya, atau pada dunia optimisasi lebih dikenal dengan max-cost network flow. Edge pada kasus ini berisikan informasi seberapa besar peluang suatu node berpindah ke node pada frame setelahnya. Perhitungan peluang berdasarkan jarak posisi dan kemiripan fitur, fitur yang digunakan adalah fitur CNN. Penulis memodelkan max-cost network flow sebagai permasalahan maximum likelihood yang kemudian diselesaikan dengan algoritme Hungarian. Data yang digunakan pada penelitian ini adalah 2DMOT2015. Hasil evaluasi performa menunjukkan sistem yang dibangun memberikan akurasi 20.1% dengan ID yang tertukar sebanyak 3084 dan pemrosesan frame yang cepat, mencapai 215.8 frame/second.

ABSTRACT


Multi object tracking is one of the most important topics of computer science that has many applications, such as surveillance system, navigation robot, sports analysis, autonomous driving car, and others. One of the main problems of multi-object tracking is occlusion. Occlusion is an object that is covered by other objects. Occlusion may cause the ID between objects to be switched. This study discusses occlusion on multi-object tracking and its completion with network flow. Given objects detection on each frame, the task of multi object tracking is to estimate the movement of objects and then connect the estimation objects corresponding to the objects in the next frame or well known as the data association. Notice that each object on a frame as a node, then there is an edge connecting each node on a frame with other frames, this architecture in graph theory is known as network flow. Then find the set of edges that provide the greatest probaility of transition from one frame to the next, or to the optimization problem well known as max-cost network flow. Edge contains information on how probabiltity a node moves to the node in the frame afterwards. This probability calculation is based on position distance and similarity feature between frames, the feature used is CNN feature. We modeled max-cost network flow as the maximum likelihood problem which was then solved with the Hungarian algorithm. The data used in this research is 2DMOT2015. Performance evaluation results show that the system built gives accuracy 20.1% with the ID switch is 3084 and fast computational process on 215.8 frame/second.

"
2018
T52044
UI - Tesis Membership  Universitas Indonesia Library
cover
Bangga Rakana Adian
"Angka penularan COVID-19 yang terus meningkat mendorong berbagai inovasi diciptakan untuk memutus rantai penyebarannya. Salah satu inovasi tersebut dapat diciptakan dengan menggabungkan pengetahuan dari Algoritma Haar Cascade sebagai pendeteksi wajah forntal dan jaringan saraf konvolusional (CNN) sebagai klasifikator. Konsep ini digunakan untuk membuat computer vision sebagai media pendeteksi penggunaan masker di lingkungan masyarakat. Media yang dapat digunakan untuk membuat pendeteksi ini adalah kamera. Hasil deteksi ini dapat menghasilkan suatu data baru yang dapat bermanfaat untuk kepentingan bersama seperti perhitungan jumlah pengguna masker, bukan pengguna masker, dan total orang yang terdeteksi oleh kamera. Pengujian dilakukan untuk meneliti kemampuan inovasi untuk diimplementasikan. Dilakukan dua jenis pengujian yaitu pengujian berbasis scenario penambahan jumlah objek dan pengujian langsung. Pengujian berbasis scenario ditujukkan untuk melakukan pengujian performansi minimum hasil tuning model dengan menambahkan jumlah objek ataupun variasi dari objek. Sedangkan pengujian langsung ditujukkan untuk menguji performansi maksimal dari model yang diujikan secara langsung. Hasil yang difokuskan dari seluruh pengujian adalah nilai akurasi dan hasil perhitungan setiap jenis objek. Didapatkan beberapa factor yang mempengaruhi hasil seperti resolusi kamera, kecepatan gerak objek dan sudut hadap wajah, jumlah dan variasi dataset yang digunakan untuk membuat model, dan sumber pencahayaan. Rata-rata nilai akurasi dari masing-masing pengujian adalah 95% untuk pengujian scenario dan 68,9% untuk pengujian langsung.

The increasing number of COVID-19 transmission has encouraged various innovations to be created to break the chain of its spread. One such innovation can be found by combining knowledge from the Haar Cascade Algorithm as a forntal face detection and convolutional neural network (CNN) as a classifier. This concept is used to make computer vision a medium for detecting the use of masks in the community. The media that can be used to make this detector is a camera. The results of this detection can generate new data that can be of mutual benefit, such as the calculation of the number of mask users, not mask users, and the total number of people detected by the camera. Tests are carried out to examine the ability of innovation to be implemented. Two types of examiners were carried out, namely scenario-based testing of increasing the number of objects and direct testing. Scenario-based testing is intended to perform tests to test the minimum result model by adding the number of objects or variations of the objects. Meanwhile, the direct tester is aimed at testing the maximum performance of the model being tested directly. The focused results of the test are accurate values and the calculation results of each type of object. There are several factors that affect the results such as camera resolution, object speed and face angle, number and variation of datasets used to create models, and lighting sources. The average accuracy value of each test is 95% for the test scenario and 68,9% for the direct test."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>