Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 202669 dokumen yang sesuai dengan query
cover
Muhammad Alfi Aldolio
"Kamera digunakan oleh pengelola jalur lalu lintas kendaraan di jalan besar pada beberapa kota-kota di Indonesia untuk tujuan pengawasan, pengendalian, hingga pengambilan bukti pelanggaran atau kronologi kecelakaan pada ruas jalan tersebut. Namun, penggunaan kamera ini masih dalam tahap menerima data yang kemudian tindakan selanjutnya dilakukan secara manual. Sedangkan, banyak kebutuhan yang dapat dipenuhi dengan adanya perkembangan teknologi pada bidang komputasi. Salah satunya adalah penggunaan kamera tersebut dapat dimaksimalkan dengan mengimplementasikan algoritma pembelajaran mesin untuk menentukan jalur lalu lintas mana yang menjadi prioritas pada persimpangan dengan kuantifikasi kepadatan kendaraan pada ruas jalan. Pada penilitian ini sistem kuantifikasi kepadatan kendaraan melalui data gambar dikaji dengan menggunakan algoritma untuk mendeteksi objek kendaraan pada seperti YOLOv4 yang merupakan state-of-the-art dalam algoritma pendeteksian karena memiliki akurasi yang lebih baik dan juga lebih cepat dibandingkan dengan arsitektur deteksi objek lainnya. Selain itu, diimplementasikan juga algoritma pelacakan objek kendaraan seperti CSRT/KCF sehingga tidak perlu melakukan proses deteksi secara terus-menerus dan dapat mengurangi biaya komputasi. Hasil percobaan pada penilitian ini membuktikan bahwa kombinasi model deteksi dan pelacakan dapat digunakan secara real-time maupun interaktif. Walaupun nilai mAP dari model YOLOv4 mengalami penurunan sekitar 20.65%, namun perbedaan antara hasil kuantifikasi kepadatan kendaraan sistem dan nilai aktual masih tidak terlalu jauh yaitu sekitar 1-5%, tergantung dengan jenis model yang digunakan.

Cameras are used by traffic lane managers on major roads in several cities in Indonesia for the purpose of monitoring, controlling, and collecting evidence of violations or chronology of accidents on those roads. However, the use of this camera is still in the stage of receiving data, then further actions are carried out manually. Meanwhile, many needs can be met with the development of technology in the field of computing. One of them is that the use of the camera can be maximized by implementing machine learning algorithms to determine which traffic lanes are the priority at intersections by quantifying the density of vehicles on the road. In this study, the vehicle density quantification system through image data will be studied using an algorithm to detect vehicle objects such as YOLOv4 which is a state-of-the-art detection algorithm because it has better accuracy and is also faster than other object detection architectures. In addition, vehicle object tracking algorithms such as CSRT/KCF will also be implemented so that there is no need to carry out the detection process continuously and can reduce computational costs. To meet the needs of image data processing from the video as well as the configuration of the AI ​​model, one of the libraries, namely OpenCV, will be used to facilitate the creation and optimization of machine learning models/algorithms. This research proves that the combination of detection and tracking models can be used in real-time or interactively. Although the mAP value of the YOLOv4 model has decreased by about 20.65%, the difference between the system vehicle density quantification results and the actual value is still not too far away, around 1-5%, depending on the type of model used.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arie Kriswoyo
"ABSTRAK

Pada tahun 2013, Badan Pusat Statistik mencatat bahwa telah terjadi 100.106 kasus kecelakaan lalu lintas di Indonesia. Sebagian besar kecelakaan disebabkan oleh faktor manusia, yaitu mengantuk. Sistem pendeteksi kantuk dikembangkan untuk mengatasi hal ini. Sistem pendeteksi kantuk dibangun menggunakan pustaka OpenCV, dengan kombinasi dari beberapa algoritma, yaitu Haar Cascade Classifier, fungsi blur, Canny dan kontur. Algoritma Haar Cascade Classifier digunakan untuk mendeteksi area wajah dan area mata pada pengemudi. Sedangkan kombinasi antara fungsi blur, canny dan kontur digunakan untuk mendeteksi objek mata dan menganalisis sedang terbuka atau tertutupnya mata. Performa sistem pendeteksi kantuk diuji melalui empat variabel, yaitu kernel size, nilai threshold, perbedaan kondisi pencahayaan dan karakteristik mata. Berdasarkan hasil pengujian, kernel size terbaik untuk mendeteksi mata adalah (4,4). Selain itu, nilai threshold terbaik untuk lower threshold dan upper threshold adalah 70-110 dan 210-240. Perbedaan kondisi pencahayaan (pagi, siang, sore dan malam) memiliki pengaruh terhadap sistem dengan tingkat kesalahan sebesar 20%. Karakteristik mata (berkacamata dan tidak berkacamata) memiliki pengaruh terhadap sistem dengan tingkat kesalahan sebesar 16,7%.


ABSTRACT

In 2013, Badan Pusat Statistik (Statistics Indonesia) recorded that 100.106 cases of traffic accident have occured in Indonesia. Mostly caused by human error, i.e. drowsiness. Drowsiness detection system is developed to respond this situation. Drowsiness detection system is built through OpenCV library by combining the Haar Cascade Classifier algorithm with blur, canny and contour function. Haar Cascade Classifier was used to detect areas of face and eyes whereas the combination of blur, canny and contour function is used to detect the driver’s eyes and analyze the open or closed driver’s eyes. The performance of drowsiness detection system was tested through four variables; kernel size, threshold value, lighting condition (morning, noon, afternoon and night) and eye’s characteristic (eyeglasses or not). Based on the experiments, the best kernel size to detect the driver’s eyes is 4,4. Then, the best lower threshold and upper threshold are 70-110 and 210-240. Subsequently the light conditions has a 20 % error rate to the system. The eye’s characteristic has a 16,7 % error rate to the system.

"
Fakultas Teknik Universitas Indonesia, 2015
S59879
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fatah Abdul Wahab
"Computer vision merupakan cabang dari bidang ilmu kecerdasan buatan yang mempelajari bagaimana sebuah komputer dapat memahami suatu gambar yang diberikan. Salah satu contoh nyata dari penerapan computer vision adalah pengenalan objek bola pada robot sepak bola. Salah satu tantangan yang dapat menyulitkan robot dalam mendeteksi bola adalah warna bola yang sebagian besar berwarna putih. Hal ini menjadi tantangan karena warna putih sangat rentan terhadap noise. Metode tradisional yang hanya dapat mendeteksi satu bentuk saja tidak cukup untuk memenuhi kebutuhan tersebut, karenanya digunakan pendeteksian berdasarkan machine learning. Salah satu metode pengenalan objek berdasarkan machine learning yang sering digunakan adalah metode Jaringan Saraf Tiruan. Pada tulisan ini, sistem penglihatan robot sepak bola untuk mengenali objek bola dirancang menggunakan metode jaringan saraf tiruan dengan library pengolahan citra OpenCV dalam bahasa pemrograman C++. Berdasarkan pengujian kinerja sistem dalam mendeteksi bola pada gambar mendapatkan nilai accuracy sebesar 0.9987, nilai precision sebesar 0.8055, nilai recall sebesar 0.7, dan FPS sebesar 6. Sedangkan kinerja sistem pembanding dengan menggunakan SVM pada dataset yang sama mendapatkan nilai accuracy sebesar 0.988, nilai precision sebesar 0.167, nilai recall sebesar 0.966, dan FPS sebesar 7,7. Setelah kedua metode dibandingkan dapat disimpulkan bahwa metode jaringan saraf tiruan dapat mendeteksi bola lebih akurat berdasarkan nilai F-Score yang didapatkan yaitu 0.749 pada sistem yang dibuat berbanding dengan 0.285 pada sistem pembanding, namun memerlukan waktu proses yang lebih lama.

Computer vision is a branch of the field of artificial intelligence that studies how a computer can understand a given image. An example of the application of computer vision is detecting a ball object on a soccer robot. One of the challenges that can make it difficult for the robot to detect the ball is the color of the ball, which is mostly white. This becomes a challenge because white is very susceptible to noise. Traditional methods that can only detect one form are not sufficient to meet these needs, therefore detection based on machine learning is used. One of the object detection methods based on machine learning that is often used is the Artificial Neural Network method. In this paper, the system to detect ball object is implemented using an artificial neural network method with the OpenCV image processing library in the C ++ programming language. Based on testing the performance of the system at detecting ball have the accuracy value of 0.9987, precision value of 0.8055, recall value of 0.7, and FPS of 6. While the performance of the comparison system using SVM on the same dataset gets accuracy value of 0.988, precision value of 0.167, recall value of 0.966, and FPS of 7.7. After the two methods were compared, it can be concluded that the artificial neural network method can detect the ball more accurately based on the F-Score value obtained, which is 0.749 compared to 0.285, but it requires a longer processing time"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aneta
"Wayang adalah seni kuno dari Indonesia yang memiliki begitu banyak bentuk, seperti wayang orang, wayang golek, dan wayang kulit. Biasanya, wayangdigunakan untuk tampil di panggung dan memiliki latar belakang suara gamelan. Saat ini, wayang masih ada di Indonesia, apakah itu untuk pertujukan atau hanya pajangan yang bagus dalam kotak kaca. Wayang memiliki begitu banyak karakter dalam cerita, dan itu sulit bagi kita untuk mengingat setiap nama karakter wayang. Akan menjadi mudah jika ada sistem untuk mengenali mereka, sehingga kita tidak perlu tahu nama masing-masing untuk karakter wayang.
Tulisan ini diusulkan untuk membuat sistem pengenalan untuk wayang menggunakan 2 algoritma populer, MSER (Maximally Stable Extermal Region) dan MSER efisien. Dalam makalah ini, diusulkan untuk membandingkan algoritma tersebut pada PC dengan video wayang yang dimasukkan secara offline. Meskipun secara waktu komputasi MSER efisien lebih unggul daripada MSER biasa, namun ketika masuk ke dalam tahap pelacakan, MSER biasa justru lebih unggul daripada MSER efisien karena ia tidak mengolah sebagian level abu-abu pada citra sebagaimana MSER efisien, melainkan seluruh level keabu-abuan.

Wayang is an ancient art from Indonesia that has so many forms, such as wayang orang, wayang golek, and wayang kulit. Usually, wayang is used for performing on a stage and it has background sound of gamelan. Nowadays, wayang still exists in Indonesia, whether it's for perfoming or only a nice display in a glass box. Wayang has so many characters in its story, and it's difficult for us to remember each name of wayang characters. It will be easy if there is a system to recognize them, so we don't need to know each name to wayang characters.
This writing is proposed to make a recognition system for wayang using 2 popular algorithms, MSER (Maximally Stable Extermal Region) and efficient MSER. In this paper, the writer proposed to compare those algorithms in a PC which video of wayang is processed offline.Although efficient MSER has more advantage in computing time, the regular MSER makes greater detection than efficient MSER because regular MSER doesn't compute several gray level like efficient MSER, but all gray level.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42676
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Ilham Maulana Sidik
"Live streaming merupakan salah satu metode transmisi data yang digunakan untuk menonton sebuah video. Transmisi live streaming akan mengirimkan file video secara sedikit demi sedikit kepada penonton secara langsung sehingga penonton dapat menyaksikan video yang ditransmisikan secara langsung atau disebut dengan real-time tanpa perlu mengunduh video sehingga video dapat disiarkan secara langsung. Pada saat ini live streaming merupakan salah satu bentuk konten video yang banyak diminati pada semua kalangan dan bentuk seperti siaran TV, streaming video game, video media sosial, hingga pengiklanan produk penjualan. Pada penelitian ini sistem pendeteksi komponen komputer sebagai produk penjualan video live streaming dilakukan dengan metode Object Detection dengan menggunakan model YOLOv7 yang merupakan model dari computer vision untuk dapat melakukan object detection secara real-time. Penelitian akan membandingkan variasi model dari YOLOv7 untuk menemukan varian yang paling sesuai untuk digunakan sebagai model pendeteksian pada video live streaming. Penelitian ini juga akan mencaritahu pengaruh dari resolusi dan juga jarak perekaman video terhadap tingkat akurasi model dengan melakukan ujicoba model terhadap video simulasi live streaming. Hasil percobaan membuktikan bahwa varian YOLOv7-Tiny menjadi yang paling sesuai untuk diimplementasikan kedalam video live streaming dikarenakan kecepatan pendeteksian yang lebih cepat dengan kecepatan 4.5 kali lebih cepat dari varian YOLOv7 dan sekitar 21.7 kali lebih cepat dari varian YOLOv7-X. Pengaruh jarak juga terbukti dengan menurunnya nilai mAP 0.5 yang dihasilkan model ketika jarak yang digunakan semakin besar dan perubahan resolusi juga terbukti berpengaruh terhadap viii kemampuan deteksi model dengan jumlah objek dan juga beban yang dihasilkan semakin besar seiring dengan meningkatnya resolusi yang digunakan.

Live Streaming is one of the data transmission methods used to watch a video. Live Streaming transmission will send video files bit by bit to the viewer directly so that the viewer can watch videos that are transmitted directly or referred to as real time without the need to download the video so that the video can be broadcast live. At this time Live Streaming is a form of video content transmission method that is in great demand among all groups and forms such as TV broadcasts, video game streaming, social media videos, and also product advertising. In this study, the detection system for computer component as selling product on video live streaming was carried out with Object Detection method using YOLOv7 model, which is an computer vision model capable for object detection on real-time video. This study will also find out the effect of resolution and video recording distance on the accuracy of the model by testing the model on live streaming video simulations. The experimental results prove that the YOLOv7-Tiny variant is the most suitable to be implemented into live streaming video due to faster detection speed with a speed 4.5 times faster than the YOLOv7 variant and around 21.7 times faster than the YOLOv7-X variant. The effect of distance is also evident by the decreasing of mAP 0.5 value which is produced by the model when the distance used is greater and changes in resolution are also proven to affect the detection ability of the model with the number of objects and also the resulting load is greater as the resolution used increases."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizky Ramadian Wijaya
"Perancangan sistem ini dibangun dengan bentuk aplikasi menggunakan kamera yang terdapat pada smartphone untuk mendapatkan citra digital lalu diolah dengan pustaka OpenCV. Pengolahan dilakukan dengan metode Haar Cascade Classifiers untuk mendapat daerah mata, lalu dengan menggunakan kontour, blur, tresholding, keadaan mata dilacak untuk mendeteksi tanda kantuk yang berupa mata tertutup. Aplikasi diuji kecepatan pengolahan dengan pengimplementasian pengembangan optimasi region of interest, nilai ambang HSV, pengaruh kondisi cahaya, dan karakteristik mata.
Hasil yang didapatkan menunjukan bahwa dengan memberikan optimasi algoritma kepada sistem yang sudah ada dapat meningkatkan kecepatan pengolahan. Nilai ambang HSV optimal yang didapatkan bermulai dengan V=10 atau 20 dengan selisih tinggi 15 atau 20. Aplikasi memiliki tingkat kegagalan 11.11% pada kondisi pencahayaan dan gagal saat malam. Dari pengujian pengaruh kacamata, didapatkan tidak bahwa kacamata tidak berpengaruh besar dengan tingkat keberhasilan 94.44% untuk pengguna kacamata.

The development of this system is built as an application that uses the camera built in smartphones to get digital images which will be processed using the OpenCV library. In the process, Haar Cascade Classifier is used to find the region of interest of the eye, which will then be tracked using contour, thresholding, and blur to detect signs of drowsiness which are closed eyes. The application is tested based on the optimization made on the algorithm, the value for HSV thresholding, the effect of light on different times, and on the characteristic of the eye.
The results show that the optimization made has caused significant speed up on the processing in comparison to existing algorithm. The HSV threshold found to be the most effective is V=10 or 20 with a difference of 15 or 20 to the upper limit.  The effect of light causes 11.11% chance of failure especially when its night without lights. The characteristic of the eye, whether there are glasses or not, does not make a big difference and still has a 94.44% chance of success.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zaky Nuryasin
"Kecerdasan buatan (artificial intelligence, AI) merupakan teknologi yang sedang berkembang dengan cepat pada masa ini. Adanya teknologi AI membuat banyak permasalahan sederhana dan kompleks dapat diatasi dengan program komputer. Salah satu penerapan dari teknologi AI yang memiliki perkembangan yang besar adalah pada computer vision, yang mana dapat dibuat program yang dapat mendeteksi dan mengklasifikasi objek pada suatu gambar. Pada bidang ini, computer vision dapat digunakan untuk mendeteksi rokok. Algoritma dapat dibuat untuk mengetahui jika ada objek rokok dan lokasi dari rokok tersebut pada gambar. Hal ini dapat berguna untuk menyensor rokok pada media video yang dikonsumsi oleh anak-anak. Pada media video, biasanya sensor dilakukan dengan cara manual dan dengan bantuan tracking. Cara ini dapat melelahkan karena walaupun dengan tracking, harus ada orang sebagai pendeteksi yang menunjukkan lokasi objek rokok secara berkala. Terdapat banyak arsitektur dan model algoritma untuk deteksi objek, salah satunya adalah YOLOv8 (You Only Look Once version 8). YOLOv8 adalah versi terbaru dari algoritma YOLO, yang mana merupakan salah satu algoritma state-of-the-art dalam deteksi objek. YOLO merupakan model dari Convolutional Neural Network (CNN) yang melakukan deteksi dengan konsep single stage detector, yaitu algoritma ini melakukan deteksi objek dengan menggunakan keseluruhan gambar sekaligus untuk menjadi masukan input neural network-nya. Cara ini membuat YOLO memiliki tingkat kecepatan yang tinggi mendekati real-time. Selain deteksi objek, diterapkan juga algoritma tracking yang berfungsi untuk menandai pergerakan objek rokok pada video. Sehingga objek rokok akan tetap disensor walaupun terjadi perubahan cahaya, terhalang objek lain, dan gangguan visual lainnya pada video. Algoritma tracking yang digunakan pada penelitian ini adalah ByteTrack. ByteTrack adalah algoritma tracking yang menggunakan komputasi yang minim karena dapat melakukan tracking dengan hanya memproses lokasi bounding box tiap frame video. Perbedaan algoritma ini dibandingkan yang lain adalah ByteTrack akan memanfaatkan semua hasil deteksi objek walaupun terdapat nilai confidence yang kecil. Pada penelitian ini didapatkan model training terbaik dari YOLOv8 dengan nilai presisi sebesar 86,5%, nilai recall sebesar 86,1%, nilai mAP 50 sebesar 88,1%, dan nilai mAP 50:95 sebesar 58,3%. Lalu pada konfigurasi confidence ByteTrack didapatkan hasil terbaik dengan pada confidence tahap pertama sebesar 0,247 dan tahap kedua sebesar 0,01. Hasil tracking ini mendapatkan nilai presisi sebesar 62,3%, nilai recall sebesar 62,7%, nilai akurasi sebesar 45,5%, dan nilai F1 sebesar 62,5%.

Artificial intelligence (AI) is a technology that is developing rapidly and popular in this era. AI technology creates the possibility to solve and overcome many simple complex problems. One example of the application of AI technology that has great development is computer vision, which is a concept that can make a computer program to detect and classify objects in an image.  Using computer vision, this technology can be used to detect cigarette. From image or video media, the algorithm can check if there is any cigarette and then locate the object in the image. This is useful to censor cigarette from media that consumed by children. On video medium, censorship usually done manually with the help of object tracking. This method can be tiring because even if object tracking is used, there must be a person as a detector that locate the cigarette every few frames. There are many architectures and models for object detection, YOLOv8 (You Only Look Once version 8) is one of them. YOLOv8 is the latest version of YOLO algorithm. YOLOv8 is considered as one of the state-of-the-art algorithm for object detection.  YOLO model is based from Convolutional Neural Network (CNN). The concept of this algorithm to detect object is called single stage detector, which means that it takes the whole image as input for its neural network thus only single image process needed. This concept makes YOLO fast to detect objects. Object tracking algorithm is also used to keep track detected cigarette even if there is a change in light, occlusion from other object, and other visual changes in the video. ByteTrack is used for the tracking algorithm in this study. ByteTrack works by processing bounding box location of each frame in video, making it use little computation. The main difference of this algorithm is that it process all bounding boxes from the object detection, including detected object with low confidence score. In this study, the YOLOv8 model managed to obtain the best performance with precision value of 86.5%, recall value of 86.1%, mAP 50 value of 88.1%, and mAp 50:95 value of 58.3%. For the confidence configuration of ByteTrack, best performance is achieved with 0.247 confidence score for the first association and 0.01 confidence score for the second association. The result of this configuration is a precision value of 62.5%, a recall value of 62.7%, an accuracy value of 45.5%, and a F1 score of 62.5%."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fikri Firdaus
"Latar belakang: Penggunaan komputer dapat menimbulkan suatu keluhan kesehatan yang disebut dengan Computer Vision Syndrome (CVS), Sindrom ini dapat dipengaruhi oleh berbagai faktor risiko individual, lingkungan dan komputer.
Tujuan: Mengidentifikasi dan menganalisis faktor-faktor resiko ergonomik individual dan komputer yang berhubungan dengan kejadian Computer Vision Syndrome (CVS) pada pekerja pengguna komputer yang berkacamata dan pekerja yang tidak berkacamata.
Metode: Penelitian ini merupakan penelitian metode kualitatatif. Penelitian dilakukan pada bulan April - Mei 2013 di Unit Pelakasana dan Pelatihan. Sampel sebanyak 18 orang dengan kriteria tertentu, dibagi menjadi 2 kelompok pekerja berkacamata dan pekerja yang tidak berkacamata. Peneliltian dilakukan dengan wawancara langsung menggunakan kuesioner dan pengukuran.
Hasil: Faktor-faktor yang berhubungan dengan kejadian CVS adalah Kelembaban 71%, Pencahayaan kurang dari 300-500 lux (KEPMENKES nomor 1405/Menkes/SK/XI/2002), Usia lebih dari 40 tahun (das et al.), lama bekerja dengan komputer, dan jarak komputer dengan mata.
Kesimpulan: Gejala ekstraokuler pada pekerja pengguna kacamata bifocal melakukan retrofleksi leher sehingga leher tertekuk kebelakang yang menyebabkan keluhan nyeri pada leher. Penderita terbanyak bukan dari pengguna kacamata tetapi pada pekerja yang tidak berkacamata. Serta penderita CVS (berdasarkan kriteria anamnesa) di usia 25 tahun, kedua hal ini berkaitan dengan potur ergonomi pada saat kerja baik secara design tempat kerja, kondisi ruangan ataupun durasi kerja yang semuanya saling berkaitan sehingga menimbulkan gejala Computer Vision Syndrome (CVS).

Background: Computer usage could cause health complaints called Computer Vision Syndrome (CVS). This syndrome was influenced by individual and computer risk factors.
Aim: The objective of the study is to identify and to analyze individual and computer factors of computer Vision Syndrome (CVS).
Methods: This study was an observational study with methods qualitatively. The research was conducted in April-May 2013 in the Pelakasana and Training Unit. Sample of 18 people with certain criteria, divided into 2 groups of workers and workers who are not wearing glasses glasses. Peneliltian done by direct interviews using questionnaires and measurements.
Results: Factors associated with the incidence of CVS is Humidity 71%, less than the 300-500 lux lighting (KEPMENKES 1405/Menkes/SK/XI/2002), age over 40 years (das et al.), Long working computers, and computer distance by eye.
Conclusion: Extraocular symptoms in workers bifocal glasses users do retrofleksi neck so the neck is bent backwards which causes pain in the neck. Most patients but not from users goggles to workers who do not wear glasses. And people with CVS (based on criteria anamnesis) at the age of 25 years, these two things related to ergonomic posture at work both in design work, ambient conditions or duration of action that are all intertwined, giving rise to symptoms of Computer Vision Syndrome (CVS).
"
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2013
T35603
UI - Tesis Membership  Universitas Indonesia Library
cover
Anissa Nur Amalina
"Di dalam penelitian ini akan digunakan teknologi Augmented Reality di dalam sebuah film animasi. Pendeteksian berbasis Computer Vision pada penelitian ini akan menggunakan ARToolKit dan 3dSMax. ARToolKit yang digunakan membutuhkan marker. Marker sendiri adalah visual tag yang dimasukkan ke dalam real scene yang bisa dikenali dalam Augmented Reality. Kamera yang digunakan untuk mengenali marker, akan merubah pola pada marker ke dalam biner. Setelah kamera mengidentifikasi marker, maka dilakukan transformasi posisi marker dan melakukan render objek 3D di atas marker, sehingga akan terlihat film animasi pada desktop. Dari segi fungsionalitas, pengguna melihat animasi sudah bekerja dengan cukup baik. Inti sari dari materi pun juga tersampaikan. Jadi, keberhasilan implementasi cukup besar, dengan beberapa perbaikan di masa depan diharapkan bisa mencapai ekspektasi. Tujuan pembuatannya adalah untuk memberikan pengetahuan mengenai pembuatan sebuah film pendek beranimasi yang ditampilkan pada layar komputer secara real-time dengan markers sebagai implementasi Augmented Reality. Film beranimasi ini mengadopsi cerita rakyat Sangkuriang, yang berasal dari Jawa Barat, Indonesia.

In this research we design Augmented Reality System inserted inside an animated movie. Computer Vision based tracking in this research work uses ARToolKit and 3dSMax. ARToolKit needs marker. The marker itself is a visual tag inserted into real scene and it could be recognized in Augmented Reality. The camera used to recognize the marker and detect it to be changed to the binary form. After identifying the marker, the position transforming of the marker and the rendering part will follow as the 3D objects show up on the marker. The result is an animated movie get started. The animation functions quite well. The point of the story is delivered enough. Overall, the implementation turns out considerably good, by correcting some points it could reach the expectation. The purpose of this project is to share the techique to present an animated movie on the desktop using markers as the implementation of Augmented Reality. The animated movie adopting Sangkuriang folk story, originated from West Java, Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44888
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irvan JP Elliika
"Salah satu kemampuan robot yang canggih adalah mampu melakukan adaptasi pada lingkungan sekitarnya. Kemampuan ini merupakan analogi terhadap kemampuan manusia secara khusus. Namun, kebanyakan robot yang dibuat masih terbatas dalam hal interaksi secara sentuhan dengan lingkungan sekitarnya. Oleh karenanya diperlukan sistem sensasi non-kontak yang salah satunya adalah sensasi secara visual. Cara ini termasuk salah satu yang paling advance karena hampir semua proses manipulasi bisa dilakukan dengan hanya menggunakan sensor visual yaitu kamera walaupun computational cost-nya cukup tinggi.
Single Board computer jenis BeagleBoard akan digunakan untuk melakukan komputasi sensasi visual yang meliputi face detection, stereo vision, dan bahkan lokalisasi nantinya. Wajah manusia yang akan dikenali oleh sistem computer visualnya akan di-tracking dan diukur jaraknya secara real time melalui teknik stereo vision. Koordinat yang didapat akan ditransformasikan dengan persamaan kinematik berupa invers jacobian menuju pusat robot untuk melakukan aktuasi pada aktuator vision dan navigasi robot secara keseluruhan sampai tujuan untuk melakukan interaksi dengan manusia tercapai. Berdasarkan pengujian yang telah dilakukan dapat dinyatakan bahwa sistem komputer vision yang telah dibangun cukup valid dan handal untuk jarak dibawah 100 cm walaupun dengan waktu komputasi yang cukup besar.

One of the advance robot's ability is it can adapt into the around environment. This ability itself is the analogy of human's. But now, most of the robots still have limited in contact sensation. So, it's needed to build non-contact sensations and one of them is reached by build visual system. This way belong to one of advance method because almost of manipulation way can be dealed with this visual sensor like camera, even though the computational cost is high enough.
BeagleBoard, a kind of powerful Single Board computer, will be use to compute the visual sensation in this receptionist robot include face detection, stereo vision, and even localization later. The face of human that will be recognized by visual computer system will be tracked and the distant is calculated real time via stereo vision system. The coordinate that has been gathered will be transformed by invers jacobian into the center of robot to actuate visual actuation and doing robot navigation until receptionist robot is able to do interaction with human. Based on the result of experiment, it can be stated that the developed computer vision system is valid and reliable enough for distant below 100 cm even though spends high computational time.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42622
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>