Padi merupakan tanaman pangan utama yang dikonsumsi oleh sebagian besar populasi penduduk di Indonesia untuk makanan pokok sehari-hari. Hal tersebut didukung dengan konsumsi beras yang mencapai hingga 1,55 ton pada tahun 2018, dan Kabupaten Sukabumi berada pada lima besar kabupaten dengan produksi beras terbesar di Indonesia. Penelitian ini bertujuan untuk menganalisis musim tanam padi berdasarkan indeks vegetasi dan menganalisis estimasi produktivitas padi di Kecamatan Cikakak. Untuk dapat mengetahui pola musim tanam di Kecamatan Cikakak, digunakan indeks tiga vegetasi, yaitu NDVI, ARVI, dan MSAVI. Indeks vegetasi terebut diolah dalam citra Sentinel-2 menggunakan Google Earth Engine. Setelah itu, untuk mendapatkan estimasi produktivitas dilakukan validasi lapangan dari nilai indeks vegetasi yang didapatkan. Estimasi akan dikaitkan dengan faktor fisik dari Kecamatan Cikakak, yaitu ketinggian. Oleh karena itu, maka hasil dari validasi tersebut akan dibandingkan pada setiap titik dengan faktor tersebut. Hasil dari penelitian ini adalah pola fase dan musim tanam dari sawah di Kecamatan Cikakak, serta waktu tanam yang berbeda-beda pada setiap sawahnya dan pada setiap desanya. Estimasi produktivitas padi di Kecamatan Cikakak memiliki rata-rata 8,87 ton/ha untuk NDVI, 8,89 ton/ha untuk MSAVI, dan 6,50 ton/ha untuk ARVI. Sebagian besar sawah yang memiliki produktivitas yang cukup tinggi berada di ketinggian 250 – 500 mdpl. Indeks vegetasi NDVI menjadi indeks dengan akurasi paling tinggi diantara kedua indeks vegetasi lainnya.
Paddy is the main food crop consumed by most of the population in Indonesia for daily staples. This is supported by rice consumption which reaches up to 1.55 tons in 2018 and Sukabumi Regency is in the top 5 districts with the largest rice production in Indonesia. This study aims to analyze the rice planting season based on vegetation index and analyze the estimation of rice productivity in Cikakak District. To be able to know the planting season pattern in Cikakak Subdistrict, vegetation index is used, there are 3 vegetation indexes used in this study, there is NDVI, ARVI, and MSAVI. The vegetation index is processed in Sentinel-2 imagery using Google Earth Engine, after that to get an estimate of productivity field validation of the vegetation index value obtained, in addition to the estimation will be associated with physical factors from the District of Cikakak, therefore the results of the validation will be compared at each point with these factors. The results of this study are the phase pattern and planting season of rice fields in the Cikakak sub-district when planting time is different in each rice field and in each village. Then for the estimation of rice productivity in Cikakak Subdistrict, it has an average of 8.87 tons / Ha for NDVI, 8.89 tons / Ha for MSAVI and 6.50 tons / Ha for ARVI, and most rice fields that have quite high productivity are at an altitude of 250 - 500 meters above sea level. In addition to using the NDVI vegetation index, it is the index with the highest accuracy among the two other vegetation indices to be able to estimate rice productivity.
"
Beras merupakan komoditas penting dan strategis bagi masyarakat Indonesia dalam mempertimbangkan makanan, dalam hal ini beras merupakan kebutuhan pokok. Penelitian ini bertujuan untuk mengetahui fase pertumbuhan padi sawah dan perkiraan produktivitas padi di Kabupaten Jatisari, Kabupaten Karawang. Penelitian ini menggunakan dua algoritma untuk menentukan fase pertumbuhan tanaman padi, yaitu Normalized Difference Vegetation Index (NDVI) dan Atmosphericically Resistant Vegetation Index (ARVI). Algoritma NDVI umumnya digunakan dalam beberapa penelitian yang berkaitan dengan fase pertumbuhan tanaman padi dan produktivitasnya, penggunaan algoritma ARVI dalam penelitian ini disesuaikan dengan area penelitian karena nilai ARVI menurut EOS (Earth Observing System) digunakan untuk daerah dengan kandungan aerosol atmosfer tinggi (hujan, kabut, debu, asap, dan polusi udara). Sehingga penggunaan algoritma ARVI lebih efektif daripada algoritma NDVI di daerah penelitian ini. Dalam memproses data, kami menggunakan Google Earth Engine (GEE) sebagai alat. Dan untuk uji validasi dalam penelitian ini digunakan Confussion Matrix yang mencakup akurasi keseluruhan, akurasi produsen, dan akurasi pengguna. Berdasarkan nilai NDVI dan ARVI, Kecamatan Jatisari memiliki dua fase tanam yaitu dengan satu kali panen dan dua kali panen. Dan hasil penelitian ini adalah persamaan regresi linier dengan rumus, Produktivitas (ton / ha) = 6.9513 (NDVI) + 3.3384, dengan variasi nilai koefisien (R2) = 0,898 dan Produktivitas (ton / ha) ) = 3,9849 (ARVI) + 7,3992, dengan variasi nilai koefisien (R2) = 0,6505. Dan untuk estimasi produktivitas padi di Kabupaten Jatisari memiliki rata-rata, 7,55 ton / ha dengan akurasi 93,29% untuk NDVI dan 90,43% untuk ARVI. Ditemukan bahwa algoritma NDVI lebih efektif untuk menentukan fase pertumbuhan tanaman padi dibandingkan dengan algoritma ARVI. Dan penelitian ini membuktikan bahwa faktor atmosfer tidak terlalu berpengaruh di Kabupaten Jatisari.
Rice is an important and strategic commodity for the Indonesian peoples staple food, in this case rice is a basic need. Technology-based monitoring is needed such as remote sensing for rice plants in Indonesia. This study aimed to determine the growth phase of wetland rice and estimated rice productivity in Jatisari District, Karawang Regency. This research used two algorithms to determine the growth phase of rice plants, they were Normalized Difference Vegetation Index (NDVI) and Atmospherically Resistant Vegetation Index (ARVI). NDVI algorithm was commonly used in several studies related to the growth phase of rice plants and their productivity, the use of the ARVI algorithm in this study was adjusted to the study area because the ARVI value according to EOS (Earth Observing System) is used for areas with high atmospheric aerosol content (rain, fog, dust, smoke and air pollution). So that the use of the ARVI algorithm is more effective than the NDVI algorithm in this research area. In processing data we use Google Earth Engine (GEE) as tool. And for the validation test in this study used Confussion Matrix which includes overall accuracy, producer accuracy, and user accuracy. This accuracy test is considered the most suitable because the data used are pixel and object based. Based on NDVI and ARVI values, Jatisari District has two planting phases, namely one harvest and two harvests. And the results of this research are a linear regression equation with the formula, Productivity (ton / ha) = 6,9513(NDVI ) + 3,3384, with the variation of the coefficient value (R2) = 0,898 and Productivity (ton/ha) = 3,9849(ARVI) + 7,3992, with the variation of the coefficient value (R2) = 0,6505. And for the estimation of rice productivity in Jatisari District had an average, 7,55 ton/ha with an accuracy of 83,29% for NDVI and 90,43% for ARVI. Found that the NDVI algorithm is more effective to determine the growth phase of rice plant compared to the ARVI algorithm. And this research proves that atmospheric factors are not very influential in Jatisari District.
"