Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 38401 dokumen yang sesuai dengan query
cover
M.Hilman Gumelar Syafei
"Beberapa studi yang telah dilakukan sebelumnya menunjukkan bahwa minyak kelapa sawit dapat menghasilkan senyawa hidro karbon yang sebagian besarnya berupa bio-gasoline. Diantara cara yang dapat dilakuakn untuk mengolah minyak kelapa sawit adalah melalui teknologi Fluid Catalytic Cracking (FCC). Penggunaan teknologi konversi FCC saat ini juga telah dimanfaatkan untuk menghasilkan bahan bakar biofuel yang dihasilkan dari material minyak nabati. Grup riset AIR mengembangkan sebuah teknologi teknologi sistem FCC skala bench untuk mengolah minyak kelapa sawit menjadi bahan bakar nabati. Untuk meningkatkan dan mengoptimasi kinerja sistem FCC yang dikembangkan oleh grup riset AIR, diperlukan sebuah metode yang dapat digunakan untuk mengestimasi karakteristik dari sistem tersebut. Studi ini akan membahas tentang pemodelan hidrodinamika sistem FCC yang dikembangkan oleh Grup riset AIR melalui prinsip Atomic Model. Pemodelan dilakukan dengan menggunakan software opensource OpenModelica. Diperoleh bahwa model atomic dapat digunakan untuk mengestimasi karakteristik aliran hidrodinamika sistem FCC yang dikembangkan oleh Grup riset AIR

A number of previous study show that palm oil coul be processed to produce hydro carbon compound that mainly contains bio-gasoline. Among various method, the conversion process could be performed by using fluid catalytic cracking. FCC is also utilized to produce biofuel from the others bio-oil source. Ahmad Indra Research Group (AIR) has developed a bench-scale FCC technology for converting pal oil into biofuel. In order to optimize the FCC performance, it needs a method that could be used to estimate the characteristics of the FCC system. This study discuss about the hydrodynamic modeling of the FCC system through atomic model. The modeling is performed by using OpenModelica open source software. It is obtained that the atomic model could be usde to estimate the hydrodynamics characteristics of the FCC system."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Venuto, Paul B.
New York: Marcel Dekker, 1979
665.533 VEN f
Buku Teks SO  Universitas Indonesia Library
cover
Tanwir Ahmad Farhan
"Fluid Catalytic Cracking (FCC) merupakan metode perengkahan minyak nabati menjadi fraksi yang lebih sederhana dan menghasilkan produk biofuel. Grup riset AIR mengembangkan sebuah teknologi sistem FCC skala bench untuk mengolah minyak kelapa sawit menjadi bahan bakar nabati. Salah satu komponen sistem FCC adalah FCC furnace. FCC furnace merupakan tempat terjadinya proses pembakaran dan memberikan perpindahan panas yang tinggi di seluruh sistem FCC, terutama untuk memanaskan striper. Pengujian pertama menggunakan 2 kg bricket biochar dan pengujian kedua menggunakan 1kg bricket biochar dan 1kg biochar halus. Tujuan penelitian ini untuk melakukan optimasi online menggunakan model ANN dan optimasi PSO pada FCC furnace. Optimasi pemodelan ANN dan Optimasi PSO dapat memprediksi temperatur maksimum striper terjadi dengan menggunakan 1 kg bricket biochar dan 1 kg biochar halus. Dengan menggunakan optimasi online, temperatur striper actual mencapai 131.25 oC ,dan perbedaan pada setiap temperatur distabilkan dibawah 100 oC. Pemodelan algoritma optimasi online dapat berjalan dengan baik namun belum dapat meningkatkan temperatur aktual striper mencapai temperatur striper PSO maksimum dengan baik.

Fluid Catalytic Cracking (FCC) is a method of cracking vegetable oil into simpler fractions and producing biofuel products. The AIR research group developed a bench-scale FCC system technology to process palm oil into biofuels. One component of the FCC system is the FCC furnace. The FCC furnace is where the combustion process occurs and provides high heat transfer throughout the FCC system, especially for heating the striper. The first test used 2 kg of biochar bricks and the second test used 1 kg of biochar bricks and 1 kg of fine biochar. The purpose of this study is to carry out online optimization using the ANN model and PSO optimization on the FCC furnace. ANN modeling optimization and PSO optimization can predict the maximum temperature of the striper that occurs using 1 kg of biochar bricket and 1 kg of fine biochar. By using online optimization, the actual striper temperature reaches 131.25 oC, and the difference at each temperature is stabilized below 100 oC. Online optimization algorithm modeling can run well but has not been able to increase the actual temperature of the striper to reach the maximum PSO striper temperature properly."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Agus Prasetyo Nuryadi
"Fluid Catalytic Cracking (FCC) adalah proses untuk mengubah minyak berat menjadi bahan bakar yang lebih berharga seperti bensin dan LPG. Studi ini mempelajari model Computational fluid dynamics (CFD) partikel-fluida reaktif tiga dimensi untuk mendapatkan hidrodinamika, perpindahan panas, dan perilaku reaksi perengkahan dalam reaktor riser FCC industri 4000 ton/hari bahan baku Crude palm oil (CPO) untuk mendapatkan dimensi riser yang optimal. Pendekatan Eulerian-lagrangian dapat mensimulasikan interaksi partikel/katalis dengan menggunakan metode multiphase particle-in-cell (MP-PIC), sedangkan untuk mensimulasikan sifat katalis yang heterogen menggunakan model gaya hambat energy minimization multiscale (EMMS). Model kinetik empat lump dengan katalis HSZM-5 dipilih untuk mewakili jaringan reaksi perengkahan umpan CPO dalam model reaksi CFD. Hasil studi menunjukkan bahwa profil kecepatan fluida dan katalis meningkat di tengah reaktor riser karena proses reaksi perengkahan yang menghasilkan produk fraksi OLP dan GAS memiliki berat molekul yang lebih ringan, kemudian reaksi endothermik menyebabkan profil temperature turun dikarenakan panas reaksi berasal dari katalis. Hasil simulasi menunjukan konversi sebesar 70,1 wt%, yield OLP adalah 28,8 wt%, dan yield Gas adalah 42,1 wt%, sedangkan perbandingan yield hasil simulasi dan yield ekperimen literatur menunjukan error di bawah 2%. Dari hasil simulasi reaktor riser skala komersial di dapat dimensi optimal dengan diameter 0,8 m dan tinggi 37 m.

Fluid Catalytic Cracking (FCC) is a process for converting heavy oil into more valuable fuels such as gasoline and LPG. This study studies a three-dimensional Computational fluid dynamics (CFD) model of reactive fluid particles to obtain hydrodynamics, heat transfer, and cracking reaction behavior in an industrial FCC riser reactor of 4000 tons/day of crude palm oil (CPO) feedstock to receive optimal riser dimensions. The Eulerian-lagrangian approach can simulate particle/catalyst interactions using the multiphase particle-in-cell (MP-PIC) method while simulating heterogeneous catalyst properties using the energy minimization multi-scale (EMMS). The four lump kinetic model with HSZM-5 catalyst was chosen to represent the CPO feed cracking reaction network in the CFD reaction model. The study results show that the fluid and catalyst velocity profile increase in the middle of the riser reactor because the cracking reaction process that produces OLP and Gas products has lighter molecular weight. The endothermic reaction causes the temperature profile to decrease because the heat of the reaction comes from the catalyst. The simulation results show a conversion of 70.1 wt%, OLP yield is 28.8 wt%, and Gas yield is 42.1 wt%, while the comparison between the simulation yield and experimental literature yields an error below 2%. From the simulation results of a commercial scale riser reactor, the optimal dimensions can be obtained with a diameter is 0.8 m and a height is 37 m."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ulil Amri Nizhamul
"Fluid Catalytic Cracking (FCC) merupakan tempat dilakukannya proses pemutusan rantai karbon dengan menggunakan katalis pembagi (id cracker). Adapun, penelitian ini bertujuan untuk mengkaji sisa umur pakai dan kelayakan operasi kekomponen tersebut, yang merupakan salah satu bagian dari program pemeliharaan PT. X. Dengan demikian, hasil ini dapat digunakan dalam merencanakan sistem evaluasi, inspeksi, proses perbaikan bahkan penggantian komponen tersebut kedepannya.
Hasil inspeksi pada Fluid Catalytic Cracking tersebut ditemukan adanya retak sebesar 12 mm pada bagian shell plenum Riser Fluid Catalytic Cracking Unit (RFCCU). Material dari shell plenum ini baja tahan karat austentitik 304H dengan spsesifikasi ASTM A-240 dan beroperasi pada temperatur 690°C. Dengan adanya retak tersebut maka akan dapat mempengaruhi kinerja dari komponen tersebut. Tercatat sebelum terjadi retak telah terjadi temperatur up-set sebesar 930°C selama 200 jam. Oleh karena itu selanjutnya akan dilakukan pengujian kelayakan operasi pada komponen tersebut, apakah dengan kondisi yang mengandung retak komponen masih dapat tetap dioperasikan. Pengujian kelayakan operasi ini dilakukan berdasarkan API 579 section 9. Selain itu dilakukan pula pengkajian umur sisa dari komponen tersebut berdasarkan kondisi yang telah terjadi, apakah kondisi yang telah dialami oleh komponen tersebut mempengaruhi umur sisa pakai komponen yang menyebabkan timbulnya retak pada komponen tersebut.
Setelah dilakukan analisa didapatkan bahwa dengan terjadinya up-set temperature menyebabkan habisnya umur pakai komponen RFCCU yang juga menyebabkan terjadinya retak. Selanjutnya pada pengkajian kelayakan operasi, ditemukan bahwa dengan kondisi adanya retak sebesar 12 mm, komponen RFCCU sudah tidak layak lagi untuk digunakan dalam operasi pada kondisi operasi normal.

Fluid Catalytic Cracking (FCC) is component that cracking the carbon chain with fluid cracker. Objective of this research is for assessing remaining life and fitness for service of the component, as a part of FCC maintenance program at PT. X. Thereby the results can be used in planning evaluation system, inspection, reconditioning even replacement program to that component in the future.
The inspection result of Fluid Catalytic Cracking Unit (FCCU) found that there is a crack about 12 mm at the shell of plenum Riser Fluid Catalytic Cracking Unit (RFCCU). The material of this shell plenum is Austenitic Stainless Steel 304H with specification ASTM A-240 and operated at 690°C temperature. With existence of the crack, it can be influence performance of the component. It?s recorded, that before found of the crack there are up-set temperature about 930°C in 200 hours. Therefore, fitness for service assessment will be apply for the component, whether the component is acceptable or no to continue the operation. Fitness for Service assessment will be appropriate with API 579 section 9. Else, remaining life assessment also will apply for the component, to know if the condition that has been happened on the component influencing the remaining life of the component that causing the crack of the component.
After analyzing, it found that up-set temperature influence the remaining life the component, and causing the crack. Furthermore on the fitness for service assessment, existence of the 12 mm crack, make the RFCCU component are not acceptable to used on the operation on the normal operation condition.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41675
UI - Skripsi Open  Universitas Indonesia Library
cover
Tanwir Ahmad Farhan
"Fluid Catalytic Cracking (FCC) adalah suatu proses konversi yang digunakan untuk mengubah fraksi hidrokarbon berbahan bakar tinggi agar dapat menjadi produk bahan bakar lainnya. Untuk menjalankan sistem kendali FCC diperlukan Supervisory Control And Data Acquisition (SCADA). Sistem SCADA yang digunanakan untuk mengontrol, mengakuisisi, serta memonitori regenerator FCC dengan menggunakan Blynk sebagai HMI, laptop sebagai MTU dan arduino sebagai RTU. Dalam proses FCC dibutuhkan temperatur optimum pada regenerator, maka dari itu data yang diambil dioptimasi menggunakan Artificial Neural Network. Hasil training ANN didapatkan nilai koefisien korelasi sebesar 84.08%, nilai MSE berada pada kisaran 10-2 dan nilai error sebesar 0.053. Dari hasil tersebut menunjukan besarnya keakuratan ANN dalam mempelajari data. Dengan menggunakan Genetic Algorithm (GA) didapatkan hasil optimasi temperatur regenerator sebesar 765.32oC pada laju aliran massa ejektor 0.0067 kg/s, laju aliran massa regenerator 0.0043 kg/s dan bukaan katup ejektor “50” atau 7500 step pada motor stepper.

Fluid Catalytic Cracking (FCC) is a conversion process used to convert high-fuel hydrocarbon fractions into other fuel products. To run the FCC control system, Supervisory Control And Data Acquisition (SCADA) is required. The SCADA system is used to control, acquire, and monitor FCC regenerators using Blynk as HMI, laptops as MTU and Arduino as RTUs. In the FCC process, the optimum temperature needed for the regenerator, therefore the data taken is optimized using Artificial Neural Network. ANN training results obtained a correlation coefficient of 84.08%, the MSE value is in the range of 10-2 and an error value of 0.053. From these results shows the accuracy of ANN in studying data. By using Genetic Algorithm (GA), the result of optimization of regenerator temperature is 765.32oC at ejector mass flow rate of 0.0067 kg/s, regenerator mass flow rate of 0.0043 kg/s and valve opening of "50" or 7500 step stepper motors."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdullah Robbani
"Beberapa studi yang telah dilakukan sebelumnya menunjukkan bahwa minyak kelapa sawit dapat menghasilkan senyawa hidro karbon yang sebagian besarnya berupa bio-gasoline. Diantara cara yang dapat dilakuakn untuk mengolah minyak kelapa sawit adalah melalui teknologi Fluid Catalytic Cracking (FCC). Penggunaan teknologi konversi FCC saat ini juga telah dimanfaatkan untuk menghasilkan bahan bakar biofuel yang dihasilkan dari material minyak nabati. Grup riset AIR mengembangkan sebuah teknologi teknologi sistem FCC skala bench untuk mengolah minyak kelapa sawit menjadi bahan bakar nabati. Salah satu komponen penting dalam sistem FCC yang dikembangkan oleh grup riset AIR ini adalah condenser. Diperlukan sebuah desain yang dapat digunakan untuk mengkondensasi uap produk hasil proses sistem FCC. Studi ini akan membahas tentang desain baru condenser yang dapat menggantikan condenser yang lama agar kinerjanya lebih optimal. Desain bariu dihitung berdasarkan performa dari condenser yang lama kemudian dilakukan pernacangan berdasarkan analisis thermal.

Previous studies have shown that palm oil can produce hydro-carbon compounds, mostly bio-gasoline. Among the ways that can be done to process palm oil is through Fluid Catalytic Cracking (FCC) technology. The use of FCC conversion technology at this time has also been utilized to produce biofuel fuel produced from vegetable oil materials. The AIR research group developed a bench scale FCC system technology to process palm oil into biofuels. One of the important components in the FCC system developed by the AIR research group is the condenser. A condenser design is required that can be used to condense the product vapor from the process of the FCC system. This study will discuss about a new condenser design that can replace the old condenser for optimal performance. The new design is calculated based on the performance of the old condenser. The design is carried out based on thermal analysis."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zarkoni Azis
"Konsumsi minyak bensin atau gasoline untuk bahan bakar mesin transportasi dalam negeri selama ini telah melebihi kapasitas unit produksi. Sebagian besar produk gasoline dihasilkan dari unit perengkahan katalitik menggunakan umpan utama fraksi gasoil. Upaya untuk meningkatkan yield dan kualitas oktana gasoline umumnya dilakukan melalui seleksi katalis dan optimalisasi kondisi proses, meskipun demikian sifat umpan juga mempengaruhi produk akhir. Penelitian ini bertujuan untuk menemukan dan mempelajari metode proses alternatif peningkatan yield dan angka oktana gasoline dengan cara modifikasi umpan menggunakan campuran vacuum gasoil dengan trigliserida dan asam lemak jenuh dan tak jenuh berbasis sawit.
Eksperimen reaksi perengkahan dilakukan pada fluid-bed reaktor dengan umpan campuran vacuum gasoil dengan minyak sawit murni, distilat asam lemak dan asam oleat dalam rentang konsentrasi 0 sampai 15% menggunakan katalis zeolite REY pada suhu 530oC dan rasio katalis-umpan 5,5 g/g. Perengkahan umpan menghasilkan produk gas dan cair serta coke yang terdeposit dalam katalis. Produk gas dianalisa menggunakan GC refinery gas analyzer untuk menentukan komposisi gas hidrokarbon C1, C2, C3 & C4 serta H2. Produk cair dianalisa menggunakan GC simulated distillation untuk menentukan yield gasoline, LCO dan bottom. Angka oktana gasoline dianalisa dengan GC DHA. Kadar air dalam produk cair dianalisa dengan metode Karl-Fischer. Analisa coke dengan metode Infrared dan keasaman katalis dengan metode NH3-TPD.
Dari hasil penelitian didapatkan bahwa perengkahan VGO dengan 5%RBDPO meningkatkan yield gasoline dari 42,9% menjadi 46,9% dan angka oktana dari 91,8 menjadi 96,2. Perengkahan VGO dengan 5%(RBDPO_PFAD) dapat meningkatkan yield gasoline menjadi 48,3% dengan angka oktana 97,5. Perengkahan VGO dengan 5%(RBDPO_Oleic acid) dapat meningkatkan yield gasoline menjadi 45,2% dengan angka oktana 98,2. Kandungan asam lemak jenuh dan tak jenuh dalam umpan berperan dalam reaksi-reaksi perengkahan, isomerisasi, transfer hidrogen dan aromatisasi yang mempengaruhi struktur yield produk dan komposisi hidrokarbon n-parafin, iso-parafin, olefin, naften dan aromatik. Penambahan RBDPO, PFAD dan Oleic acid pada umpan VGO menyebabkan kenaikan komposisi hidrokarbon iso-parafin dan olefin dalam gasoline.
The consumption of gasoline for transportation fuel in domestic has exceeded the production unit capacity. Most of gasoline is produced from fluid catalytic cracking unit that proceeds gasoil fraction as main feedstock. Some efforts to upgrade gasoline yield and its octane quality usually is perfomed by catalyst selection and process optimization, eventhough feed nature also influence to the end-product.
This research work was aimed to find out and learn the alternative method in fluid catalytic cracking process to upgrade gasoline yield and octane quality by means of feed modification using mixture of vacuum gasoil with palms triglycerides and fatty acids having single and double-bonds. The experimental catalytic reaction was performed at fluid-bed reactor of advance cracking evaluation unit utilizing mixture of vacuum gasoil with pure palm oil, fatty acid distillate and oleic acid over zeolite REY catalysts at reaction temperature of 530oC and catalyst oil ratio 5.5 g/g.
The cracking of feedstocks under process condition resulted in gaseous and liquid products, as well as coke deposited on catalyst. The gaseous product was analyzed by online gas chromatography to identify dry gas of C1, C2 & H2, and LPG of C3, C4 hydrocarbons. Liquid product was analyzed using gas chromatography of simulated distillation to obtain yields of gasoline, light cycle oil and bottoms. Gasoline octane number was analyzed using GC DHA method. Water contained in liquid product was analyzed by Karl Fischer method. Coke was analyzed by online Infrared analyzer and catalyst acidity was analyzed using NH3 TPD method.
From the reaseach work, it was found that the cracking of VGO with 5%RBDPO could increase gasoline yield from 42.9% to 46.9% and octane number from 91.8 to 96.2. The cracking of VGO with 5%RBDPO PFAD increased gasoline yield to 48.3% and octane number to 97.5 meanwhile cracking of VGO with 5%RBDPO Oleic acid increased gasoline yield to 45.2% and octane number to 98.2. The role of single and double-bonds fatty acids in feedstock appeared to play in reactions of cracking, isomerization, hydrogen transfer and aromatization that influenced the product yields structure and hydrocarbon composition of nparaffins, isoparaffins, olefins, naphthene and aromatics. The addition of RBDPO, PFAD dan Oleic acid in VGO had caused increase of hydrocarbon composition of iso-paraffins and olefin in gasoline"
Depok: Fakultas Teknik Universitas Indonesia, 2020
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Harahap, Sahala
"ABSTRAK
Peningkatan kebutuhan bahan bakar dan menipisnya persediaan bahan bakar fosil menyebabkanperlunya dikembangkan bahan bakar minyak yang dapat diperbaharui dengan bahan bakuminyak nabati. Minyak nyamplung merupakan salah satu minyak nabati yang potensial untukdikembangkan sebagai bahan bakar minyak karena ketersediannya yang cukup banyak, danminyak nyamplung bukan merupakan minyak pangan sehingga tidak akan menganggu stabilitaspangan. Penelitian ini bertujuan untuk mempelajari pengaruh perbandingan komposisi katalisB2O3/? Al2O3 pada proses catalytic cracking minyak nyamplung sehingga memperoleh yieldbiofuel yang optimum. Penelitian dilakukan dalam tiga tahap yaitu sintesis katalis,karakterisasi katalis dan proses perengkahan katalitik. Hasil katalis yang telah disintesadikarakterisasi dengan BET Brunauer Emmett-Teller , AAS, Spektrofotometri UV-Vis. Produkhasil proses catalytic cracking dianalisa menggunakan GC-MS Gas Cromatography- MassSpectrometry . Pembuatan katalis dengan cara impregnasi dan telah berhasil ditunjukan denganhasil uji BET. Karakterisasi katalis B2O3/? Al2O3 mempunyai luas permukaan diatas 100 gr/m2.Komposisi katalis B2O3/? Al2O3 berpengaruh terhadap yield biofuel yang dihasilkan. Secarakeseluruhan perbandingan komposisi katalis B2O3 terhadap katalis ? Al2O3 paling optimum sebesar 15 B2O3 menghasilkann gasoline 28,25 , kerosene 6,29 dan diesel 6,99 .

ABSTRACT
The increasing in fuel needs along with decreasing of its availability cause the needs ofdevelopment in renewable oil fuel by using vegetable oil. Nyamplung oil has a great potentialto be developing as oil fuel because of its abundant availability and will not influence the foodstability because it is not included as cooking oil. This research is going to study about the ratioof B2O3 Al2O3 catalyst composition related to minyak nyamplung catalytic process to result theoptimum yield of biofuel. This research is conducted in 3 steps including catalyst synthesis,catalyst characterisation, and catalytic cracking process. The product of syntesis catalsyt ischaraterised by BET, AAS, and UV Vis Spectrofotometer. Mean while the product of catalyticprocess cracking is analysed by using GC MS. The production of catalyst by using impregnationmethod has been successful shown by the result of BET. B2O3 Al2O3 catalyst characterisationhas surface area above of 100 gr m2. The B2O3 Al2O3 catalyst conposition is influencing thebiofuel yield product. In conclusion, the most optimum ratio of B2O3 Al2O3 catalyst to B2O3 Al2O3 catalyst is 15 B2O3 and is resulting of 28.25 gasoline, 6.29 kerosene and 6.99 diesel."
2017
T48701
UI - Tesis Membership  Universitas Indonesia Library
cover
I Ketut Sukariawan
"ABSTRAK
Emisi kendaraan bermotor merupakan salah satu permasalahan lingkungan yang dihadapi masyarakat beberapa dekade terakhir. Lebih dari sepertiga emisi pada udara merupakan emisi yang berasal dari kendaraan bermotor. Emisi dari kendaraan sebagian besar terjadi akibat pembakaran tidak sempurna pada mesin kendaraan. Pemodelan three way catalytic converter merupakan salah satu upaya untuk efisiensi waktu dan biaya dalam pengembangannya. Pemodelan pengalami perkembangan seiring dengan perkembangan software simulator dan kemampuan komputer. Full scale modeling catalytic converter dengan akurasi dan presisi yang baik sampai sekarang masih menjadi tantangan tersendiri karena melibatkan proses fisika dan kimia yang sangat kompleks. Tujuan pada penelitian ini adalah melakukan pengembangan model three way catalytic converter secara full scale untuk skala laboratorium dengan menggunakan sotware CFD Comsol Multiphysic 4.2a. Model ini diharapkan dapat memberikan akurasi yang baik untuk analisis konverter pada berbagai variasi operasi.
Kondisi operasi mesin menentukan komposisi gas buang yang dihasilkan, padakondisi rich konversi CO dan C3H6 pada konverter relatif lebih kecil dibandingkan dengan pada kondisi stokiometri dan lean burning, hal ini karena kandungannya lebih besar dan jumlah O2 yang tersedia lebih kecil pada kondisi rich. Hal sebaliknya terjadi pada konversi NO dimana konversi tinggi dicapai pada saat kondisi rich dan semakin rendah apabila bekerja pada stokiometri dan lean burning. Hal ini karena jumlah NO yang semakin besar pada saat mesin bekerja dari rich ke lean burning dan jumlah CO semakin kecil. Laju alir gas buang pada aliran input mempengaruhi pressure drop yang terjadi pada konverter. Dari hasil simulasi didapatkan bahwa semakin besar laju alir makan pressure akan semakin besar pula. Profil temperatur pada konverter pada arah radial menunjukkan adanya perpindahan panas arah radial dan adanya heat loss ke lingkungan. Heat loss ini menurunkan laju reaksi yang terjadi pada konverter. Simulasi dengan asumsi sistem bekerja pada kondisi adiabatis menunjukkan bahwa temperatur konverter semakin meningkat akibat panas yang terjadi dari reaksi. Laju reaksi semakin cepat dan konversi yang dicapai lebih besar. Tetapi dengan asumsi ini maka peluang konverter mengalami kepanasan menjadi sangat besar.

ABSTRACT
Motor vehicle emissions is one of the environmental problems facing society decades. More than a third of the air emissions are emissions from motor vehicles. Emissions from vehicles mostly occurs due to incomplete combustion in vehicle engines. Modeling three way catalytic converter is an effort for high efficiency in time and cost consideration. Modeling process has been much progress because of development of software simulators and computer technology. Full scale modeling catalytic converter with high acuration and good precision is still a challenge because it involves complexs physical and chemical processes. The purpose of this research is to develop a model of three way catalytic converter by full scale method in laboratory scale using CFD Sotware COMSOL Multiphysic 4.2a. This model is expected to provide good accuracy for the analysis of converters in a variety of operations.
Engine operating conditions to determine the composition of the exhaust gases produced, on the condition of the conversion of CO and C3H6 rich converter is relatively small compared to the stoichiometric and lean burning conditions, it is because it implies greater and the amount of O2 available smaller rich conditions. The opposite occurs on NO conversion where high conversion achieved at the condition of the rich and the poor when work on the stoichiometric and lean burning. This is due to the greater amount of NO when the engine works from rich to lean burn and the amount of CO smaller. Exhaust gas flow rate on the input flow affects the pressure drop that occurs in the converter. From the simulation results obtained that the greater the flow rate will be greater pressure drop. Converter temperature profile in the radial direction showed a radial direction of heat transfer and the heat loss to the environment. Heat loss is lowering the rate of the reaction in the converter. Simulation assuming the system works on adiabatic conditions indicate that the temperature increase due to heat converters that occurs from the reaction. The faster the reaction rate and conversion are achieved greater. But assuming this make a very big chances converter having overheated"
Fakultas Teknik Universitas Indonesia, 2013
T32677
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>