Ditemukan 128191 dokumen yang sesuai dengan query
Bijak Rabbani
"Diabetik retinopati adalah komplikasi dari penyakit diabetes yang dapat mengakibatkan gangguan penglihatan bahkan kebutaan. Penyakit ini menjadi tidak dapat disembuhkan jika telah melewati fase tertentu, sehingga diagnosa sedini mungkin menjadi sangat penting. Namun, diagnosa oleh dokter mata memerlukan biaya dan waktu yang cukup besar. Oleh karena itu, telah dilakukan upaya untuk meningkatkan efisiensi kerja dokter mata dengan bantuan komputer. Deep learning merupakan sebuah metode yang banyak digunakan untuk menyelesaikan masalah ini. Salah satu arsitektur deep learning yang memiliki performa terbaik adalah residual network. Metode ini memiliki kelebihan dalam menghindari masalah degradasi akurasi, sehingga memungkinkan penggunaan jaringan yang dalam. Di sisi lain, metode persistent homology juga telah banyak berkembang dan diaplikasikan pada berbagai masalah. Metode ini berfokus pada informasi topologi yang terdapat pada data. Informasi topologi ini berbeda dengan representasi data yang didapatkan dari model residual network. Penelitian ini melakukan analisis terhadap penerapan persistent homology pada kerangka kerja residual network dalam permasalahan klasifikasi diabetik retinopati. Dalam studi ini, dilakukan eksperimen berkaitan dengan informasi topologi dan proses pengolahannya. Informasi topologi ini direpresentasikan dengan betti curve atau persistence image. Sementara itu, pada proses pengolahannya dilakukan ujicoba pada kanal citra, metode normalisasi, dan layer tambahan. Hasil eksperimen yang telah dilakukan adalah penerapan persistent homology pada kerangka kerja residual network dapat meningkatkan hasil klasifikasi penyakit diabetik retinopati. Selain itu, penggunaan betti curve dari kanal merah sebuah citra sebagai representasi informasi topologi memberikan hasil terbaik dengan skor kappa 0.829 pada data test.
Diabetic retinopathy is a complication of diabetes which can result in visual disturbance and even blindness. This disease becomes incurable after reaching certain phases, thus immidiate diagnosis is highly important. However, diagnosis by a professional ophthalmologist requires a great amount of time and cost. Therefore, efforts to increase the work efficiency of ophthalmologists using computer system has been done. Deep learning is a method that widely used to solve this particular problem. Residual network is one of deep learning architecture which has the best performance. The main advantage of residual network is its ability to prevent accuracy degradation, thus enabling the model to go deeper. On the other hand, persistent homology is also rapidly developing and applied in various fields. This method focus on the topological information of the data. This information are different with the data representation that extracted by neural network model. This study analyze the incorporation of persistent homology to residual networks framework for diabetic retinopati classification. In this study, experiments regarding about topological information and its process were carried out. The topological information is represented as betti curve or persistence image. Meanwhile, the experiments are analyzing the impact of image colour channel, normalization method, and additional layer. According to the experiments, application of persistent homology on residual network framework could improve the outcome of diabetic retinopathy classification. Moreover, the application of betti curve from the red channel as a representation of topological information has the best outcome with kappa score of 0.829."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership Universitas Indonesia Library
Theresia Gowandi
"Analisis sentimen adalah salah satu bidang dari Pemrosesan Bahasa Alami yang membangun sistem untuk mengenal opini dalam teks dan mengelompokkan ke dalam sentimen positif atau negatif. Banyak peneliti telah membangun model yang menghasilkan akurasi terbaik dalam melakukan analisis sentimen. Tiga diantaranya adalah Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), dan Gated Recurrent Unit (GRU), yang merupakan bagian dari deep learning. CNN digunakan karena kemampuannya dalam mengekstrak fitur penting dalam penggalan kalimat, sedangkan LSTM dan GRU digunakan karena kemampuannya yang memiliki memori akan input yang telah diproses sebelumnya. GRU memiliki struktur yang lebih sederhana dibandingkan dengan LSTM. Ketiga model tersebut dapat digabungkan menjadi model gabungan LSTM-CNN, CNN-LSTM, GRU-CNN, dan CNN-GRU. Penelitian sebelumnya telah membuktikan bahwa model gabungan tersebut memiliki akurasi yang lebih baik dibandingkan dengan model dasar LSTM, GRU, dan CNN. Implementasi model dilakukan pada data ulasan aplikasi berbahasa Indonesia. Hasilnya, didapatkan bahwa hampir seluruh model gabungan memiliki akurasi yang lebih baik dibandingkan dengan model dasar.
Sentiment analysis is one of the fields of Natural Language Processing that builds a system to recognize and extract opinion in the form of text into positive or negative sentiment. Nowadays, many researchers have developed methods that yield the best accuracy in performing analysis sentiment. Three particular models are Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), which are part of deep learning architectures. CNN is used because of its ability to extract important features from each sentence fragment, while LSTM and GRU are used because of their ability to have a memory of prior inputs. GRU has a simpler and more practical structure compared to LSTM. These models can be combined into combined LSTM-CNN, CNN-LSTM, GRU-CNN, and CNN-GRU model. Former researches have proved that these models have better accuracy compared to standard models. This research is focused on the performance of all the combined LSTM-CNN, CNN-LSTM, GRU-CNN, CNN-GRU models and will be compared to the standard LSTM, GRU, CNN models. Implementation of the model is performed on a collection of application review data in Indonesian text. As a result, almost all of the combined models have better accuracy than the standard models."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Thomas Hadi Wijaya
"Penelitian ini berfokus pada pengaplikasian teknologi deep learning, secara khusus menggunakan Residual Network (ResNet101) dalam prediksi perencanaan dosis untuk pasien kanker paru-paru. Tiga variasi input data diproses untuk dilatih dan diuji menggunakan ResNet, dan kemudian dievaluasi untuk menentukan variasi input yang paling akurat. Tujuan utama penelitian ini adalah memahami mekanisme kerja deep learning dalam prediksi perencanaan dosis, mengevaluasi akurasi prediksi menggunakan ResNet, dan menganalisis kinerja model pada masing-masing variasi input data. Metodologi yang digunakan melibatkan penggunaan model input dan output untuk menghasilkan kurva distribusi-volume dosis (DVH) prediksi dan aktual. DVH merupakan kurva yang digunakan untuk mengukur seberapa besar dosis yang diterima dalam persentase volume pada organ tertentu. Evaluasi dilakukan menggunakan metode Mean Absolute Error (MAE) dari persentase volume prediksi dan referensi masing-masing pasien pada rentang dosis yang ditentukan yaitu 0-60 Gy dengan lebar bin sebesar 0,25 Gy. Hasil evaluasi menunjukkan bahwa variasi data input A memberikan nilai MAE sebesar 11,24% ± 10,58%, variasi data input B memberikan MAE sebesar 12,79% ± 11,27%, dan variasi data input C memberikan MAE sebesar 12,22% ± 12,13%. Hasil tersebut memperlihatkan bahwa variasi data input A memiliki tingkat akurasi terbaik dengan nilai error dan standar deviasi terendah. Evaluasi juga melibatkan penggunaan train-val loss untuk masing-masing model yang dilatih. Temuan ini menunjukkan bahwa penggunaan citra CT sebagai channel 1, gabungan ROI tanpa ROI target sebagai channel 2, dan ROI target sebagai channel 3 memberikan prediksi perencanaan dosis yang paling akurat untuk pasien kanker paru-paru.
This study focuses on the application of deep learning technology, specifically using Residual Network (ResNet101), to predict dosage planning for lung cancer patients. Three variations of input data were processed for training and testing using ResNet, and then evaluated to determine the most accurate input variation. The primary objectives of this research are to understand the mechanism of deep learning in dosage planning prediction, evaluate prediction accuracy using ResNet, and analyze model performance for each input data variation. The methodology involved using input and output models to generate predicted and actual dose-volume histogram (DVH) curves. DVH is a curve used to measure the dose received as a volume percentage in a specific organ. Evaluation was conducted using the Mean Absolute Error (MAE) method from the volume percentage prediction and reference for each patient within a dose range of 0-60 Gy with a bin width of 0,25 Gy. The evaluation results showed that input data variation A yielded an MAE of 11,24% ± 10,58%, input data variation B yielded an MAE of 12,79% ± 11,27%, and input data variation C yielded an MAE of 12,22% ± 12,13%. These results indicate that input data variation A had the best accuracy with the lowest error and standard deviation. Evaluation also included using train-val loss for each trained model. These findings suggest that using CT images as channel 1, a combination of ROIs excluding the target ROI as channel 2, and the target ROI as channel 3 provides the most accurate dosage planning prediction for lung cancer patients."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Putu Bagus Raka Kesawa
"Kemajuan umat manusia dalam penerbangan modern sangat bergantung pada kemampuan untuk melakukan pemodelan sistem idenifikasi penerbangan dari suatu wahana pernerbangan. Pemodelan suatu sistem identifikasi penerbangan bergantung dengan tingkat kualitas dan kuantitas dari data simulasi yang digunakan untuk mendapatkan pendekatan situasi dan kondisi penerbangan aktual yang seakurat mungkin. Akurasi dan presisi dari data simulasi yang digunakan dalam pemodelan sistem penerbangan akan mempengaruhi hasil algoritma yang digunakan dalam sistem identifikasi. Dalam pencapaian kualitas data tersebut, digunakanlah perangkat lunak X-Plane yang berfungsi sebagai simulator penerbangan ultra-realistis yang menyuplai set data yang memungkinkan pembelajaran mesin dari algoritma berbasis komputer. Data pembelajaran pesawat terbang terdiri dari attitude orientasi pesawat. Data yang diperoleh dari simulator tersebut akan diproseskan menggunakan metode preprocessing, sehingga layak digunakan untuk pelatihan sistem identifikasi. Suatu algoritma artificial neural network diterapkan untuk mengidentifikasi sistem pesawat dengan mempelajari dataset yang disebutkan di atas, yang kemudian akan digunakan dalam pengembangan perancangan sistem kontrol. Algoritma artificial neural network yang dirancang dalam penelitian ini telah menunjukkan keberhasilan dalam sistem identifikasi untuk sistem penerbangan pesawat, dan siap digunakan dalam percobaan dan pengujian sistem kontrol pada pesawat.
Humanitys progress in modern aviation is very dependent on the ability to model the flight identification system of a flight vehicle. Modeling a flight identification system depends on the quality and quantity of simulation data used to get the most accurate representation of the actual flight situation and condition. The accuracy and precision of the simulation data used in the flight system modeling will affect the results of the algorithm used in the identification system. In achieving this data quality, X-Plane software is used which functions as an ultra realistic flight simulator that supplies data sets that enable machine learning from computer based algorithms. Airplane learning data consists of airplane orientation attitude. Data obtained from the simulator will be processed using the preprocessing method, so it is feasible to use for identification system training. An artificial neural network algorithm is applied to identify aircraft systems by studying the dataset mentioned above, which will then be used in the development of control system design. The artificial neural network algorithm designed in this study has shown success in the identification system for aircraft flight systems, and is ready to be used in the testing and testing of control systems on aircraft."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Adi Yudho Wijayanto
"Tujuan utama penggunaan peralatan Pressure Relief Device (PRD) adalah untuk memastikan keamanan bejana tekan dalam sistem bertekanan. Seiring berjalannya waktu, peralatan PRD dapat mengalami penurunan kualitas dan gagal menjalankan fungsi yang diharapkan, sehingga harus diidentifikasi sebagai mode kegagalan. Untuk memitigasi potensi risiko yang terkait dengan hal ini, direkomendasikan agar pendekatan seperti inspeksi berbasis risiko (RBI) diterapkan. Meskipun RBI telah diadopsi secara luas, metode ini bergantung pada teknik kualitatif, sehingga menyebabkan variasi yang signifikan dalam penilaian risiko peralatan. Studi ini mengusulkan metode analisis risiko baru yang menggunakan pembelajaran mesin berbasis pembelajaran mendalam untuk mengembangkan model penilaian risiko untuk peralatan PRD terkait dengan mode kegagalan failure on leakage. Pendekatan inovatif ini akan mengurangi waktu penilaian, meningkatkan akurasi, dan menurunkan biaya pemrosesan dengan memberikan hasil penghitungan yang tepat. Penelitian ini mengembangkan program prediksi risiko yang menggunakan pembelajaran mesin berbasis deep learning yang dirancang secara eksplisit untuk mode kegagalan failure on leakage pada peralatan pelepas tekanan. Dataset yang digunakan dalam proses pengembangan model mengikuti standar API 581 dan berisi 168 dataset. Berbagai parameter model digunakan, antara lain test size 20%, nilai random state 0, 150 epoch, learning rate 0,001, dan 3 layers dengan nilai dense 128, 64, dan 32. Performa model dievaluasi menggunakan validation confusion matrix, yang menunjukkan akurasi 94%.
The primary objective of deploying Pressure Relief Device (PRD) equipment is to ensure the safety of pressure vessels within a pressurized system. Over time, PRD equipment may degrade and fail to perform its intended function, which must be identified as a failure mode. To mitigate potential risks associated with this, it is recommended that an approach such as risk-based inspection (RBI) be implemented. Despite the widespread adoption of RBI, the method relies on qualitative techniques, leading to significant variations in equipment risk assessments. This study proposes a novel risk analysis method that uses deep learning-based machine learning to develop a risk assessment model for PRD equipment related to the fail-on-leakage failure mode. This innovative approach will reduce assessment times, improve accuracy, and lower processing costs by providing precise calculation results. The research develops a risk prediction program that uses deep learning-based machine learning designed explicitly for failure-on-leakage failure mode in pressure relief equipment. The dataset used in the model development process adheres to API 581 standards and comprises 168 data points. Various model parameters are employed, including a test size of 20%, a random state value of 0, 150 epochs, a learning rate of 0.001, and 3 layers with dense values of 128, 64, and 32. The model's performance is evaluated using a validation confusion matrix, which indicates an accuracy of 94%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership Universitas Indonesia Library
Raffly Pratama Iban Pameling
"Fraud adalah tindakan kejahatan yang terus terjadi hingga saat ini. Tidak ada lembaga perusahaan yang terbebas dari kemungkinan terjadinya fraud, termasuk juga industri asuransi. Berbagai cara sudah dilakukan untuk mencegah terjadinya fraud pada industri asuransi, seperti tersedianya daftar hitam hingga adanya tim pemeriksaan khusus di setiap perusahaan. Namun, kasus fraud asuransi tetap saja terjadi bahkan semakin berkembang/bervariasi karena perkembangan teknologi. Oleh karena itu, digunakanlah Artificial Intelligence (AI) dan machine learning sebagai decision support system untuk memprediksi potensi fraud asuransi. Masalah ini merupakan skenario klasifikasi biner dengan komposisi kelas antar-target yang tak seimbang (imbalance class) pada data tabular. Penelitian ini bertujuan untuk mengetahui kinerja model Neural Oblivious Decision Ensembles dalam mendeteksi fraud asuransi serta membandingkan kinerja tersebut dengan model XGBoost tanpa penanganan imbalance class, XGBoost dengan oversampling, dan XGBoost dengan pembobotan data sebagai penanganan standar pada masalah imbalance class. Penelitian ini menggunakan Auto Insurance Claims Data yang dipublikasikan oleh Bunty Shah di situs Kaggle pada tahun 2018. Hasil dari penelitian ini didapatkan bahwa rata-rata dari lima model Neural Oblivious Decision Ensembles (NODE) yang dilakukan pada penelitian memberikan nilai accuracy sebesar 75,53%, precision sebesar 74,24%, recall sebesar 75,53%, f1-score sebesar 74,43%, dan Area Under Curve sebesar 75,04% dan dapat mengungguli kinerja dari ketiga model lainnya.
Fraud is a crime that continues to occur today. No corporate institution is free from the possibility of fraud, including the insurance industry. Various methods have been taken to prevent fraud in the insurance industry, such as the availability of a blacklist to the existence of a special inspection team in each company. However, insurance fraud cases still occur even has more variation due to technological developments. Therefore, Artificial Intelligence (AI) and machine learning are used as decision support systems to predict potential insurance fraud. This research is an implementation of binary-classification scenario with imbalance class on tabular data. This research aims to determine the performance of the Neural Oblivious Decision Ensembles model in detecting insurance fraud and compare the performance with the XGBoost without imbalance class handling, XGBoost with oversampling, and XGBoost with weighted data as the standard handling of imbalance class problems. This research uses the Auto Insurance Claims Data published by Bunty Shah on the Kaggle website in 2018. The results of this research found that the average of the five Neural Oblivious Decision Ensembles (NODE) models gave an accuracy value of 75.53% , precision of 74.24%, recall of 75.53%, f1-score of 74.43%, and Area Under Curve of 75.04% and can outperform the performance of the other three models."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Shafira Nur Amalia
"Dalam suatu penelitian, dibutuhkan data yang dikumpulkan dan diolah untuk memecahkan permasalahan dan membuktikan hipotesis dalam penelitian. Namun, seringkali data yang diperoleh tidak menyimpan nilai untuk suatu variabel pada observasi yang diharapkan. Data yang tidak tersimpan menyebabkan data penelitian kosong dan berdampak pada penelitian. Jika peristiwa ini terjadi, maka penelitian terindikasi memiliki missing data atau missing values. Salah satu cara untuk mengatasi missing values yaitu dengan imputasi. Imputasi bekerja dengan mengisi nilai pada missing values dengan suatu nilai estimasi yang telah dianalisis dan diputuskan untuk membuat suatu dataset lengkap. Dalam proses imputasi, seringkali ditemukan bahwa data yang digunakan untuk imputasi terkadang memiliki karakteristik yang tidak jelas atau tidak konsisten, maka salah satu solusinya adalah dengan menggunakan metode Fuzzy C-Means (FCM). Estimasi nilai-nilai missing values menggunakan model FCM menghasilkan model prediksi dengan variasi parameter yang beragam sehingga dibutuhkan pendekatan lain untuk menghasilkan model terbaik dengan parameter yang optimal. Hal inilah yang mendasari diperlukannya suatu pendekatan hybrid, yaitu dengan menggabungkan beberapa model machine learning untuk memperoleh hasil estimasi missing values terbaik. Pada penelitian ini, dilakukan implementasi Hybrid Fuzzy C-Means dan Majority Vote (Hybrid FCMMV) pada data Penyakit Paru Obstruktif Kronik (PPOK) tahun 2012-2017 yang diperoleh dari Rumah Sakit Cipto Mangunkusumo (RSCM) untuk memberikan performa imputasi yang lebih baik berdasarkan akurasi, presisi, recall, dan F-Score melalui klasifikasi metode ensemble Random Forest.
In a research study, collected and processed data are needed to solve problems and prove hypotheses. However, the obtained data often do not store the value for a variable in the expected observation. Data that are not stored contribute to the emptying of research data which has an impact on the research itself. If the phenomenon occurs, it indicates that the research has missing data or missing values. One way to overcome missing values is using imputation techniques. The technique works by filling in the missing values with an estimated value that has been analyzed and decided to create a complete dataset. In the process, it is often found that the data being used for imputation have unclear or inconsistent characteristics, which can be solved by implementing Fuzzy C-Means (FCM) method. The estimation of missing values using the FCM model produces predictive models with a variety of parameters, hence another approach to produce the best model with optimal parameters is needed. This underlies the need for a hybrid approach, which is acquired through combining or integrating different machine learning models to earn the best estimation result of missing values. In this study, the implementation of Hybrid Fuzzy C-Means and Majority Vote (Hybrid FCMMV) was conducted on Chronic Obstructive Pulmonary Disease (COPD) data in 2012-2017 from Cipto Mangunkusumo Hospital (RSCM) ) to provide better imputation performance based on accuracy, precision, recall, and F-Score through the classification of the Random Forest ensemble method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Hasnan Fiqih
"Hampir separuh dunia bergantung pada makanan yang berasal dari laut sebagai sumber protein utama. Di Pasifik Barat dan Tengah 60% dari ikan tuna ditangkap secara illegal, tidak dilaporkan, dan tidak diatur dengan regulasi dapat mengancam ekosistem laut, pasokan ikan global, dan mata pencaharian lokal. Salah satu solusi yang dapat dilakukan adalah dengan menggunakan kamera keamanan untuk menangkap gambar aktivitas kapal. Pada penelitian ini akan dibuat sistem untuk mengklasifikasi jenis ikan yang ditangkap dari gambar kamera keamanan kapal tersebut. Sistem ini menggunakan model transfer learning yang sudah dilakukan fine tuning dan dilatih menggunakan dataset yang disediakan oleh The Nature Conservancy. Dari penelitian ini didapatkan performa terbaik dengan akurasi 98.19% menggunakan model EfficientNetV2L dan optimizer Stochastic Gradient Descent (SGD) dengan learning rate 1e-4, momentum 0.9, weight decay 1e-6, dan split ratio training testing 80/20. Dengan sistem ini pengolahan data untuk menghitung jumlah penangkapan ikan berdasarkan spesies akan lebih efisien.
Almost half of the world depends on food that comes from the sea as the main source of protein. In the West and Central Pacific 60% of tuna fish are caught illegally, unreported and unregulated, threatening marine ecosystems, global fish supplies and local livelihoods. One possible solution is to use a security camera to capture images of ship activity. In this study a system will be created to classify the types of fish caught from the ship's security camera images. This system uses a transfer learning model that has been fine tuned and trained using the dataset provided by The Nature Conservancy. From this study, the best performance was obtained with an accuracy of 98.19% using the EfficientNetV2L model and the Stochastic Gradient Descent (SGD) optimizer with a learning rate of 1e-4, momentum of 0.9, weight decay of 1e-6, and split ratio training testing of 80/20. With this system, data processing to calculate the amount of fish caught by species will be more efficient."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Adawiyah Ulfa
"Pengembangan inhibitor Dipeptidyl Peptidae-4 (DPP-4) sangat diperlukan dalam pengobatan Diabetes Mellitus tipe 2 dengan efek samping yang rendah. Pemodelan hubungan kuantitatif struktur aktivitas (QSAR) merupakan pendekatan analisis hubungan struktur kimia dengan aktivitasnya yang banyak digunakan dalam desain obat penyakit Diabetes. Pada tesis ini, model QSAR klasifikasi dibangun untuk memprediksi struktur aktivitas senyawa pada inhibitor DPP-4 yang dapat memblokir kerja enzim DPP-4. Dalam representasi molekul digunakan circular fingerprint ECFP dan FCFP yang menyajikan notasi SMILES dalam format vektor biner. Fingerprint ECFP dan FCFP yang berdiameter 4 dan 6 sebagai input data dalam membangun model QSAR klasifikasi. Pada QSAR klasifikasi dengan pendekatan deep learning memberikan waktu yang cepat dalam proses virtual screening senyawa aktif atau tidak aktif dalam inhibitor DPP-4. Penelitian ini menggunakan model Hybrid Deep Learning 1D CNN-LSTM untuk memprediksi aktivitas senyawa inhibitor dalam kelas aktif atau tidak aktif berdasarkan nilai aktivitas biologis dengan proporsi data latih dan data uji yang berbeda. Dalam arsitektur 1D CNN-LSTM terdiri dari model 1D CNN sebagai tahap ektraksi fitur dan output dari lapisan konvolusi 1D CNN digunakan dalam lapisan LSTM. Selain itu, pemilihan fitur dengan metode Random Forest-Recursive Feature Elimination (RF-RFE) digunakan untuk memperoleh fitur yang optimal dari dataset ECFP dan FCFP. Selanjutnya, penelitian ini membandingkan performa model dengan menerapkan pemilihan fitur RF-RFE dan tanpa pemilihan fitur RF-RFE. Hasil penelitian ini menunjukkan bahwa model QSAR klasifikasi menggunakan Hybrid Deep Learning yaitu 1D CNN-LSTM dengan pemilihan fitur RF-RFE memperoleh performa model yang lebih baik dibandingkan model tanpa pemilihan fitur optimal. Performa model 1D CNN-LSTM dengan pemilihan fitur RF-RFE menggunakan data ECFP_4 dengan proporsi data latih 80% memiliki akurasi sebesar 0.9075, sensitivitas 0.9008, spesifisitas 0.9142, dan nilai MCC 0.8151.
The development of Dipeptidyl Peptidase-4 (DPP-4) inhibitors is urgently needed in the treatment of Type 2 Diabetes Mellitus with low side effects. Activity structure quantitative relationship modeling (QSAR) is an analytical approach to the relationship between chemical structure and activity which is widely used in diabetes drug design. In this thesis, a classification QSAR model was built to predict the structure of the activity of the DPP-4 inhibitor compound that can block the action of the DPP-4 enzyme. In molecular representation, ECFP and FCFP circular fingerprints are used which present SMILES notation in binary vector format. ECFP and FCFP fingerprints with diameters of 4 and 6 as input data in building a classification QSAR model. The QSAR classification with a deep learning approach provides fast time in the virtual screening process for active or inactive compounds in DPP-4 inhibitors. This study uses the Hybrid Deep Learning 1D CNN-LSTM model to predict the activity of inhibitor compounds inactive or inactive classes based on the value of biological activity with different proportions of training data and test data. The 1D CNN-LSTM architecture consists of a 1D CNN model as the feature extraction stage and output of 1D CNN convolution layer is used in the LSTM layer. In addition, feature selection using the Random Forest-Recursive Feature Elimination (RF-RFE) method was used to obtain optimal features from the ECFP and FCFP datasets. Furthermore, this study compares the performance of the model by applying the RF-RFE feature selection and without the RF-RFE feature selection. The results of this study indicate that the classification QSAR model using Hybrid Deep Learning, namely 1D CNN-LSTM with RF-RFE feature selection, obtains better model performance than the model without optimal feature selection. The performance of the CNN-LSTM 1D model with RF-RFE feature selection using ECFP_4 data with a proportion of 80% training data has an accuracy of 0.9075, sensitivity of 0.9008, specificity of 0.9142, and an MCC value of 0.8151."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership Universitas Indonesia Library
Denanir Fadila Nasiri
"Legal reasoning merupakan metode yang digunakan untuk menerapkan aturan atau Undang-Undang terhadap fakta yang dimiliki dengan tujuan untuk memperoleh argumentasi hukum. Salah satu metode legal reasoning adalah dengan penalaran induktif, yaitu didasarkan pada kasus-kasus terdahulu. Mahkamah Agung di Indonesia melalui situs Direktori Putusan Pengadilan, yang menyediakan dokumen hasil proses pengadilan yang saat ini menampung jumlah dokumen yang sangat besar. Kumpulan dokumen tersebut dapat dimanfaatkan untuk melakukan aktivitas legal reasoning, seperti klasifikasi jenis tindak pidana (criminal offense). Pada penelitian ini, penulis mengusulkan metode deep learning untuk mengklasifikasikan jenis tindak pidana. Hal ini dapat berguna untuk memberikan efisiensi dan referensi kepada praktisi hukum maupun memudahkan masyarakat untuk memahami dasar hukum dari suatu kasus. Secara spesifik, salah satu rancangan model yang diusulkan adalah dengan penerapan model LEAM (Label Embedding Attentive Model) dengan penambahan sejumlah keyword pada label embedding. Model ini secara konsisten memberikan performa yang baik dalam eksperimen, termasuk pada imbalanced dataset dengan perolehan f1-score 68%.
Legal reasoning is a sequence of activities to identify law rules and obtain legal arguments. One of the method in legal reasoning is by using inductive reasoning, which analyzes previous decided cases. Indonesia’s Supreme Court stores the court decision documents online in a large sum. These collections can be utilized to perform legal reasoning, where in this research we focus on the classification of criminal offense. We performed pre-processing tasks including conversion of document to text and cleaning text. We then compared deep learning models, such as LSTM, BiLSTM, CNN+LSTM, and LEAM (Label Embedding Attentive Model). Instead of using only the label name in LEAM, we also carried out experiments by adding related keywords for each label. The LEAM model with additional keywords obtained the best result in an imbalanced dataset with 68% macro average f1-score."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership Universitas Indonesia Library