Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 40955 dokumen yang sesuai dengan query
cover
Sari Gita Fitri
"Kanker adalah penyakit yang disebabkan oleh ketidakteraturan perjalanan hormon yang mengakibatkan tumbuhnya daging pada jaringan tubuh yang normal atau sering dikenal sebagai tumor ganas. Kanker terjadi saat sel-sel dalam tubuh membelah diri diluar kendali. Sel-sel abnormal ini kemudian menyerang jaringan terdekat. Salah satu kanker yang paling umum terjadi adalah kanker paru-paru. Kanker paru-paru adalah kanker yang dimulai di paru-paru dan paling sering terjadi pada orang yang merokok. Paru-paru kanan memiliki 3 bagian, yang disebut dengan lobus, sedangkan paru-paru kiri memiliki 2 lobus. Kanker paru-paru merupakan penyebab utama kematian terkait kanker di seluruh dunia dengan 30%-40% terjadi di negara berkembang. Untuk memprediksi apakah seseorang menderita kanker paru-paru atau tidak dapat dilihat dari terdapatnya tumor ganas pada paru-paru yang dapat dilakukan melalui CT scan. Namun, hasil CT scan tidak cukup dalam mendeteksi atau mendiagnosis secara dini terdapatnya tumor ganas di dalam paru-paru. Untuk itu, dapat digunakan machine learning dalam mendeteksi secara dini adanya tumor ganas di dalam paru-paru. Dalam penelitian ini, penulis menggunakan Kernel K-Means based Co-clustering yang merupakan pengembangan dari K-Means based Co-clustering. K-Means mengelompokkan data menggunakan jarak Euclidean. Akan tetapi, jika data yang dipisahkan adalah data nonlinear, maka konvergensi dari data yang dipisahkan tersebut akan kecil dan membutuhkan waktu yang lama, sehingga masalah ini dapat diselesaikan dengan menggunakan fungsi kernel untuk menggantikan jarak Euclidean.Co-clustering mempartisi baris dan kolom dari suatu matriks data secara simultan, sehingga blok yang diinduksi oleh partisi adalah klaster yang baik. Metode Kernel K-Means based Co-clustering memasukkan banyak titik untuk mewakili masing-masing pusat klaster, sehingga titik-titik di dalam klaster saling berdekatan, akan tetapi jauh dari titik yang mewakili klaster lain. Data yang digunakan adalah data kanker paru-paru yang diperoleh dari laboratorium radiologi RSUPN Cipto Mangunkusumo, Jakarta. Hasil akurasi yang diperoleh untuk memprediksi penyakit kanker paru-paru dengan menggunakan metode Kernel K-Means based Co-clustering adalah 94,5%.

Cancer is a disease caused by an irregular course of hormones that results in the growth of flesh in normal body tissues or often known as malignant tumors. Cancer occurs when cells in the body divide out of control. These abnormal cells then attack nearby tissues. One of the most common cancers is lung cancer. Lung cancer is cancer that starts in the lungs and most often occurs in people who smoke. The right lung has 3 parts, which are called lobes, while the left lung has 2 lobes. Lung cancer is the leading cause of cancer-related deaths worldwide with 30%-40% occurring in developing countries. To predict whether someone has lung cancer or can not be seen from the presence of malignant tumors in the lungs that can be done through a CT scan. However, CT scan results are not enough to detect or diagnose the presence of malignant tumors early in the lungs. For this reason, machine learning can be used to detect malignant tumors early in the lungs. In this research, the writer usesKernel K-Meansbased Co-clustering which is the development of K-Means-based Co-clustering. K-Means groups data using Euclidean distances. However, if the separated data is non-linear data, the convergence will be small and take a long time, so this problem can be solved by using the kernel function to replace the Euclidean distance. Co-clustering partitioned rows and columns of a data matrix simultaneously, so the blocks induced by partitions are good clusters. Kernel K-Meansbased Co-clustering method includes many points to represent each cluster center, so that the points within the cluster are close together, but far from the points representing other clusters. The data used are lung cancer data obtained from the radiology laboratory of Cipto Mangunkusumo General Hospital, Jakarta. Accuracy results obtained to predict lung cancer by using the Kernel K-Meansbased Co-clustering method are 94.5%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ajeng Leudityara Fijri
"ABSTRACT
Kanker payudara adalah pertumbuhan sel-sel abnormal di jaringan pada payudara yang berkembang secara tidak terkendali. Perkembangan sel-sel abnormal secara tidak terkendali ini menyebabkan kanker menjadi salah satu penyakit paling mamatikan yang umumnya dialami oleh wanita di seluruh dunia. Salah satu cara untuk mengurangi berkembangnya sel kanker ini adalah dengan melakukan pendeteksian dini menggunakan machine learning. Beberapa metode machine learning berhasil melakukan klasifikasi kanker. Clustering merupakan salah satu metode dari machine learning yang bertujuan untuk mengelompokkan suatu dataset ke dalam subset berdasarkan ukuran jarak. Kernel Spherical K-Means (KSPKM) adalah salah satu metode clustering dengan mengganti hasil kali dalam yang ada pada Spherical K-Means (SPKM) dengan fungsi Kernel. Data kanker payudara yang digunakan pada penelitian ini adalah data kanker payudara Coimbra. Data kanker payudara Coimbra ini merupakan hasil dari pengambilan tes laboratorium yang dapat mendeteksi kanker payudara pada tubuh. Hasil klasifikasi data kanker payudara Coimbra dengan menggunakan metode SPKM memiliki hasil akurasi sebesar 81,82% dengan running time selama 0,16 detik, sensivicity sebesar 100%, dan specificity sebesar 65,62% sedangkan hasil akurasi dengan menggunakan KSPKM dengan Radial Basis Function (RBF) adalah 72,41% dengan running time 0,98 detik, sensivicity sebesar 61,54%, dan specificity sebesar 81,25% . Berdasarkan hasil akurasi pada 10% sampai 90% data yang digunakan, metode KSPKM menghasilkan akurasi yang lebih stabil dibandingkan hasil akurasi pada metode SPKM.

ABSTRACT
Breast cancer is the growth uncontrollably of abnormal cells in the tissue in the breast. The development of abnormal cells uncontrollably causes cancer to become one of the most deadly diseases commonly among women the worldwide. One way to reduce the development of cancer cells is by early detection using machine learning. Some machine learning methods successfully classify cancer. Clustering is one of the methods of machine learning that aims to grouping of a dataset into subsets based on distance measurement.. Kernel Spherical K-Means (KSPKM) is one of the clustering methods by replacing the inner products in the Spherical K-Means (SPKM) by Kernel functions. The breast cancer data used in this study were Coimbra breast cancer data. The Coimbra breast cancer data is the result of taking laboratory tests that can detect breast cancer in the body. The classification results for Coimbra breast cancer data using the SPKM method has highest accuracy 81,82% with running time for 0,16 seconds, sensivicity 100%, and specificity 65,62% while the highest accuracy results using KSPKM with Kernel radial basis function (RBF) are 72,41% with running time 0,98 seconds, sensivicity 61,54%, and specificity 81,25%. Based on the results of the accuracy of 10% to 90% of the training data used, the KSPKM method produces more stable accuracy than the accuracy results of SPKM method."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wisnu Linggakusuma Wardhana
"Tersedianya sumber informasi yang tidak terbatas pada saat ini, menjadikan perolehan informasi melibatkan banyak sumber informasi. Hal-hal tersebut memicu penelitian mengenai metode peringkasan dokumen yang semula ditujukan untuk membuat sebuah ringkasan dari sebuah dokumen menjadi metode peringkasan yang ditujukan untuk menghasilkan ringkasan dari banyak dokumen. Peringkasan multi-dokumen merupakan suatu metode yang ditujukan untuk menyampaikan informasi-informasi utama dari banyak dokumen dalam ringkasan. Penelitian yang dilakukan oleh penulis ini merupakan penelitian dengan topik peringkasan multi-dokumen untuk dokumen berbahasa Indonesia. Pada penelitian ini, penulis menggunakan dua buah teknik peringkasan multi-dokumen yaitu centroidbased summarization dan k-means-based summarization. Pada penelitian ini penulis mencoba untuk mengaplikasikan kedua teknik tersebut untuk membuat ringkasan dari dokumen berbahasa Indonesia.
Untuk mengukur kualitas ringkasan yang dihasilkan oleh kedua teknik tersebut, penulis membuat ringkasan referensi untuk masing-masing sumber dokumen yang dibuat secara manual sebagai perbandingan. Hasilnya adalah pada teknik centroidbased summarization, kualitas ringkasan yang dihasilkan akan semakin bagus jika kelompok dokumen yang digunakan sebagai masukan berisi dokumen-dokumen yang relevan terhadap topik. Sedangkan pada teknik k-means-based summarization, kualitas ringkasan yang dihasilkan akan semakin bagus jika kelompok dokumen yang digunakan sebagai masukan merupakan kelompok dokumen yang besar (lebih banyak mengandung dokumen/kalimat). Evaluasi terhadap kualitas ringkasan juga dilakukan dengan menggunakan juri/penilai manusia. Hasilnya adalah pada teknik centroid-based summarization, para juri menilai ringkasan yang dihasilkan sudah bagus. Pada teknik k-means-based summarization dengan 10% compression rate, para juri menilai bahwa ringkasan."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Teny Handhayani
"Integrasi data gene expression dan DNA copy number berbasis kernel digunakan untuk menganalisis pola gen pada penyakit kanker payudara cell line. Clustering pada data integrasi dilakukan tanpa adanya informasi jumlah k cluster, teknik ini disebut fully unsupervised clustering. Pada penelitian ini, intelligent kernel K-Means dikembangkan dengan menggabungkan teknik intelligent K-Means dan kernel K-Means. Berdasarkan hasil eksperimen, nilai pada kernel RBF mempengaruhi jumlah cluster yang ditemukan. Hasil clustering dievaluasi menggunakan nilai R, global silhouette, indeks Davies-Bouldien, akurasi LS-SVM dan visualisasi. Hasil esperimen terbaik yaitu 3 cluster yang memperoleh akurasi LS-SVM sebesar 97.3% dengan standar deviasi 0.2%.

In this thesis, kernel based data integration of gene expression and DNA copy number would be utilized to analyze pattern of genes in breast cancer cell line. The cluster analysis on the integrated data will be conducted with has no prior information with regards the number of k clusters which is called fully unsupervised clustering technique. In this work, intelligent kernel K-Means is proposed by combining intelligent K-Means and kernel K-Means. From the experiments, the value of of Radial Basis Function (RBF) has important role for finding the optimal of number of cluster. The clusters those to be found will be evaluated based on global silhouette, Davies-Bouldien Index, LS-SVM accuracy and visualization. The experiment result show that three clusters are successfully to be found. Those clusters produce average accuracy of LS-SVM around 97.3 % with standard deviation 0.2 %."
Depok: Universitas Indonesia, 2013
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
"Jurnal ini mengusulkan sebuah model aturan dalam memprediksi prestasi akademik jurusan teknik informatika politeknik poliprofesi medan. Hingga saat ini memprediksi praestasi akademik mahasiwa masih menjadi perdebatan yang hangat di institusi-institusi pendidikan tinggi. Untuk itu sangat penting dibuat sebuah model aturan untuk memprediksi prestasi akademik mahasiswa yang dapat digunakan pihak manajemen sebagai system pendukung dalam pengambilan keputusan. Dalam hal ini algoritma kernel k-means clustering telah digunakan untuk mendapatkan suatu model aturan prediksi prestasi akademik mahasiswa teknik informatika politeknik poliprofesi medan."
000 JEI 3:2 (2014)
Artikel Jurnal  Universitas Indonesia Library
cover
Melati Vidi Jannati
"Klasifikasi data kanker menggunakan microarray data menjadi salah satu cara untuk mendapatkan pengobatan yang lebih tepat. Kendala yang terdapat adalah karakteristik dari microarray yang memiliki fitur yang sangat banyak. Seringkali fitur tersebut tidak begitu informatif bagi pengklasifikasian sehingga perlu adanya suatu cara untuk memilih fitur-fitur yang mengandung informasi yang penting. Salah satu cara tersebut adalah dengan pemilihan fitur. Pada penelitian ini, metode pemilihan fitur yang digunakan berdasarkan clustering dengan fungsi kernel. Fitur-fitur yang sudah terpilih kemudian diklasifikasikan menggunakan metode Support Vector Machine.
Evaluasi dari klasifikasi pada penelitian ini melibatkan K-Fold Cross Validation, metode tersebut akan membagi data secara acak, tetapi merata sehingga akurasi yang didapat juga merata. Hasil akurasi tersebut dilakukan dengan berbagai uji terhadap parameter yang berkaitan seperti K partisi, nilai dan fitur-fitur yang digunakan. Pada proses klasifikasi tanpa pemilihan fitur tingkat akurasinya mencapai 89.68 dengan k partisi sebanyak 6 sementara dengan 5 fitur akurasinya menjadi 95.87 pada partisi sebanyak 10.

Classification of cancer using microarray data is one way to get a more precise treatment. The obstacle on classification data is the characteristics of microarray data that is having many features. These features are often not so informative for classification, so it needs a way to select the features that contain important information. One way is by selection feature. In this research, the method of selection features that are used based on clustering with kernel function. Features that are already selected then classified using Support Vector Machine.
Evaluation of classification in this research involves a K Fold Cross Validation, that methods split data randomly but uniformly so that it can reach all of accuracy. The results of accuracy data was done with different test against related parameters such as K partition, the value of and the features that are used. On the classification process without selection features rate of accuracy reached on 89.68 with k partition number 6 while with the 5 features obtained 95.87 on partition number 10.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S66852
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sofia Debi Puspa
"Penelitian ini bertujuan untuk mengimplementasikan similarity based biclustering SBB dalam memperoleh bicluster sekumpulan gen dengan ekspresi yang similar di bawah kondisi tertentu yang signifikan pada data microarray. Secara teoritis similarity based biclustering terdiri atas tiga tahap utama, yaitu: membangun matriks similaritas baris gen dan matriks similaritas kolom kondisi , mempartisi masing-masing matriks similaritas dengan hard clustering khususnya dalam penelitian ini menggunakan partisi k-means, dan ekstrak bicluster. Sebelum mengimplementasikan metode SBB, strategi seleksi gen diterapkan dan selanjutnya dilakukan normalisasi. Perolehan evaluasi indeks silhouette pada dataset diabetic nephropathy, diabetic retinopathy dan lymphoma berturut-turut pada cluster kondisi yaitu 0,8304; 0,7853 dan 0,7382, sedangkan indeks silhouette untuk cluster gen yaitu 0,5382; 0,5408 dan 0,5464. Dan dari hasil analisis cluster kondisi, akurasi dari dataset diabetic nephropathy dan diabetic retinopathy yaitu 100 , sedangkan dataset lymphoma yaitu 98 . Selanjutnya dapat diketahui regulasi proses seluler yang terjadi pada bicluster dari ketiga dataset. Hasil analisis menunjukkan bahwa gen-gen yang diperoleh dari bicluster sesuai dengan fungsi gen dan proses biologis didukung oleh GO enrichment sehingga menjadi potensi yang besar bagi praktisi medis dalam tindak lanjut suatu penyakit yang diderita oleh pasien.

This study aims to implement similarity based biclustering SBB in obtaining a bicluster a set of genes that exhibit similar levels of gene expression under certain conditions that is significant in microarray data. Theoretically, similarity based biclustering consists of three main phase constructing the row gene similarity matrix and the column condition similarity matrix, partitioning each matrix similarity with hard clustering especially in this research using k means partition, and extracting bicluster. Before implementing the SBB method, the gene selection strategy is applied and subsequently normalized. The acquisition of silhouette index evaluation in diabetic nephropathy, diabetic retinopathy, and lymphoma on cluster condition respectively is 0.8304, 0.7853 and 0.7382, while the silhouette index for the gene cluster is 0.5382, 0.5408 and 0.5464. In addition, according to the cluster condition analysis, accuracy of dataset diabetic nephropathy and diabetic retinopathy is 100 , whereas dataset lymphoma is 98 . Furthermore, it can be known cellular regulation that occurs on the bicluster of the three datasets. The results of the analysis show that the genes obtained from bicluster are relevant to the function of genes and biological processes supported by GO enrichment , therefore it becomes a great potential for medical practitioners in the follow up of a disease suffered by the patient.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49530
UI - Tesis Membership  Universitas Indonesia Library
cover
Amyra Aulia Adlina
"Indeks validitas merupakan metode yang mengevaluasi hasil clustering untuk mendapatkan jumlah klaster optimal suatu data. Pada skripsi ini, dilakukan clustering pada data menggunakan algoritma K-Means. Selanjutnya, hasil clustering tersebut dievaluasi oleh empat jenis indeks validitas, yaitu indeks Silhouette, indeks Davies-Bouldin, indeks Sum of Square, dan indeks Calinski-Harabasz. Implementasi keempat jenis indeks validitas dilakukan dengan menggunakan data benchmark yang sudah diketahui jumlah kelasnya.
Hasil implementasi tersebut akan dibandingkan untuk mengetahui apakah keempat indeks validitas dapat memprediksi jumlah klaster dengan tepat. Dari hasil simulasi, indeks Silhouette, indeks Davies-Bouldin, dan indeks Calinski-Harabasz dapat memprediksi jumlah klaster optimal lebih tepat dibandingkan dengan indeks Sum of Square.

The validity index is a method that evaluates the clustering results to get the optimal number of clusters of a data. In this skripsi, data clustered using K Means algorithm. Furthermore, the clustering results are evaluated by four types of validity indices, namely the Silhouette index, the Davies Bouldin index, the Sum of Square index, and the Calinski Harabasz index. The implementation of the four validity indices is done by using the benchmark data which is already known to the number of classes.
The results of the implementation will be compared to find out whether the four validity indices can predict the number of clusters appropriately. From the simulation results, the Silhouette index, the Davies Bouldin index, and the Calinski Harabasz index can predict the optimal cluster number is more precise than the Sum of Square index.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nabiila Kusumahardhini
"Multiple Traveling salesman problem MTSP merupakan perluasan dari TSP. MTSP adalah masalah optimasi dimana akan ditentukan total jarak minimum untuk m salesmen dalam melakukan perjalanan ke sejumlah kota tepat satu kali yang dimulai dari kota awal yang disebut depot kemudian kembali lagi ke depot setelah perjalanan selesai. Dalam tugas akhir ini, K-Means dan Crossover Ant Colony Optimization ACO akan digunakan untuk menyelesaikan MTSP. Implementasi dilakukan pada 3 data dari TSPLIB dengan menggunakan salesman berjumlah 2, 3, 4, dan 8. Analisa hasil dengan menggunakan K-Means dan Crossover ACO akan dibandingkan. Pengaruh terhadap pemilihan kota yang menjadi depot pada total jarak perjalanan yang dihasilkan, juga akan dianalisa.

Multiple Traveling Salesman Problem MTSP is a generalization of the Traveling Salesman Problem TSP . MTSP is an optimization problem to find the minimum total distance of m salesmen tours to visit several cities in which each city is only visited exactly by one salesman, starting from origin city called depot and return to depot after the tour is completed. In this skripsi, K Means and Crossover Ant Colony Optimization ACO are used to solve MTSP. The implementation is observed on three datasets from TSPLIB with 2, 3, 4, and 8 salesmen. Analysis of results using K Means and Crossover ACO will be compared. The effect of selecting a city as depot on the total travel distance of tour will also be analyzed."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S69165
UI - Skripsi Membership  Universitas Indonesia Library
cover
Frisca
"Spectral clustering adalah salah satu algoritma clustering modern yang paling terkenal. Sebagai teknik clustering yang efektif, metode spectral clustering muncul dari konsep teori graf spektral. Metode spectral clustering membutuhkan algoritma partisi. Ada beberapa metode partisi termasuk PAM, SOM, Fuzzy c-means, dan k-means. Berdasarkan penelitian yang telah dilakukan oleh Capital dan Choudhury pada 2013, ketika menggunakan Euclidian distance, k-means memberikan akurasi yang lebih baik dibandingkan dengan algoritma PAM. sehingga, makalah ini menggunakan algoritma k-means. Keuntungan utama dari spectral clustering adalah mengurangi dimensi data, terutama dalam hal ini untuk mengurangi dimensi yang besar dari data microarray.
Microarray data adalah chip berukuran kecil yang terbuat dari slide kaca yang berisi ribuan bahkan puluhan ribu jenis gen dalam fragmen DNA yang berasal dari cDNA. Aplikasi data microarray secara luas digunakan untuk mendeteksi kanker, misalnya adalah karsinoma, di mana sel-sel kanker mengekspresikan kelainan pada gen-nya. Proses spectral clustering dimulai dengan pengumpulan data microarray gen karsinoma, preprocessing, menghitung similaritas, menghitung , menghitung nilai eigen dari , membentuk matriks , dan clustering dengan menggunakan k-means. Dari hasil pengelompokan gen karsinoma pada penelitian ini diperoleh dua kelompok dengan nilai rata-rata Silhouette maksimal adalah 0.6336247. Proses clustering pada penelitian ini menggunakan program open source R.

Spectral clustering is one of the most famous modern clustering algorithms. As an effective clustering technique, spectral clustering method emerged from the concepts of spectral graph theory. Spectral clustering method needs partitioning algorithm. There are some partitioning methods including PAM, SOM, Fuzzy c means, and k means. Based on the research that has been done by Capital and Choudhury in 2013, when using Euclidian distance k means algorithm provide better accuracy than PAM algorithm. So in this paper we use k means as our partition algorithm. The major advantage of spectral clustering is in reducing data dimension, especially in this case to reduce the dimension of large microarray dataset.
Microarray data is a small sized chip made of a glass plate containing thousands and even tens of thousands kinds of genes in the DNA fragments derived from doubling cDNA. Application of microarray data is widely used to detect cancer, for the example is carcinoma, in which cancer cells express the abnormalities in his genes. The spectral clustering process is started with collecting microarray data of carcinoma genes, preprocessing, compute similarity matrix, compute , compute eigen value of , compute , clustering using k means algorithm. In this research, Carcinoma microarray data using 7457 genes. The result of partitioning using k means algorithm is two clusters clusters with maximum Silhouette value 0.6336247.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47117
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>