Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 107112 dokumen yang sesuai dengan query
cover
Reza Pernandito Sujatmiko
"Envelope detector berperan dalam proses demodulasi dan terletak di belakang low noise amplifier pada receiver wireless power and data transfer. Envelope detector sendiri merupakan rangkaian elektronika yang dapat mendeteksi puncak dari sebuah gelombang atau daya yang masuk, sehingga hanya menunjukan bagian envelope pada gelombang tersebut. Untuk keperluan alat implan medis, kebutuhan tegangan operasional sangat rendah sehingga ini menjadi tantangan sendiri. Penelitian ini menyajikan tiga macam desain envelope detector yang bekerja pada 14 MHz (ISM band) yang terdiri dari rangkaian transistor berupa nMOSFET, PNP BJT, atau Dioda Schottky yang dilakukan diatas PCB. Berdasarkan simulasi, penggunaan ketiga tipe semikonduktor tersebut dapat melakukan pendeteksian envelope hingga ke tegangan 100 mV. Namun berdasarkan hasil uji coba yang dirangkai pada PCB, kapabilitas pendeteksian paling rendah dan stabil dapat dilakukan pada tegangan 500 mV.

Envelope detector used on a WPDT receiver serves in a demodulation process following an amplification by an LNA. Envelope detector is an electronic circuit used to detect the envelope of a given wave by utilising the peak signals. In medical implant devices, operating in a very low voltage is compulsory and poses challenges. This research presents three envelope detector designs operating in 14 MHz consisting of transistors configurated with either an nMOSFET, PNP BJT or a Schottky diode implemented on a PCB. Based on the simulations, the proposed circuit design had been able to detect the envelope of the coming signals with the ability to detect as low as 100 mV. Moreover, the fabricated circuit implemented on a PCB shows the ability to detect an envelope as low as 500 mV."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Matutu, Andi Agung
"Seiring dengan perkembangan kemajuan teknologi, semakin banyak aplikasiaplikasi yang membutuhkan divais dengan kecepatan operasi tinggi. Dioda Schottky sebagai sebuah divais dengan kecepatan operasi tinggi banyak dipakai dalam aplikasi-aplikasi seperti power converter, RF detectors dan mixers. Dioda Schottky yang dipakai sekarang ini masih menggunakan bahan semikonduktor konvensional seperti Silikon sebagai material dasarnya.
Pada skripsi ini dilakukan desain dan simulasi sebuah dioda Schottky yang menggunakan Carbon Nanotube (CNT) sebagai pengganti Silikon sebagai material semikonduktor dalam dioda Schottky tersebut. CNT yang digunakan adalah semiconducting CNT dengan chirality tertentu. Setelah dioda Schottky didesain, dilakukan simulasi menggunakan CNTBANDS 2.0 untuk mengetahui parameter-parameter yang digunakan dalam perhitungan dan analisis.
Dari hasil perhitungan yang didasarkan pada parameter-parameter yang didapatkan melalui simulasi dengan CNTBANDS 2.0, didapatkan hasil kecepatan operasi dioda Schottky CNT yang mencapai skala terahertz, yaitu sebesar 8.1 THz untuk chirality (7,0) dan 0.42 THz untuk chirality (32,0). Kecepatan operasi dioda Schottky CNT ini bergantung pada parameter chirality dari CNT yang digunakan dalam divais. Dengan pertimbangan penggunaan CNT untuk divais yang ada sekarang ini terutama dari segi diameter maka diambil CNT dengan chirality (26,0) yang memiliki diameter sebesar 2.03 nm sebagai bahan untuk dioda Schottky CNT.

Along with technology development nowadays, more of applications need devices with high operation speed. Schottky diode as a high operation speed device is mainly used in aplications such as power converter, RF detectors and mixers. The current Schottky diode is still using conventional semiconductor material such as Silicon for the material.
The goal of this research is to design and simulate a Schottky diode which using Carbon Nanotube (CNT) to replace Silicon as semiconductor material in Schottky diode. The type of CNT which is used in this research is semiconducting CNT with certain chirality. After designing Schottky diode, simulation is performed using CNTBANDS 2.0 to get the parameter of the CNT which is used in calculation and analysis.
From the calculation based on the parameters obtained from simulation with CNTBANDS 2.0, we obtain CNT Schottky diode with terahertz scale operation speed, range from 8.1 THz for chirality (7,0) to 0.42 THz for chirality (32,0). The operation speed of CNT Schottky diode depends on chirality of the CNT used in the device. Due to application of CNT in the devices reason especially from the diameter of CNT parameter, we choose CNT with chirality (26,0) that has 2.03 nm of diameter as a material for CNT Schottky diode.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S38396
UI - Skripsi Open  Universitas Indonesia Library
cover
Rizka Amalia Hayati
"Saat ini, implan telah banyak dikembangkan dalam dunia kesehatan, seperti implan koklea, prostesis retina, implan alat pacu jantung dll. Low noise amplifier (LNA) adalah salah satu rangkaian utama pada rangkaian penerima sistem transfer daya nirkabel untuk aplikasi implan medis yang berfungsi untuk mengamplifikasi sinyal keluaran dari antena penerima. Dalam penelitian ini, dirancang suatu rangkaian penerima berdaya dan berderau rendah dengan frekuensi kerja 13,56 MHz. Menggunakan tiga blok rangkaian, yaitu LNA, penyearah, dan filter, rangkaian penerima ini didesain untuk mengamplifikasi daya sekaligus menyearahkannya. Dari hasil simulasi, rangkain penerima yang didesain memiliki penguatan (S21) sebesar 43dB, noise figure 1,179dB, dan daya yang dibutuhkan sebesar 0,987 mW. Rangkaian ini telah diimplementasikan dalam sebuah PCB dalam ukuran 85,1 mm x 32,6 mm dan diuji parameter-parameternya.

Nowadays, implant has been developed a lot in medical field, such as cochlear implant, retinal prostheses, pacemaker implant, etc. Low noise amplifier (LNA) is a main circuit of wireless power transfer system receiver, which has a function to amplify output signal from receiver antenna. In this thesis, a low-noise low-power 13,56 MHz receiver had been designed. Using three circuit blocks: LNA, rectifier, and filter, this receiver was designed to do amplification and rectification as well. From simulation, this receiver got amplification gain (S21) 43dB, noise figure 1.179dB, and power consumption 0.987mW. The receiver was implemented in 85.1 mm x 32.6 mm PCB and had been tested for its parameters."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hassita Ranya Fauzia
"Skripsi ini membahas perancangan dan simulasi power amplifier yang beroperasi pada channel 87 yaitu frekuensi 860 MHz dengan menggunakan transistor push-pull dan Saluran mikrostrip yang berfungsi sebagai pengganti induktor. Rangkaian input matching dan output matching dirancang khusus agar beresonansi pada frekuensi tersebut.
Tujuan dari perancangan ini adalah mencapai VSWR ± 1, S21 pada nilai antara 8-11 dB dan S11 dan S22 dibawah -10 dB. Spesifikasi penting untuk perancangan power amplifier ini antara lain: daya keluaran 100 mWatt, daya masukan 5 - 20 mWat, arus drain yang kecil dengan tegangan supply 25 Volt, memenuhi standar kestabilan (K > 1), dan return of loss (ROL < -10 dB). Transistor yang digunakan yaitu TPV7025, sebuah transistor silikon frekuensi tinggi tipe NPN. Rancangan ini disimulasikan menggunakan program Advanced Design System (ADS).

This thesis discusses specific frequencies on channel 87 is 860 MHz simultaneously is designed. This amplifier using a transistor pushpull there and a microstrip line that serves as a substitute for an inductor. The input matching and output matching circuit is designed with a special matching network which resonates at two frequencies.
The objective of this design is to achieve VSWR ± 1, S21 at a point range 8-11 dB and S11 and S22 below -10 dB for both frequencies. The other important specification for this dual band high power amplifier is: 100 mWatt output power, 5 - 20 mWatt input power, low drain flow with 25 Volt supply voltage, fulfill the stability standard (K > 1), and return of loss (ROL < -10 dB). The transistor used is TPV7025, a NPN silicon high frequency transistor. The design is simulated with Advanced Design System (ADS) software.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44177
UI - Skripsi Membership  Universitas Indonesia Library
cover
Suwarto
"Penelitian ini mengajukan rancang bangun antena slot microstrip multiband pada frekuensi 924 MHz, 1800 MHz, 2450 MHz dan 5800 MHz untuk Aplikasi RFID dan komunikasi pita lebar. Antena dirancang menggunakan perangkat lunak berbasis Finite Integration Technique (FIT), dengan teknik pencatuan saluran mikrostrip 50 Ω. Antena dibuat pada substrate FR4 dengan ukuran 95 x 85 x 1.6 mm3. Pada perancangan ini antena dibentuk dari slot persegi panjang dikombinasikan dengan strip bentuk U dan L pada sebuah patch persegi panjang agar dapat menghasilkan empat pita frekuensi. Prototipe antena ini telah difabrikasi untuk dilakukan validasi melalui pengukuran.
Hasil pengukuran menunjukkan karakteristik multiband pada pita frekuensi 924 MHz, 1800 MHz, 2450 MHz dan 5800 MHz. Pada standar bandwidth di S11 = -10 dB, antena menghasilkan bandwidth antara 923 s.d. 925 MHz pada frekuensi resonansi 924 MHz, antara 1700 s.d. 1900 MHz pada frekuensi resonansi 1800 MHz, antara 2400 s.d 2485 MHz pada frekuensi resonansi 2450 Mhz dan antara 5725 s.d 5875 MHz pada frekuensi resonansi 5800 Mhz. Hasil pengukuran antena menunjukkan karakteristik pola radiasi menyerupai hasil simulasi pada empat pita frekuensi yang diajukan pada perancangan antena ini.

This research proposes design of multiband microstrip slot antenna at the frequency of 924 MHz, 1800 MHz, 2450 MHz and 5800 MHz aiming at RFID applications and broadband communications. The antenna is designed by using a commercial software based on the Finite Integration Tecnique (FIT), with 50 Ω microstrip line feeding technique. The antenna is designed on FR4 substrate with the size of 95 x 85 x 1.6 mm3. In this design, the slot antenna is formed by rectangular slots combined with U and L shape strip combination on a rectangular patch in order to obtain four frequency bands. The prototype antenna has been fabricated for basic validation by conducting measurement.
The measurement results show that the multiband characteristics occur at the frequency bands 924 MHz, 1800 MHz, 2450 MHz and 5800 MHz. As for the standard -10 dB impedance bandwidth, the antenna provides bandwidth between 923 to 925 MHz at 924 MHz resonant frequency, between 1700 to 1900 MHz at 1800 MHz resonant frequency, between 2400 to 2485 MHz at 2450 MHz resonant frequency and between 5725 up to 5875 MHz at 5800 MHz resonant frequency. The measurement results show that the antenna radiation patterns agree with the simulation results at each frequency band as it has been proposed.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44357
UI - Skripsi Membership  Universitas Indonesia Library
cover
Riko Afdhillah
"Skripsi ini membahas mengenai rancang bangun dan analisa Rangkaian Wide Range Voltage To Frequency Converter. Perancangan dilakukan dengan menggunakan software Multisim 11.0 dan Altium Designer Summer 2009, yang diterapkan pada papan PCB (printed circuit board). Rangkaian ini dibutuhkan dalam dunia komunikasi dan keperluan laboratorium, terutama rangkaian yang menghasilkan sinyal yang stabil dengan rentang frekuensi yang sangat lebar.
Berdasarkan rancangan desain rangkaian yang telah dilakukan oleh Jim Williams [3], dilakukan penyesuaian konfigurasi pada bagian frequency divider, yaitu pada IC74S74 yang berfungsi sebagai toggle dan hold dimana rangkaian ini akan membagi frekuensi feedback menjadi frekuensi yang lebih kecil. Selanjutnya dilakukan pemberian variasi terhadap nilai kapasitor kompensasi pada penguat operational amplifier yang akan mempengaruhi loop sistem.
Hasil yang diperoleh merupakan grafik uji linieritas dan grafik uji kestabilan alat. Untuk uji linieritas, didapatkan hasil koefisien korelasi R yang lebih besar pada kapasitor 0,1μF yaitu 0,999796 dimana nilai koefisien korelasi yang lebih mendekati nilai satu akan menunjukkan hasil linieritas yang lebih tinggi. Untuk uji kestabilan alat, didapatkan hasil koefisien korelasi R yang lebih kecil pada kapasitor 0,1μF yaitu 0,042569 dimana nilai koefisien korelasi yang lebih mendekati nilai nol akan menunjukkan hasil kestabilan yang lebih tinggi. Linieritas alat yang dihasilkan memiliki rentang dari 0 Hz hingga 21,5 MHz.

This final project discusses the design and analysis of circuit Wide Range Voltage To Frequency Converter. The design is done using Multisim 11.0 and Altium Designer Summer 2009 software, which applied to the board PCB (printed circuit board). The circuit is needed in the world of communication and to obtain a stable signal with a very wide frequency range.
Based on the design of the circuit design was done by Jim Williams [3], made adjustments to the configuration of the frequency divider, which is the IC74S74 that serves as a toggle and hold circuit which divides the frequency of feedback into smaller frequency. Then performed giving the variation of the operational amplifier compensation capacitor on the amplifier that will affect the loop system.
The results obtained is the graph of linearity test and stability test tool. For the linearity test, showed a correlation coefficient R was greater in 0.1 μF capacitor is 0.999796 which the correlation coefficient value which is closer to the value of one would indicate a higher linearity results. To test the stability of the instrument, showed a correlation coefficient R is smaller at 0.1 μF capacitor is 0.042569 which the correlation coefficient values closer to zero value would indicate a higher stability results. Linearity of the resulting instrument has a range of 0 Hz to 21.5 MHz.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43069
UI - Skripsi Open  Universitas Indonesia Library
cover
Akhmad Fauzi
"Skripsi ini membahas mengenai optimisasi perancangan rangkaian pembaca keluaran sensor kelembaban dan konduktivitas listrik dengan peak detektor. Perancangan dilakukan dengan simulasi menggunakan multisim 10.0.1. Keluaran dari sensor kelembaban dan konduktivitas listrik yang dibaca berupa beda fasa antara tegangan output dan input sensor. Level tegangan ini pada simulasi multisim 1.0.0.1 akan dibaca oleh ADC (Analog to Digital Circuit) dan ditampilkan pada layar dengan menggunakan microcontroller unit. Setelah penelitian didapatkan ketelitian sampai 0.01o dan rentang pembacaan 0 < ? < 90_. Dari penelitian juga didapatkan bahwa metode zero crossing detector memiliki akurasi yang lebih baik dibandingkan peak detector sebagai rangkaian pembaca sensor kelembaban dan konduktivitas listrik karena ketidakidealan sinyal keluaran RC.

This final project describes about optimization of developing read output circuit which used to read output from moisture and electric conductivity sensor with peak detector. Simulation circuit was developed by multisim 10.0.1. The output from moisture and electric conductivity which read is phase differences between output and input sensor voltage. This voltage level in multisim 1.0.0.1 simulation would be read using ADC (Analog to Digital Circuit) and shown on the LCD using MCU (microcontroller unit). After the research the accuracy of the phase detector known until 0.01o with range 0 < ? < 90o. From the research can be concluded that the zero crossing detector method is more accurate than the peak detector as read out circuit of moisture and electric conductivity sensor because the output signal of RC circuit is not ideal."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51456
UI - Skripsi Open  Universitas Indonesia Library
cover
Simanjuntak, Daniel
"Radio-Frequency Identification (RFID) telah menjadi salah satu segmen teknologi yang memiliki pertumbuhan pesat pada industri pengumpulan data dan identifikasi otomatis. Salah satu bagian terpenting dari sistem RFID adalah power amplifier yang memungkinkan terjadinya transfer daya antara reader dengan transponder untuk melakukan identifikasi.
Pada penelitian ini diusulkan power amplifier kelas E untuk aplikasi RFID yang bekerja pada frekuensi 13.56 MHz. Power amplifier pertama kali disimulasikan dengan menggunakan software Advance Desain System (ADS) dan kemudian hasil simulasi difabrikasi.
Power amplifier kelas E yang dirancang memiliki kestabilan K sebesar 1.758, return loss masukan (S11) sebesar -23.587 dB, return loss keluaran (S22) sebesar -19.123 dB, gain (S21) sebesar 22.742 dB, VSWR sebesar 1.142, dan PAE maksimal 79.331% pada frekuensi 13.56 MHz.
Sedangkan power amplifier hasil fabrikasi memiliki performansi yang cukup berbeda dengan hasil simulasi dimana hasil fabrikasi memiliki return loss masukan (S11) sebesar -14.926 dB, return loss keluaran (S22) sebesar -12.812 dB, dan gain (S21) sebesar 0.852 pada frekuensi 13.56 MHz.

Radio-Frequency Identification (RFID) has become a technology segment that growth rapidly in data collecting industry and automatic identification. One of the most important part of RFID system is power amplifier that enable power transfer between reader and transponder for identification purpose.
This research propose power amplifier class E for RFID application at 13.56 MHz frequency’s. The power amplifier is simulated with Advanced Design System (ADS) software then the simulation design is fabricated.
The simulation result of class E power amplifier has stability factor K of 1.758, input return loss (S11) of -23.587 dB, output return loss (S22) of -19.123 dB, gain (S21) of 22.472 dB, VSWR of 1.142, and maximum PAE of 79.331% on frequency of 13.56 MHz.
The fabrication result of power amplifier has a difference performance to the simulation result where the fabrication result has input return loss (S11) of -14.926 dB, output return loss (S22) of -14.926 dB, gain (S21) of 0.852 dB on frequency of 13.56 MHz.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T35521
UI - Tesis Membership  Universitas Indonesia Library
cover
Bambang Hermanto
"Tugas akhir ini membahas mengenai perancangan rangkaian pembaca keluaran sensor kelembaban dan konduktivitas dielektrik dengan menggunakan Operational amplifier LT 1807. Perancangan dilakukan dengan simulasi menggunakan multisim 10.0.1 dan menerapkan hasil simulasi di papan protoboard.
Berdasarkan implementasi dan pengujian rangkaian detektor fasa hasil kajian ini, didapatkan hasil yang lebih baik pada rangkaian rangkaian Pcb. Hal ini disebabkan karena capacitance stray menjadi lebih besar karena penggunaan protoboard dan noise yang disebabkan oleh adanya kabel jumper.
Berdasarkan pengujian hasil optimisasi terhadap tiga nilai resistansi diatas 1 KiloOhm yang dibandingkan dengan hasil rangkaian sebelumnya didapatkan lebar pulsa beda fasa dengan margin kesalahan terhadap perhitungan sebesar 0.508°.

This project discusses about the design of output circuits readers conductivity and dielectric humidity sensor using Operational amplifier LT1807. The design was simulated using Multisim 10.0.1 and applying the simulation results in protoboard.
Based on the implementation and testing phase detector circuit results of this study, obtained better results in the pcb board. This is because the stray capacitance becomes larger as the use protoboard and noise caused by the presence of jumper cables.
Based on the testing results of the optimization of the three above 1 KiloOhm resistance value that is compared with the previous set of results obtained with the phase shift between pulse width to the calculation of margin of error of 0.508°.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51309
UI - Skripsi Open  Universitas Indonesia Library
cover
Saad abdurrahman Fakhry
"Teknologi Radio Frequency Identification (RFID) adalah teknologi telekomunikasi nirkabel yang memanfaatkan gelombang elektromagnetik frekuensi radio untuk mendeteksi sebuah tag khusus untuk mengirim dan menerima data tanpa bersentuhan. RFID dapat digunakan dalam aplikasi sistem monitoring pasien secara jarak jauh dan real time. Untuk itu dirancang sebuah antena tag RFID yang dapat berkomunikasi pada frekuensi yang dialokasikan untuk RFID di Indonesia yaitu 924 MHz. Antena ini akan diimplan kedalam lengan pasien diantara lapisan kulit dan lemak. Antena yang dirancang berbentuk dipole dengan kombinasi bentuk helical dan folded. Antena kemudian diinsulasi menggunakan silicone untuk mengurangi Specific Absorption Rasio (SAR) dan diimplan ketubuh pasien. Untuk mengetahui karakteristik dan parameter-parameter maka antena disimulasi dengan menggunakan model lengan manusia dengan tipe phantom homogen di frekuensi 924 MHz dan dilakukan fabrikasi antena dan pengukuran menggunakan model phantom liquid di frekuensi 924 MHz. Simulasi dilakukan menggunakan software CST. Setelah disimulasikan didapat bahwa Antena memiliki gain sebesar -15.92 dB dan dengan bandwidth 852.44 MHz – 1006,8 MHz sebesar 154.36 MHz. Dan setelah antena difabrikasi dan diukur didapat bandwidth 844 – 964 MHz. sebesar 120 MHz.

Radio Frequency Identification (RFID) is a wireless telecommunication technology that utilizes electromagnetic waves (EM) at a radio frequency to detect a special tag to transmit and receive data without touching. RFID can be applied in long-distance and real-time patient monitoring system. For this reason, an RFID tag antenna is designed that can communicate at the allocated frequency for RFID in Indonesia at 924 MHz. This antenna will be implanted into the patient’s arm between the skin layer and the fat layer. The designed antenna is a dipole antenna with combination of helical and folded antenna. The Antenna then insulated using silicone to reduce Specific Absorption Ratio (SAR) and implanted in patient’s body. To find out characteristics and parameters of the designed antenna, the antenna is simulated using a human arm model with homogenous phantom at a frequency of 924 MHz and the antenna is fabricated and measured using a tissue equivalent liquid phantom at a frequency of 924 MHz. The simulation is done using CST software. After simulation, it is found that the antenna has a gain of -15.92 dB and a bandwidth of 154.36 MHz from 852.44 MHz to 1006.8 MHz. After fabrication and measurement, it is found that the antenna has a bandwidth of 120 MHz from 844 – 964 MHz."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>