Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 71686 dokumen yang sesuai dengan query
cover
Naufal Alharits Sadly
"Sistem prediksi kadar fenolik pada daun Bisbul (Diospyros discolor Willd.) berbasis citra hiperspektral visible and near-infrared (VNIR) terbukti mampu dibuat dan mendapatkan hasil dengan nilai yang baik. Kamera hiperspektral dengan rentang panjang gelombang 400-1000 nm digunakan dalam mengakuisisi citra VNIR pada daun Bisbul. Penelitian ini membahas mengenai komparasi dari beberapa model regresi baru dengan penelitian terdahulu yang diharapkan bisa mendapatkan hasil yang lebih baik dalam memprediksi kadar fenolik pada daun Bisbul. Digunakan tiga model regresi dalam membuat sistem prediksi ini yaitu model Partial Least Square Regression (PLSR), Random Forest, dan XGBoost Regressor. Sistem Prediksi menggunakan PLSR menghasilakan sebesar 3,62 (RMSE test), 0,81 (R2 test), nilai akurasi sebesar 91,3%, dan waktu training 0,27 detik. Sistem Prediksi menggunakan Random Forest tanpa menggunakan seleksi fitur menghasilakan sebesar 4,04 (RMSE test), 0,81 (R2 test), nilai akurasi sebesar 90,86%, dan waktu training 17,81 detik. Sistem Prediksi menggunakan Random Forest dengan seleksi fitur menghasilakan sebesar 3,84 (RMSE test), 0,79 (R2 test), nilai akurasi sebesar 91,31%, dan waktu training 19,05 detik. Sistem Prediksi menggunakan XGBoost Regressor dengan menghasilakan sebesar 3,48 (RMSE test), 0,83 (R2 test), nilai akurasi sebesar 91,1%, dan waktu training 24,9 detik. Performa terbaik dihasilkan oleh model XGBoost Regressor dengan sedikit perbedaan dengan PLSR. Model XGBoost Regressor berhasil meningkatkan performa sebesar 14% pada RMSE dan 2% pada R2 berbanding dengan PLSR.

Phenolic levels prediction system on Bisbul leaves (Diospyros discolor Willld.) Based on visible and near-infrared (VNIR) hyperspectral images proved to be able to be made and get results with good values. Hyperspectral camera with a wavelength range of 400-1000 nm is used in acquiring VNIR images on Bisbul leaves. This study discusses the comparison of several new regression models with previous studies that are expected to get better results in predicting phenolic levels in Bisbul leaves. Three regression models are used in making this prediction system, namely the Partial Least Square Regression (PLSR), Random Forest, and XGBoost Regressor models. The prediction system using PLSR produces 3.62 (RMSE test), 0.81 (R2 test), an accuracy of 91.3%, and a training time of 0.27 seconds. The prediction system uses Random Forest without using the selection feature with results of 4.04 (RMSE test), 0.81 (R2 test), an accuracy of 90.86%, and a training time of 17.81 seconds. The prediction system using Random Forest with feature selection resulted in 3.84 (RMSE test), 0.79 (R2 test), an accuracy of 91.31%, and a training time of 19.05 seconds. The prediction system using the XGBoost Regressor produces 3.48 (RMSE test), 0.83 (R2 test), an accuracy of 91.1%, and training time of 24.9 seconds. The best performance is produced by XGBoost Regressor with a slight difference from PLSR. The XGBoost Regressor model managed to improve performance by 14% on RMSE and 2% on R2 compared to PLSR."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aditya Bariq Ikhsan
"Kandungan total karotenoid dalam tumbuhan umumnya diukur menggunakan analisis spektrofotometri, dengan sifatnya yang merusak sampel terdapat batasan yang bisa dilakukan untuk penelitian selanjutnya. Digunakan pencitraan hiperspektral menggabungkan analissi spektral dan spasial yang bersifat tidak merusak sampel. Timbul masalah terutama pada bagian algoritma untuk membuat sistem prediksi pada citra hiperspektral karena diperlukan algoritma dengan akurasi yang tepat dan cepat. Penelitian ini membahas tentang komparasi algoritma pembelajara mesin metode ensemble dengan menambahkan tuning hyperparameter menggunakan random search dan memanfaatkan seleksi fitur yang dimiliki tiap model untuk meningkatkan performa dan mengurangi waktu latih model prediksi kadar karotenoid pada daun Bisbul. Sistem prediksi menghasilkan performa dasar, random forest dengan semua fitur memiliki RMSE sebesar 38,16, serta R2 sebesar 0,95, dan waktu latih 4,27s, xgboost dengan semua fitur memiliki RMSE sebesar 39,82, serta R2 sebesar 0,95, dan waktu latih 0,83s, lightgbm dengan semua fitur memiliki RMSE sebesar 35,59, serta R2 sebesar 0,96, dan waktu latih 1,73s, catboost dengan semua fitur memiliki RMSE sebesar 31,60, serta R2 sebesar 0,97, dan waktu latih 17,34s. Dengan menggunakan fitur hasil seleksi dan I, performa sistem berhasil ditingkatkan, random forest tuning dengan 30 fitur memiliki RMSE sebesar 34,39, serta R2 sebesar 0,96, dan waktu latih 5,85s, xgboost tuning dengan 120 fitur memiliki RMSE sebesar 33,32, serta R2 sebesar 0,96, dan waktu latih 1,73s, lightgbm tuning dengan 50 fitur memiliki RMSE sebesar 32,24, serta R2 sebesar 0,97, dan waktu latih 0,22s, catboost tuning dengan 40 fitur memiliki RMSE sebesar 28,53, serta R2 sebesar 0,97, dan waktu latih 4,92s. Secara umum Catboot memiliki peningkatan RMSE paling tinggi, lightgbm memiliki peningkatan waktu latih paling tinggi.

The total carotenoid content in plants is generally measured using spectrophotometric analysis, with its destructive to the sample there are limitations that can be done for further research. Hyperspectral imaging combining spectral and spatial analysis is used that is not destructive to the sample. Problems arise, especially in the algorithm section to create a prediction system on hyperspectral images because an algorithm with precise and fast accuracy is required. This study discusses the comparations of machine learning algorithm with the ensemble method by adding hyperparameter tuning using random search and utilizing the feature selection of each model to improve performance and reduce training time for predictive models of carotenoid levels in velvet leaves. The prediction system produces basic performance, random forest with all features has RMSE of 38.16, and R2 of 0.95, and training time of 4.27s, xgboost with all features has RMSE of 39.82, and R2 of 0.95, and training time of 0.83s, lightgbm with all features has an RMSE of 35.59, and R2 of 0.96, and training time of 1.73s, catboost with all features has an RMSE of 31.60, and R2 of 0.97, and training time 17.34s. By using the selected features and I, system performance has been successfully improved, random forest tuning with 30 features has an RMSE of 34.39, and R2 of 0.96, and training time of 5.85s, xgboost tuning with 120 features has an RMSE of 33, 32, and R2 of 0.96, and training time of 1.73s, lightgbm tuning with 50 features has RMSE of 32.24, and R2 of 0.97, and training time of 0.22s, catboost tuning with 40 features has an RMSE of 28.53, and R2 is 0.97, and training time is 4.92s. In general Catboot has the highest increase in RMSE, lightgbm has the highest increase in training time."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Femilia Putri Mayranti
"ABSTRAK
Sistem prediksi berbasis citra VNIR mampu untuk memprediksi parameter tertentu pada suatu objek. Parameter seperti kadar fenolik dari daun bisbul dapat diprediksi dengan sistem prediksi berbasis citra VNIR. Citra VNIR daun bisbul diakuisisi menggunakan kamera hiperspektral dengan rentang 400 hingga 1000 nm. Model regresi yang digunakan pada sistem prediksi ini meliputi Support Vector Regression (SVR), Partial Least Square Regression (PLSR), serta Decision Tree Regression (DTR). Dari ketiga model tersebut didapatkan nilai error yang menunjukkan performa sistem prediksi yang dibuat. Error berupa koefisien determinasi (R2) dan Root Mean Square Error (RMSE). Nilai koefisien determinasi (R2) sebesar 0,95 (SVR); 0,91 (PLSR); dan 0,90 (DTR). Serta untuk RMSE sebesar 2,66 (SVR). 3,60 (PLSR), dan 3,90 (DTR). Berdasarkan hasil koefisien korelasi dari ketiga model tersebut, dapat disampaikan bahwa kadar fenolik dari daun bisbul dapat diprediksi dengan menggunakan model SVR untuk performa yang baik dan menggunakan parameter fungsi kernel polinomial orde 3. Nilai prediksi kadar fenolik rata-rata dari ketiga model sebesar 32,72 GAE(µg/mg) untuk DTR; 32,46 GAE(µg/mg) untuk PLSR; dan 32,27 GAE(µg/mg) untuk SVR.

ABSTRACT
Prediction systems based on VNIR images are able to predict certain parameters on an object. Parameters such as the phenolic content of Diospyros discolor Willd leaf can be predicted by this system. VNIR images of Diospyros discolor Willd leaf acquired using a hyperspectral camera with a range of 400 to 1000 nm. The regression model to predict the content used Support Vector Regression (SVR), Partial Least Square Regression (PLSR), and Decision Tree Regression (DTR). Based on three models, an error value is obtained that indicates the performance of the predictive system. The error value such as coefficient correlation (R) and Root Mean Square Error (RMSE). The value of R from the models are 0,95 (SVR); 0,91 (PLSR), and 0,90 (DTR). The value of RMSE from the models are 2,66 (SVR). 3,60 (PLSR), and 3,90 (DTR). Value of predicted total phenolic content from the models are 32,72 GAE(µg/mg) for DTR; 32,46 GAE(µg/mg) for PLSR; dan 32,27 GAE(µg/mg) for SVR. Based on the coefficient correlation, phenolic content can be predicted using SVR model for best result with kernel function polynomial 3 order.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maulana Ihsan
"Kandungan total flavonoid dalam tumbuhan umumnya diukur menggunakan analisis spektrofotometri berdasarkan tingkat penyerapan warna. Dalam penelitian ini, sistem pemetaan flavonoid pada daun bisbul (Diospyros discolor Willd.) diperkenalkan menggunakan teknik pencitraan hiperspektral menggabungkan analisis spektral dan spasial. Sistem pemetaan dapat menunjukkan distribusi total flavonoid pada daun bisbul. Sistem ini terdiri dari sistem pengukuran dan model matematika dengan cara mengubah setiap piksel spasial menjadi nilai yang mewakili jumlah flavonoid dalam daun bisbul. Sistem pengukuran terdiri dari kamera hiperspektral, lampu halogen, slider serta kerangka pengukuran. Random forest (RF) dan XGBoost Regressor digunakan untuk menghitung model transformasi antara nilai reflektansi dan total flavonoid. Random forest juga digunakan untuk menyeleksi panjang gelombang yang memiliki korelasi terhadap flavonoid. Pembangunan sistem pengukuran dilakukan dengan 18 sampel daun bisbul dengan variasi usia daun berdasarkan letak daun pada satu dahan. Dalam rentang panjang gelombang penuh, model RF memberikan root mean square error (RMSE) 18,46 dan koefisien determinasi (R2) 0,89. Model RF setalah dilakukan pemilihan panjang gelombang menghasilkan RMSE 18,07 serta R2 0,90. Model XGBoost Regressor memberikan RMSE 11,89 dan koefisien determinasi 0,96. Sistem pemetaan yang diusulkan dapat digunakan dalam menganalisis distribusi flavonoid dalam daun bisbul.

The total content of flavonoids in plants is generally measured using spectrophotometric analysis based on color absorption rates. In this study, mapping system of flavonoid distribution of (Diospyros discolor Willd.) leaf was introduced using hyperspectral imaging technique combining spectral and spatial analysis. The mapping system provides total distribution of flavonoids in (Diospyros discolor Willd.) leaves. This system consists of a measurement system and a mathematical model that converts each spatial pixel into a value that represents the number of flavonoids in (Diospyros discolor Willd.) leaves. The measurement system consists of a hyperspectral camera, halogen lamp, slider, and measurement frame. Random forest (RF) and XGBoost Regressor are used to calculate the transformation model between reflectance values ​​and total flavonoids. Random forest is also used to select wavelengths that have a correlation with flavonoids. The construction of the measurement system was carried out with 18 samples of (Diospyros discolor Willd.) leaves with variations in the age of leaves based on the location of the leaves on one branch. In the full wavelength range, the RF model gives the root mean square error (RMSE) 18.46 and the determination coefficient (R2) 0.89. The RF model after selecting the wavelength produces RMSE 18.07 and R2 0.90. The XGBoost Regressor model gives RMSE 11.89 and the coefficient of determination 0.96. The proposed mapping system can be used in analyzing the distribution of flavonoids in (Diospyros discolor Willd.) leaves."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eufrat Tsaqib Qasthari
"Sistem prediksi berbasis citra hiperspektral dapat diimplementasi dengan algoritma deep neural networks (DNN). Di penelitian ini, daun bisbul (Diospyros discolor Willd.) digunakan sebagai sampel dengan citra dari daun yang diakuisisi pada rentang gelombang 400-1000nm. Model pada penelitian ini bekerja dengan melakukan klasifikasi daun bisbul dan prediksi kadar polifenol pada daun bisbul. Sistem klasifikasi pada penelitian ini menggunakan algoritma DNN untuk membagi kelas menjadi daun bisbul, bukan daun bisbul dan teflon, model yang digunakan adalah model dense dan Stacked Auto Encoder (SAE) yang menggunakan fungsi loss categorical cross-entropy. Kedua sistem klasifikasi tersebut mampu meraih performa maksimum dengan akurasi 100%. Pada sistem prediksi kandungan polifenol dibagi menjadi dua yaitu senyawa flavonoid dan fenolik. Menggunakan model DNN yang belum teroptimasi dan masih dangkal model dapat memprediksi senyawa flavonoid dengan performa R2 pada 70,47% dan senyawa fenolik dengan performa R2 pada 70,08%. Lalu model tersebut diatur sedemikian rupa sehingga mendapatkan hyperparameter terbaik dan arsitektur yang lebih dalam, model ini dapat memprediksi kadar flavonoid dengan performa R2 pada 94,50% dan kadar senyawa fenolik dengan performa R pada 71,51%.

Prediction system based on hyperspectral imaging can be implemented with deep neural networks (DNN) algorithm. In this research, velvet apple leaves (Diospyros discolor Willd.) are used as a sample with image of leaves that have been acquired within the 400-1000nm wavelength. The working of the model in this research is based on classification of the velvet apple leaf and the prediction of the levels of polyphenol in it. DNN algorithm is used for the classification system to categorize the sample either actual velvet apple leaf, non-velvet apple leaf, and a teflon, with Dense DNN and Stacked Auto Encoder (SAE) as the models with categorical cross-entropy as the loss function. In both classification system are shown to be capable of archieving maximum performance with the accuration of 100%. A prediction system to predict polyphenol content that are divided into flavonoid and fenolic compounds. Using an unoptimized and shallow DNN model, it predict the flavonoid compound with the R2 performance of 70,47% and phenolic compound with the R2 performance of 70,08%. Furthermore, the model are configured so it can get the best hyperparameters and a more deep architecture, this model can predict of flavonoid with a R2 performance of 94,50% and phenolic with a R2 performance of 71,51%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putri Azizah Hana Rosa
"Pencitraan hiperspektral dapat diaplikasikan pada berbagai bidang. Salah satunya adalah pengukuran kadar suatu zat yang terkandung dalam suatu objek. Namun, pencitraan berbasis kamera hipespektral mempunyai kelemahan, yaitu mahal, besar, memerlukan perangkat keras tambahan yang kompleks, dan ukuran data citranya yang besar. Sebaliknya citra RGB memiliki perangkat yang jauh lebih sederhana, harga kamera yang lebih murah, dan ukuran data yang lebih kecil. Oleh karena itu, penelitian ini mengusulkan sistem prediksi kadar flavonoid dalam daun Bisbul (Diospyros discolor Willd.) menggunakan citra RGB yang direkonstruksi menjadi citra hiperspektral. Arsitektur model rekonstruksi yang diusulkan pada penelitian ini adalah U-ResNet, penggabungan arsitektur U-Net dengan Res-Net. Penelitian ini mencari arsiktektur rekonstruksi dan ukuran target yang optimal untuk melakukan rekonstruksi citra hiperspektral dan prediksi kadar. Setelah didapatkan arsitektur yang optimal, prediksi kadar flavonoid dilakukan menggunakan algoritma XGBoost dengan memvariasikan ukuran input sesuai hasil rekonstruksi. Hasil penelitian menunjukkan jumlah band sebanyak 224 dan rentang panjang gelombang 400-1000nm merupakan target rekontruksi yang optimal untuk sistem prediksi kadar flavonoid berbasis citra RGB. Sistem yang disarankan memiliki performa rekonstruksi RMSE sebesar 0,0961 dan MRAE sebesar 0,1955, serta performa prediksi kadar RMSE sebesar 29,818 dan MRAE sebesar 0,1080. Kesimpulannya, pengukuran kadar flavonoid dapat dilakukan menggunakan citra hiperspektral hasil rekonstruksi untuk menggantikan kamera hiperspektral.

Hyperspectral imaging can be applied in various fields. One of them is the content measurement of a substance contained in an object. However, hyperspectral camera-based imaging has disadvantages, namely expensive, large, requires complex additional hardware, and large image data size. In contrast, RGB images have much simpler tools, cheaper cameras, and smaller data sizes. Therefore, this study proposes a prediction system for flavonoid content in Bisbul (Diospyros discolor Willd.) leaves using an RGB image reconstructed into a hyperspectral image. The architecture of the reconstruction model proposed in this research is U-ResNet, combining U-Net architecture with Res-Net. This research is looking for optimal reconstruction architecture and target size for hyperspectral image reconstruction and flavonoid content prediction. After obtaining the optimal architecture, the prediction of flavonoid content was carried out using the XGBoost algorithm by varying the input size according to the reconstruction results. The results showed that reconstruction target with 224 bands within of 400-1000nm wavelength range was the optimal reconstruction target for the RGB image-based flavonoid content prediction system. The recommended system has an RMSE reconstruction performance of 0.0961 and an MRAE of 0.1955, and an RMSE content prediction performance of 29.818 and an MRAE of 0.180. In conclusion, measurement of flavonoid content can be carried out using reconstructed hyperspectral images to replace hyperspectral cameras."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alexander Patrick
"Popularitas sebuah paper yang terpublikasi dapat dilihat dari jumlah sitasi yang diperoleh paper tersebut. Akan tetapi, faktor-faktor yang mendukung banyak atau sedikitnya jumlah sitasi yang diperoleh bisa bermacam-macam. Faktor-faktor tersebut merupakan fokus pencarian pada penelitian ini. Pendekatan machine learning digunakan untuk mengetahui faktor-faktor tersebut. Beberapa fitur telah diekstrak dari dataset yang berisi kumpulan paper. Metode klasifikasi digunakan dalam supervised learning dengan model yang dibentuk dari dataset yang digunakan. Algoritma Logistic Regression dipakai untuk melakukan fitting terhadap model dengan hasil daya diskriminasi sistem sebesar 74,1% yang dilihat dari luas wilayah di bawah kurva ROC (Area Under Curve/AUC). Nilai koefisien dari model Logistic Regression digunakan sebagai feature importance untuk mencari nilai pengaruh dari tiap fitur terhadap output klasifikasi baik positif maupun negatif.

Popularity of a published paper can be indicated by its citation number. However, the factors determining the number of citation may vary. Those factors are the focus of this research. A machine learning approach is used to find out the factors. Some features are going to be extracted from a dataset of published papers. A classification method is going to be applied in a supervised learning with the machine learning model extracted from the dataset. A classification algorithm Logistic Regression is used to fit the model resulting a discrimination power of 74.1% from a calculation of area under ROC curve (AUC). A feature importance approach using coefficient score from Logistic Regression is also applied in determining the importance of each feature in determining the negative and positive classification."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mifa Nurfadilah
"Diospyros discolor Willd. atau bisbul diketahui mengandung beragam senyawa metabolit sekunder di antaranya fenol dan flavonoid. Senyawa-senyawa tersebut diduga berperan sebagai agen pereduksi dalam biosintesis nanopartikel perak NPP. Adapun karakter NPP seperti ukuran, bentuk, dan kesetabilan NPP dapat dipengaruhi oleh kondisi lingkungan biosintesis misalnya pH. Dalam penelitian ini dilakukan biosintesis menggunakan air rebusan daun D. discolor pada pH 4, 6, 7, 9, dan 11 untuk mengetahui pengaruh pH terhadap karakter NPP yang diperoleh. Selain itu, untuk mengetahui peran senyawa fenol dan flavonoid, maka dilakukan pengukuran kadar senyawa tersebut dalam air rebusan daun D. discolor.
Biosintesis NPP dilakukan dengan mencampurkan air rebusan daun D. discolor 2 pH 4, 6, 7, 9, dan 11 dan AgNO3 1 mM pada perbandingan volume 1:2. Pembentukan NPP diketahui dengan melakukan karakterisasi pada warna larutan hasil biosintesis, karakterisasi menggunakan spektrofotometer UV-Vis, Transmission Electron Microscopy TEM, dan Particle Size Analyzer PSA. Setelah inkubasi 24 jam, hasil biosintesis menunjukkan adanya perubahan warna larutan biosintesis menjadi kuning kecokelatan hingga cokelat gelap. Spektrum absorbansi yang muncul pada panjang gelombang 414-446 nm menunjukkan terbentuknya NPP.
Hasil TEM dan PSA menunjukkan NPP berbentuk spherical dan memiliki ukuran berkisar 21-54 nm. Ukuran NPP tersebut cenderung semakin kecil seiring dengan kenaikan nilai pH. Hasil PSA juga menunjukkan bahwa NPP yang dihasilkan cenderung stabil dengan nilai zeta potensial berkisar antara -14 mV hingga -30 mV. Keberhasilan biosintesis NPP menggunakan air rebusan D. discolor diduga karena peran senyawa fenol atau flavonoid dalam air rebusan tersebut sebagai agen pereduksi. Adapun kadar fenol dan flavonoid dalam air rebusan D. discolor yaitu 823,7 ugGAE/mL dan 157,4 ugRE/mL.

Diospyros discolor Willd. or Bisbul countains of various secondary metabolites including phenol and flavonoid. These compounds are known to have role as reducing agent in silver nanoparticles SNPs biosynthesis. The SNPs characters such as size, shape, and stability of SNPs can be influenced by environmental conditions of biosynthesis such as pH. In this research, biosynthesis was done using D. discolor leaves aqueous extract at pH 4, 6, 7, 9, and 11 to know the effect of pH on characters of SNPs obtained. In addition, to know the role of phenol and flavonoid compounds, the levels of these compounds in D. discolor leaves aqueous extract was measured.
Biosynthesis was done by mixing D. discolor leaves aqueous extract 2 pH 4, 6, 7, 9, and 11 and AgNO3 1 mM ratio 1:2 UV-Vis then the solution was incubated 24 hours. The SNPs formed are characterized by spectrophotometer UV Vis, Transmission Electron Microscopy TEM, and Particle Size Analyzer PSA. After 24 hours of incubation, the color of solution was changed from yellow to brown or dark brown. The absorption spectrum shows peak at 414-446 nm, indicate the formation of SNPs. Meanwhile, TEM imaging shows that the shape of SNPs is spherical.
Based on PSA result, size of SNPs are ranging between 21-54 nm. Their size tend to become smaller with the increasing of pH value. The PSA result also shows that SNPs have zeta potential value ranging from 14 mV to 30 mV which indicate that the SNPs are relatively stable to moderately stable. The success of SNPs biosynthesis using D. discolor is thought to be due to the role of phenol or flavonoids as reducing agents. The levels of phenol and flavonoids in D. discolor leaves aqueous extract is 823.7 ugGAE/mL and 157.4 ugRE/mL.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ivan Fathoni
"Beberapa bidang terkait seperti bahan agrokimia telah teraplikasi oleh nanopartikel. Sebagai salah dari satu contoh cara yang dapat digunakan adalah dengan memanfaatkan tumbuhan. Dalam penelitian ini, digunakan ekstrak daun Diospyros discolor Willd. untuk menyintesis nanopartikel CuO, Ag, dan CuO-Ag dengan masing-masing prekursornya, yaitu AgNO3 dan Cu(NO3)2.3H2O dengan konsentrasi yang sama, yaitu 50 mM. Nanopartikel CuO-Ag disintesis dengan perbandingan antarprekursornya yaitu 1:1 (v/v). Karakterisasi nanopartikel CuO, Ag, dan CuO-Ag dilakukan dengan spektrofotometer UV VIS, X-ray Difraction (XRD) dan juga Transmission electron microscope (TEM). Pada penelitian ini juga dilakukan uji toksisitas terhadap tanaman kacang panjang. Perbandingan dari setiap variasi konsentrasi yaitu, 0,01 mg/mL, 0,02 mg/mL, dan 0,03 mg/mL untuk tiap jenis nanopartikel terhadap tanaman kacang panjang dilakukan sebelum perendaman biji. Biji kacang panjang lalu di rendam selama 24 jam, lalu setelah itu diamati perkecambahan dan pertumbuhannya selama 14 hari. Hasil yang di peroleh menunjukkan nanopartikel CuO, Ag, dan CuO-Ag berhasil di sintesis melalui sintesis dengan menggunakan ekstrak daun Bisbul. Hasil sintesis menunjukkan bentuk nanopartikel CuO berupa lembaran dan Ag berupa bola. Sementara pengaruh nanopartikel terhadap kacang panjang menunjukkan efek stimulant pada nanopartikel CuO, Ag, dan CuO-Ag pada konsentrasi 0,03 mg/mL dan persentase perkecambahan paling baik pada nanopartikel CuO, kacang panjang pada parameter pertumbuhan meenunjukkan efek stimulant nanopartikel CuO, Ag, dan CuO-Ag pada konsentrasi 0,03 mg/mL dan pertumbuhan paling baik pada nanopartikel CuO-Ag, kenaikan konsentrasi NP CuO, Ag, dan CuO-Ag tidak mempengaruhi tingkat perkecambahan dan pertumbuhan.

Several related fields such as agrochemical materials have been applied by nanoparticles. One example of a method that can be used is by utilizing plants. In this research, Diospyros discolor Willd leaf extract was used. to synthesize CuO, Ag, and CuO-Ag nanoparticles with their respective precursors, namely AgNO3 and Cu(NO3)2.3H2O with the same concentration, namely 50 mM. CuO-Ag nanoparticles were synthesized with a ratio between precursors of 1:1 (v/v). Characterization of CuO, Ag and CuO-Ag nanoparticles was carried out using a UV VIS spectrophotometer, X-ray Difraction (XRD) and also a Transmission electron microscope (TEM). In this research, toxicity tests were also carried out on long bean plants. Comparison of each concentration variation, namely, 0.01 mg/mL, 0.02 mg/mL, and 0.03 mg/mL for each type of nanoparticle for long bean plants, was carried out before soaking the seeds. The long bean seeds were then soaked for 24 hours, then observed for germination and growth for 14 days. The results obtained showed that CuO, Ag and CuO-Ag nanoparticles were successfully synthesized through synthesis using Bisbul leaf extract. The synthesis results show that CuO nanoparticles are in the form of sheets and Ag in the form of balls. While the effect of nanoparticles on long beans showed a stimulant effect on CuO, Ag, and CuO- Ag nanoparticles at a concentration of 0.03 mg/mL and the best germination percentage on CuO nanoparticles, long beans on growth parameters showed a stimulant effect on CuO, Ag, and nanoparticles. CuO-Ag at a concentration of 0.03 mg/mL and the best growth on CuO-Ag nanoparticles, increasing the concentration of CuO, Ag, and CuO-Ag NPs did not affect the germination and growth rates."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizqi Imam Gilang Widianto
"Sistem prediksi kadar flavonoid pada daun Bisbul (Diospyros discolor Willd.)  berbasis citra VNIR sudah terbukti dapat dilakukan dan mendapatkan hasil yang cukup baik. Hasil tersebut bisa didapat karena data citra VNIR memiliki fitur yang sangat banyak (>200 fitur) sehingga dapat memberikan banyak informasi terkait kandungan flavonoid pada daun Bisbul. Namun, banyaknya jumlah fitur akan menyebabkan proses latihan pada model prediksi cukup lama dan akan memberikan beban yang cukup besar pada proses komputasi. Penelitian ini membahas tentang proses optimasi yang dilakukan kepada model regresi PLSR dengan menggunakan algoritma koloni lebah untuk meningkatkan performa dan mengurangi waktu latihan model prediksi kadar flavonoid pada daun Bisbul. Sistem prediksi menghasilkan performa dasar (PLSR) sebesar 23,6 RMSE, 0,86 pada R2, dan waktu training selama 0,6 detik untuk PLSR dengan jumlah 35 komponen dan 23,07 RMSE, 0,87 pada R2, dan waktu training selama 0,63 detik untuk PLSR dengan jumlah 50 komponen. Peningkatan performa sistem prediksi menggunakan algoritma koloni lebah berhasil dan menghasilkan performa sebesar 22,8 RMSE, 0,87 pada R2, dan waktu training selama 13,6 detik untuk PLSR dengan jumlah 35 komponen dan 22,69 RMSE, 0,88 pada R2, dan waktu training selama 13,7 detik untuk PLSR dengan jumlah 50 komponen.

Flavonoid content prediction system in the velvet apple leave based on VNIR image (Diospyros discolor Willd.) has been proven to be able to get good results. Those results could be earned because of VNIR image contains a lot of features (>200 features) that give a lot of information to predicts flavonoid content in velvet apple leave. Unfortunately, those features also causing a long training time and put a considerable burden on the computational process. Feature selection process using random forest algorithm proven to be able to reduce the training time, but it results is still need long time to train the prediction system. This study is aim to build and optimize PLSR prediction system using artificial bee colony algorithm to get a better performace and faster training time than random forest regression. Base performance by using 35 components of PLSR is 23.6 of RMSE, 0.86 of R2, and 0,6 seconds of training time. Base performance by using 50 components of PLSR is 23.07 of RMSE, 0.87 of R2, and 0,63 seconds of training time. After using artificial bee colony algorithm to optimize the PLSR prediction models, the results are  22.8 of RMSE, 0.87 of R2, and 13,6 seconds of training time by using 35 components of PLSR and 22.69 of RMSE, 0.88 of R2, and 13,7 seconds of training time by using 50 components of PLSR.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>